BiFeO_3、YFeO_3与YMnO_3基陶瓷的介电弛豫与多铁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多铁性材料是指具有铁电、(反)铁磁与铁弹三种有序中两种或两种以上的铁性材料。由于其丰富的物理内涵与诱人的应用前景,多铁性材料正成为凝聚态物理与材料科学的热点研究领域。本文系统地研究了BiFeO_3、YFeO_3与YMnO_3基陶瓷的微结构、介电弛豫与多铁性,并讨论了其物理本质,得到以下主要结论:
     采用固相反应法制备了(Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3 (x=0.1,0.3和0.5)陶瓷,并评价了其介电、铁电和磁学性能。在BiFeO_3中引入NaNbO_3后,随着后者含量的增加将依次形成菱方结构的BiFeO_3基固溶体与赝立方结构的(Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3固溶体钙钛矿相。由于漏导的明显降低,在所研究的(Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3陶瓷的所有成分中都测得了更加规则的电滞回线,且随着NaNbO_3含量的增加,自发极化强度P_r增大。在550 K-600 K和650 K-710 K温度区间,(Bi_(0.9)Na_(0.1))(Fe_(0.9)Nb_(0.1))O_3陶瓷中存在着两个介电弛豫。低温介电弛豫和点缺陷相关;而高温介电弛豫和反铁磁转变相关。同时(Bi_(0.9)Na_(0.1))(Fe_(0.9)Nb_(0.1))O_3陶瓷在室温存在弱铁磁性。
     采用固相反应法制备了YFeO_3陶瓷,并评价了其介电和磁学性能。在123-350K和400-623 K温度区间,YFeO_3陶瓷中存在两个介电弛豫,并在二者之间存在一个介电常数平台。低温介电弛豫是一个本征的热激活过程,符合Arrhenius定律,其激活能和电子铁电体的激活能非常接近;而高温介电弛豫和点缺陷相关。同时YFeO_3陶瓷在室温具有弱铁磁性。
     用放电等离子体烧结(SPS)方法在较低温度和非常短的时间内成功制备了YFe_(1-x)Mn_xO_3(x=0.1,0.2和0.4)致密陶瓷,并评价了其介电、铁电和磁学性能。所研究的YFe_(1-x)Mn_xO_3陶瓷的所有成分中都存在一个明显的介电弛豫,它是一个热激活的过程,遵循Arrhenius定律,且随着Mn含量的增加,激活能降低。对于不同成分分别在123 K和153 K测得了规则的电滞回线。同时,所研究的YFe_(1-x)Mn_xO_3陶瓷的所有成分在室温都具有弱铁磁性。这说明,通过Mn替代Fe,可在维持YFeO_3较好室温铁磁性的基础上,得到良好的铁电性。
     用SPS原位合成结合热处理的方法成功制备了致密单相的YMnO_3陶瓷,并评价了其介电、铁电和磁学性能。和固相反应法相比,制备过程大为简化。YMnO_3陶瓷在低温区(160-300 K)存在一个明显的介电弛豫,它是一个热激活的过程;在较高的温区(300-420 K)存在一个介电常数台阶。YMnO_3陶瓷在反铁磁转变温度以下具有弱铁磁性。
     此外,本研究还采用SPS原位合成结合热处理的方法成功制备了YMn_(0.8)Fe_(0.2)O_3致密陶瓷,并评价了其介电、铁电和磁学性能。YMn_(0.8)Fe_(0.2)O_3陶瓷的介电温谱与YMnO_3陶瓷非常类似,在低温区(150-390 K)存在一个明显的介电弛豫,它是一个热激活的过程;在较高的温区(300-450 K)存在一个介电常数台阶。YMn_(0.8)Fe_(0.2)O_3陶瓷在153 K测得了明显的电滞回线,并且在室温和低温都存在弱铁磁性。通过Fe取代YMnO_3中的Mn,可以得到增强的室温铁磁性和良好的铁电性。
Multiferroics are a class of materials possessing at least two ferroic propertiesamong ferroelectricity, ferromagnetism (antiferromagnetism), and ferroelasticity.Because of its rich connotation in condense matter physics and attracing potentialapplications, multiferroic materials have become the hot research topic in condensematter physics and material science. In the present work, the microstructure, dielectricrelaxation, and multiferroic properties in BiFeO_3, YFeO_3 and YMnO_3-based ceramicswere systematically investigated, and the physical nature was discussed. Thefollowing conclusions were obtained:
     (Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3 (x=0.1, 0.3, and 0.5) ceramics were prepared by a solidstate reaction method, and the dielectric, ferroelectric and magnetic properties wereevaluated. By introducing NaNbO_3 into BiFeO_3, BiFeO_3-based solid solution withrhombohedral perovskite structure and (Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3 solid solution ofperovskite phase with pseudocubic structure were formed subsequently withincreasing NaNbO_3 content. Due to the significantly reduced leakage, allcompositions of (Bi_(1-x)Na_x)(Fe_(1-x)Nb_x)O_3 ceramics investigated here showed moreregular P-E hysteresis loops, and P_r was enhanced with increasing NaNbO_3 content.Two dielectric relaxations were observed in the temperature ranges of 550-600 K and650-710 K in (Bi_(0.9)Na_(0.1))(Fe_(0.9)Nb_(0.1))O_3 ceramics. The lower-temperature dielectricrelaxation was related to the point defect, and the higher-temperature dielectricrelaxation was related to the antiferromagnetism transition. Meanwhile, weakferromagnetic characteristic was observed in (Bi_(0.9)Na_(0.1))(Fe_(0.9)Nb_(0.1))O_3 ceramics.
     YFeO_3 ceramics were prepared by solid state reaction method, and the dielectricand magnetic properties were evaluated. Two dielectric relaxations were observed inthe temperature ranges of 123-350 K and 400-623 K in YFeO_3 ceramics and adielectric constant step was detected between them. The low-temperature dielectricrelaxation was an intrinsic thermal activated process following the Arrhenius law withthe activation energy very close to that for electronic ferroelectrics, while thehigh-temperature dielectric relaxation was related to the point defect. Meanwhile, weak ferromagnetic characteristic was detected in YFeO_3 ceramics at roomtemperature.
     YFe_(1-x)Mn_xO_3 (x=0.1, 0.2, and 0.4) dense ceramics were successfully prepared bySPS (Spark Plasma Sintering) in a very short time at relatively low temperature, andthe dielectric, ferroelectric and magnetic properties were evaluated. An obviousdielectric relaxation was observed for all compositions of YFe_(1-x)Mn_xO_3 ceramicsinvestigated here. It was a thermal activated process following the Arrhenius law, andthe activated energy decreased with increasing Mn content. Regular ferroelectrichysteresis loops were detected at 123 K and 153 K for different compositions, andweak ferromagnetic characteristic was observed at room temperature for allcompositions of YFe_(1-x)Mn_xO_3 ceramics invstigated here. That is, throughMn-substituting for Fe, good ferroelectric properties could be achieved together withthe good room-temperature ferromagnetism of YFeO_3.
     YMnO_3 dense ceramics with single phase were successfully prepared in-situ bySPS followed by annealing, and the dielectric, ferroelectric and magnetic propertieswere evaluated. Compared with solid state reation method, the synthesis process wasgreatly simplified. An obvious dielectric relaxation was observed in the lowtemperature range (160-300 K), which is a thermally activated process, and adielectric step was detected in the higher temperature range (300-420 K). Weakferromagnetic characteristic was observed in the temperature lower than theantiferromagnetic transition temperature in YMnO_3 ceramics.
     In addition, YMn_(0.8)Fe_(0.2)O_3 dense ceramics were successfully prepared in-situ bySPS followed by annealing, and the dielectric, ferroelectric and magnetic propertieswere evaluated. The temperature dependence of dielectric properties in YMn_(0.8)Fe_(0.2)O_3ceramics was very similar to those in YMnO_3 ceramics. An obvious dielectricrelaxation was observed in the low temperature range (150-390 K) in YMn_(0.8)Fe_(0.2)O_3ceramics, which was a thermally activated process, and a dielectric constant step wasdetected in the higher temperature range (300-450 K). Obvious ferroelectric hysteresisloops were detected at 153 K, and a weak ferromagnetic characteristic was observedat room temperature and low tempreture. Through Fe-substituting for Mn in YMnO_3, the enhanced room temperature ferromagnetic properties were achieved together withthe good ferroelectric properties.
引文
1 W. Eerenstein, N. D. Mathur, J. F. Scott. Multiferroic and magnetoelectric materials. Nature, 2006, 442: 759-765.
    2 S. -W. Cheong, M. Mostovoy. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater., 2007, 6: 13-20.
    3 O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, S. -W. Cheong. Magnetic order and spin dynamics in ferroelectric HoMnO_3. Phys. Rev. Lett., 2005, 94: 087601.
    4 N. A. Spaldin, M. Fiebig. The renaissance of magnetoelectric multiferroics. Science, 2005,309:391-392.
    5 R. Ramesh, N. A. Spaldin. Multiferroic: progress and prospects in thin films. Nat. Mater., 2007, 6:21-29.
    6 M. Fiebig, Th. Lottermoser, D. Frohlich, A. V. Goltsev, R. V. Pisarev. Observation of coupled magnetic and electric domains. Nature, 2002, 419: 818-820.
    7 Y. -H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S. -J. Han, Q. He, N. Balke, C. -H. Yang, D. Lee, W. Hu, Q. Zhan, P. -L Yang, A. Fraile-Rodriguez, A. Scholl, S. X. Wang, R. Ramesh. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater., 2008, 7: 478-482.
    8 金维芳.电介质物理学.北京:机械工业出版社,1997:25.
    9 关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992:292-308,382-386,393.
    10 李翰如.电介质物理学导论.成都:成都科技大学出版社,1990:138-140.
    11 殷之文.电介质物理学.北京:科学出版社,2003:58-62.
    12 钟维烈.铁电体物理学.北京:科学出版社,1996:1.
    13 田民波.磁性材料.北京:清华大学出版社,2001:11-32.
    14 宛德福,马兴隆.磁性物理学.成都:电子科技大学出版社,1994:29-32.
    15 姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003:14-15.
    16 M. Fiebig. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys., 2005, 38: R123-R152.
    17 W. Prellier, M. P. Singh, P. Murugavel. The single-phase multiferroic oxides: from bulk to thin film. J. Phys.: Condens. Matter, 2005, 17: R803-R832.
    18 迟振华,靳常青.单相磁电多铁性体研究进展.物理学进展,2007,27:225-238.
    19 J. F. Scott. Multiferroic memories. Nat. Mater., 2007, 6: 256-257.
    20 N. E. Rajeevan, P. P. Pradyumnan, Ravi Kumar, D. K. Shukla, S. Kumar, A. K. Singh, S. Patnaik, S. K. Arora, I. V. Shvets. Magnetoelectric properties of Bi_xCo_(2-x)MnO_4 (0≤x≤0.3). Appl. Phys. Lett., 2008, 92: 102910.
    21 N. A. Hill, A. Filippetti. Why are there any magnetic ferroelectrics. J. Magn. Magn. Mater., 2002, 242-245: 976-979.
    22 D. I. Khomskii. Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater., 2006, 306, 1-8.
    23 G. Catalan. Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett., 2006, 88: 102902.
    24 E. Ascher, H. Rieder, H. Schmid, H. St(?)ssel. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni_3B_7O_(13)I. J. Appl. Phys., 1966, 37: 1404-1405.
    25 N. A. Hill, K. M. Rabe. First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Phys. Rev. B, 1999, 59: 8759-8769.
    26 R. Seshadri, N. A. Hill. Visualizing the role of Bi 6s "Lone Pairs" in the off-center distortion in ferromagnetic BiMnO_3. Chem. Mater., 2001, 13: 2892-2899.
    27 C. G. Zhong, J. H. Fang, Q. Jiang. Magnetodielectric effects in the ferroelectric ferromagnet BiMnO_3. J. Phys.: Condens. Matter, 2004, 16: 9059-9068.
    28 J. Y. Son, Y. -H. Shina. Multiferroic BiMnO_3 thin films with double SrTiO_3 buffer layers. Appl. Phys. Lett., 2006, 93: 062902.
    29 E. Montanari, L. Righi, G. Calestani, A. Migliori, E. Gilioli, F. Bolzoni. Room temperature polymorphism in metastable BiMnO_3 prepared by high-pressure synthesis. Chem. Mater., 2005, 17: 1765-1773.
    30 M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert. Tunnel junctions with multiferroic barriers. Nat. Mater., 2007, 6: 296-302.
    31 A. Moreira dos Santos, S. Parashar, A. R. Raju, Y. S. Zhao, A. K. Cheetham, C. N. R. Rao. Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO_3. Solid State Coramun, 2002, 122: 49-52.
    
    32 H. Yang, Z. H. Chi, J. L. Jiang, W. J. Feng, Z. E. Cao, T. Xian, C. Q. Jin, R. C. Yu. Centrosymmetric crystal structure of BiMnO_3 studied by transmission electron microscopy and theoretical simulations. Journal of Alloys and Compounds, 2008, 461: 1-5.
    
    33 T. Atou, H. Chiba, K. Ohoyama, Y. Yamaguchi, Y. Syono. Structure determination of ferromagnetic perovskite BiMnO_3. J. Solid State Chem., 1999, 145: 639-642.
    34 A. Moreira dos Santos, A. K. Cheetham, T. Atou, Y. Syono, Y. Yamaguchi, K. Ohoyama, H. Chiba, C. N. R. Rao. Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO_3 Phys. Rev. B, 2002, 66: 064425.
    35 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom,U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh. Epitaxial BiFeO_3 multiferroic thin film heterostructures. Science, 2003,299: 1719-1722.
    36 J. Dho, X. Qi, H. Kim, J. L. MacManus-Driscoll, M. G. Blamire. Large electric polarization and exchange bias in multiferroic BiFeO_3. Adv. Mater., 2006, 18: 1445-1448.
    37 M. Kumar, K. L. Yadav. Rapid liquid phase sintered Mn doped BiFeO_3 ceramics with enhanced polarization and weak magnetization. Appl. Phys. Lett., 2007, 91: 242901.
    38 S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. manivannan, M. S. Seehra. Structural and multiferroic properties of La-modified BiFeO_3 ceramics. J. Appl. Phys., 2007, 101: 034104.
    39 Y. -K. Jun, W. -T. Moon, C. -M. Chang, H. -S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, S. -H. Hong. Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO_3 ceramics. Solid State Commun., 2005, 135: 133-137.
    40 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, Z. G. Liu. Room-temperature saturated ferroelectric polarization in BiFeO_3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett., 2004, 84: 1731-1733.
    41 Y. P. Wang, G. L. Yuan, X. Y. Chen, J. -M. Liu, Z. G. Liu. Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO_3 ceramic. J. Phys. D: Appl. Phys., 2006, 39: 2019-2023.
    
    42 R. Mazumder, P. Sujatha Devi, Dipten Bhattacharya, P. Choudhury, A. Sen, M. Raja. Ferromagnetism in nanoscale BiFeO_3. Appl. Phys. Lett., 2007, 91: 062510.
    43 V. R. Palkar, D. C. Kundaliya, S. K. Malik, S. Bhattacharya. Magnetoelectricity at room temperature in the Bi_(0.9-x)Tb_xLa_(0.1)FeO_3 system. Phys. Rev. B, 2004, 69: 212102.
    44 S. R. Shannigrahi, A. Huang, N. Chandrasekhar, D. Tripathy, A. O. Adeyeye. Sc modified multiferroic BiFeO_3 thin films prepared through a sol-gel process. Appl. Phys. Lett., 2007, 90: 022901.
    45 S. M. Selbach, T. Tybell, M. -A. Einarsrud, T. Grande. The ferroic phase transitions of BiFeO_3. Adv. Mater., 2008, 20: 3692-3696.
    46 C. Ederer, N. A. Spaldin. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B, 2005, 71: 060401 (R).
    47 M. M. Kumar, V. R. Palkar, K. Srinivas, S. V. Suryanarayana. Ferroelectricity in a pure BiFeO_3 ceramic. Appl. Phys. Lett., 2000, 76: 2764-2766.
    48 A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya , R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, A. Burger. Magnetic and electrical properties of single-phase multiferroic BiFeO_3. J. Appl. Phys., 2005, 97: 093903.
    49 B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, D. Viehland. Magnetic-field-induced phase transition in BiFeO_3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B, 2004,69:064114.
    50 K. Ueda, H. Tabata, T. Kawai. Coexistence of ferroelectricity and ferromagnetism in BiFeO_3-BaTiO_3 thin films at room temperature. Appl. Phys. Lett., 1999, 75: 555-557.
    51 C. -F. Chung, J. -P. Lin, J. -M. Wu. Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO_3 films. Appl. Phys. Lett., 2006, 88: 242909.
    52 Y. -H. Lin, Q. -H. Jiang, Y. Wang, C. -W. Nan, L. Chen, J. Yu. Enhancement of ferromagnetic properties in BiFeO_3 polycrystalline ceramic by La doping. Appl. Phys. Lett., 2007, 90: 172507.
    
    53 I. Sosnowska, W. Schafer, W. Kockelmann, K. H. Andersen, I. O. Troyanchuk. Crystal structure and spiral magnetic ordering of BiFeO_3 doped with manganese. Appl. Phys. A- Materials Science Processing, 2002, 74: S1040-S1042.
    54 B. F. Yu, M. Y. Li, J. Liu, D. Y. Guo, L. Pei, X. Z. Zhao. Effects of ion doping at different sites on electrical properties of multiferroic BiFeO_3 ceramics. J. Phys. D: Appl. Phys., 2008, 41: 065003.
    55 D. H. Wang, W. C. Goh, M. Ning, C. K. Ong. Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO_3 at room temperature. Appl. Phys. Lett., 2006, 88: 212907.
    56 S. M. Selbach, M. -A. Einarsrud, T. Tybell, T. Grande. Synthesis of BiFeO_3 by wet chemical methods. J. Am. Ceram. Soc., 2007, 90: 3430-3434.
    57 S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, N. B. Ming. Larger polarization and weak ferromagnetism in quenched BiFeO_3 ceramics with a distorted rhombohedral crystal structure. Appl. Phys. Lett., 2005, 87: 262907.
    58 A. G. Zhdanov, A. K. Zvezdin, A. P. Pyatakov, T. B. Kosykh, D. Viehland. Effect of the electric field on "incommensurate-commensurate" magnetic phase transitions in BiFeO_3-type multiferroics. Physics of the Solid State, 2006, 48: 88-95.
    59 G. L. Yuan, S. W. Or. Multiferroicity in polarized single-phase Bi_(0.875)Sm_(0.125)FeO_3 ceramics. J. Appl. Phys., 2006, 100: 024109.
    60 Z. X. Cheng, X. L. Wang, S. X. Dou, H. Kimura, K. Ozawa. Improved ferroelectric properties in multiferroic BiFeO_3 thin films through La and Nb codoping. Phys. Rev. B, 2008, 77:092101.
    61 V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, R. M. Rubinger, N. A. Sobolev, M. Kopcewicz, V. V. Shvartsman, P. Borisov, W. Kleemann, A. L. Kholkin. Coexistence of spontaneous ferroelectricity and weak ferromagnetism in Bi_(0.8)Pb_(0.2)FeO_(2.9) perovskite. J. Phys.: Condens. Matter, 2008, 20: 155207.
    62 R. Przenioslo, M. Regulski, I. Sosnowska. Modulation in multiferroic BiFeO_3: cycloidal, elliptical or SDW. J. Phys. Soc. Jpn., 2006, 75: 084718.
    63 G. L. Yuan, K. Z. Baba-Kishi, J. -M. Liu, S. W. Or, Y. P. Wang, Z. G. Liu. Multiferroic properties of single-phase Bi_(0.85)La_(0.15)FeO_3 lead-free ceramics. J. Am. Ceram. Soc., 2006, 89: 3136-3139.
    
    64 A. A. Gippius, D. F. Khozeev, E. N. Morozova, A. V. Zalessky. Observation of spin modulated magnetic structure at Bi- and Fe-sites in BiFeO_3 by nuclear magnetic resonance. Phys. Stat. Sol. (a), 2003, 196: 221-224.
    65 J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V. Yu. Ivanov, A. A. Mukhin, A. M. Balbashov, A. Loidl. Multiferroic phases of Eu_(1-x)Y_xMnO_3 Phys. Rev. B, 2007, 75:035118.
    66 T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, H. Takagi. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO_3 (R=Y, Yb, and Lu). Phys. Rev. B, 2001, 64: 104419.
    67 A. Munoz, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, J. L. Martinez, M. T. Fernandez-Diaz. Magnetic structure of hexagonal RMnO_3 (R=Y, Sc): thermal evolution from neutron powder diffraction data. Phys. Rev. B, 2000, 62: 9498-9510.
    68 Y. Aikawa, T. Katsufuji, T. Arima, K. Kato. Effect of Mn trimerization on the magnetic and dielectric properties of hexagonal YMnO_3. Phys. Rev. B, 2005, 71: 184418.
    69 T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, M. Fiebig. Magnetic phase control by an electric field. Nature, 2004, 430: 541-544.
    70 V. Laukhin, V. Skumryev, X. Marti, D. Hrabovsky, F. Sanchez, M. V. Garcia-Cuenca, C. Ferrater, M. Varela,U. Luders, J. F. Bobo, J. Fontcuberta. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett., 2006, 97: 227201.
    71 T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, H. Takagi. Crystal structure and magnetic properties of hexagonal RMnO_3 (R=Y, Lu, and Sc) and the effect of doping. Phys. Rev. B, 2005, 66: 134434.
    72 S. Leea, M. Kanga, C. Leeb, A. Hoshikawac, M. Yonemurac, T. Kamiyamac, J. -G. Parka. Multiferroic behavior and two-dimensional magnetism of hexagonal manganites. Physica B, 2006, 385-386: 405-407.
    
    73 C. G. Zhong, J. H. Fang. The coupling effect between ferroelectric and frustrated antiferromagnetic ordering in hexagonal ferroelectromagnet. Solid State Communi., 2003, 128:449-453.
    74 B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, C. W. Chu. Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO_3. Phys. Rev. Lett., 2004, 92: 087204.
    75 Th. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Tobbens, J. A. Mydosh. Development of the high-temperature phase of hexagonal manganites. Phys. Rev. B, 2004, 69: 134108.
    76 X. Q. Cao, C. -S. Kim, H. -I. Yoo. Effect of substitution of manganese for iron on the structure and electrical properties of yttrium ferrite. J. Am. Ceram. Soc., 2001, 84: 1265-1272.
    77 A. Veres, J. G. Noudem, S. Fourrez, G. Bailleul. The influence of iron substitution to manganese on the physical properties of YMnO_3. Solid State Sci., 2006, 8: 137-141.
    78 Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, C. W. Chu. Coupling between the ferroelectric and antiferromagnetic orders in YMnO_3. Phys. Rev. B, 1997, 56: 2623-2626.
    79 D. G. Tomuta, S. Ramakrishnan, G. J. Nieuwenhuys, J. A. Mydosh. The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO_3, LuMnO_3, and ScMnO_3. J. Phy.: Condens. Matter, 2001, 13: 4543-4552.
    80 C. Moure, J. F. Fernandez, M. Villegas, P. Duran. Non-ohmic behaviour and switching phenomena in YMnO_3-based ceramic materials. J. Eur. Ceram. Soc., 1999, 19: 131-137.
    81 G. Lescano, F. M. Figueiredo, F. M. B. Marques, J. Schmidt. Synthesis and electrical conductivity of Y_(1-x)Mn_(1-y)O_(3-δ). J. Eur. Ceram. Soc., 2001, 21: 2037-2040.
    82 M. C. Sekhar, N. V. Prasad. Dielectric, impedance, magnetic and magnetoelectric measurements on YMnO_3. Ferroelectrics, 2006, 345: 45-57.
    83 S. Lee, A. Pirogov, J. H. Han, J. -G. Park, A. Hoshikawa, T. Kamiyama. Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO_3. Phys. Rev. B, 2005, 71: 180413 (R).
    84 D. -Y. Cho, J. - Y. Kim, B. -G. Park, K. -J. Rho, J. -H. Park, H. -J. Noh, B. J. Kim, S. -J. Oh, H.-M. Park, J. -S. Ahn, H. Ishibashi, S. -W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, T. Jo. Ferroelectricity driven by Y d~0-ness with rehybridization in YMnO_3. Phys. Rev. Lett., 2007, 98: 217601.
    85 N. Fujimura, H. Sakata, D. Ito, T. Yoshimura, T. Yokota, T. Ito, Ferromagnetic and ferroelectric behaviors of A-site substituted YMnO_3-based epitaxial thin films, J. Appl. Phys., 2003, 93: 6990-6992.
    86 M. C. Sekhar, S. Lee, G. Choi, C. Lee, J. -G. Park. Doping effects of hexagonal manganites Er_(1-x)Y_xMnO_3 with triangular spin structure. Phys. Rev. B, 2005, 72: 014402.
    87 A. A. Nugroho, N. Bellido, U. Adem, G. Nenert, Ch. Simon, M. O. Tjia, M. Mostovoy, T. T. M. Palstra. Enhancing the magnetoelectric coupling in YMnO_3 by Ga doping. Phys. Rev. B, 2007, 75: 174435.
    88 T. Asaka, K. Nemoto, K. Kimoto, T. Arima, Y. Matsui. Crystallographic superstructure of Ti-doped hexagonal YMnO_3. Phys. Rev. B, 2005, 71:014114.
    89 U. Adem, A. A. Nugroho, A. Meetsma, T. T. M. Palstra. Ferroelectric displacements in multiferroic Y(Mn, Ga)O_3 Phys. Rev. B, 2007, 75: 014108.
    90 B. B. Van Aken, T. T. M. Palstra, A. Filippetti, N. A. Spaldin. The origin of ferroelectricity in magnetoelectric YMnO_3. Nat. Mater., 2004, 3: 164-170.
    91 T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura. Magnetic control of ferroelectric polarization. Nature, 2003, 426, 55-58.
    92 T. Goto, T. Kumura, G. Lawes, A. P. Ramirez, Y. Tokura. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett., 2004, 92:257201.
    93 A. Pimenov, A. A. Mukhin, V. Y. Ivanov, V. D. Travkin, A. M. Balbashov, A. Loidl. Possible evidence for electromagnons in multiferroic manganites. Nat. Phys., 2006,2:97-100.
    94 M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S. -W. Cheong, O. P. Vajk, J. W. Lynn. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO_3. Phys. Rev. Lett., 2005, 95: 087206.
    
    95 J. L. Ribeiro. Symmetry and magnetically driven ferroelectricity in rare-earth manganites RMnO_3 (R=Gd, Tb, Dy). Phys. Rev. B, 2007, 76: 144417.
    96 L. M. Volkova, D. V. Marinin. Crystal chemistry aspects of the magnetically induced ferroelectricity in TbMn_2O_5 and BiMn_2O_5. J. Phys.: Condens. Matter, 2009, 21:015903.
    97 P. G. Radaelli, L. C. Chapon. A neutron diffraction study of RMn_2O_5 multiferroics. J. Phys.: Condens. Matter, 2008, 20: 434213.
    98 Y. Noda, H. Kimura, M. Fukunaga, S. Kobayashi, I. Kagomiya, K. Kohn. Magnetic and ferroelectric properties of multiferroic RMn_2O_5 J. Phys.: Condens. Matter, 2008, 20: 434206.
    99 A. Inomata, K. Kohn. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn_2O_5, TbMn_2O_5 and YMn_2O_5. J. Phys. Condens. Matter, 1996, 8: 2673-2678.
    100 N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, S. -W. Cheong. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 2004, 429: 392-395.
    101 N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai,Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kito. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe_2O_4. Nature, 2005, 436: 1136-1138.
    102 J. Y. Park, J. H. Park, Y. K. Jeong, H. M. Jang. Dynamic magnetoelectric coupling in "electronic ferroelectric" LuFe_2O_4. Appl. Phys. Lett., 2007, 91: 152903.
    103 N. Ikeda, Y. Matsuo, S. Mori, K. Yoshii. Electronic ferroelectricity from charge ordering in RFe_2O_4 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55: 1043-1045.
    104 B. K. Bang, T. Kouh, C. S. Kima. Magnetic property and charge ordering effect in polycrystalline LuFe_2O_4. J. Appl. Phys., 2008, 103: 07E307.
    105 K. Oka, M. Azuma, N. Hayashi, S. Muranaka, Y. Narumi, K. Kindo, S. Ayukawa, M. Kato, Y. Koike, Y. Shimakawa, M. Takano. Charge and magnetic orderings in the triangular-lattice antiferromagnet InFe_2O_4. J. Phys. Soc. Jpn., 2008, 77: 064803.
    106 C. Ederer, N. A. Spaldin. A new route to magnetic ferroelectrics. Nat. Mater., 2004, 3:849-851.
    107 D. V. Efremov, J. V. D. Brink, D. I. Khomskii. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat. Mater., 2004, 3: 853-856.
    108 J. Van Den Brink, D. I. Khomskii. Multiferroicity due to charge ordering. J. Phys.: Condens. Matter, 2008, 20: 434217.
    109 S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, A. Loidl. Colossal magnetocapacitance and colossal magnetoresistance in HgCr_2S_4 Phys. Rev. Lett., 2006, 96: 157202.
    110 Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. -P. He, T. Arima, Y. Tokura. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett., 2006, 96: 207204.
    111 J. Hemberger, P. Lunkenheimer, R. Fichtl, H. -A. Krug von Nidda, V. Tsurkan, A. Loidl. Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr_2S_4. Nature, 2005, 434: 364-367.
    112 K. Taniguchi, N. Abe T. Takenobu, Y. Iwasa, T. Arima. Ferroelectric polarization flop in a frustrated magnet MnWO_4 induced by a magnetic field. Phys. Rev. Lett., 2006, 97: 097203.
    113 G. Lawes, A. B. Harris, T. Kimura, N. Rogado, R. J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A. P. Ramirez. Magnetically driven ferroelectric order in Ni_3V_2O_8. Phys. Rev. Lett., 2005, 95: 087205.
    114 T. Kimura, G. Lawes, A. P. Ramirez. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett., 2005, 94: 137201.
    115 H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh. Multiferroic BaTiO_3-CoFe_2O_4 nanostructures. Science, 2004, 303: 661-663.
    116 I. Levin, J. Li, J. Slutsker, A. L. Roytburd. Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater., 2006, 18: 2044-2047.
    117 C. W. Nan, G. Liu, Y. H. Lin, H. Chen. Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett., 2005, 94: 197203.
    118 C. W. Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, Y. Lin. Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B, 2005, 71: 014102.
    119 N. Cai, J. Zhai, C. -W. Nan, Y. Lin, Z. Shi. Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites. Phys. Rev. B, 2003, 68:224103.
    120 Z. Shi, C. W. Nan, Jie Zhang, N. Cai, J. -F. Li. Magnetoelectric effect of Pb(Zr,Ti)O_3 rod arrays in a (Tb,Dy)Fe_2/epoxy medium. Appl. Phys. Lett., 2005, 87: 012503.
    121 逢婷婷,傅正义,张东明.放电等离子烧结(SPS)技术.材料导报,2002,16:31-33.
    122 冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用.材料科学与工艺,2003,11:327-331.
    123 T. Takeuchi, M. Tabuchi, H. Kageyama, Y. Suyama. Preparation of dense BaTiO_3 ceramics with submicrometer grains by spark plasma sintering. J. Am. Ceram. Soc., 1999, 82,939-943.
    124 Y. Gao, Y. J. Wu, X. M. Chen, J. P. Cheng, Y. Q. Lin, Y. Ma. Dense YMn_2O_5 ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2008, 91: 3728-3730.
    125 Y. F. Zhang, J. X. Zhang, Q. M. Lu. Synthesis of highly textured Ca_3Co_4O_9 ceramics by spark plasma sintering. Ceram. Int., 2007, 33: 1305-1308.
    126 Y. Shimojo, R. Wang, Y. J. Shan, H. Izui, M. Taya. Dielectric characters of 0.7Pb(Mg_(1/3)Nb_(2/3))O_3-0.3PbTiO_3 ceramics fabricated at ultra-low temperature by the spark-plasma-sintering method. Ceram. Int., 2008, 34: 1449-1452.
    127 B. -P. Zhang, J. -F. Li, K. Wang. H. L. Zhang. Compositional dependence of piezoelectric properties in Na_xK_(1-x)NbO_3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2006, 89: 1605-1609.
    128 Y. J. Wu, J. Li, R. Kimura, N. Uekawa, K. Kakegawa. Effect of preparation conditions on the structural and optical properties of spark plasma sintered PLZT (8/65/35) ceramics. J. Am. Ceram. Soc., 2005, 88: 3327-3331.
    
    129 Y. J. Wu, N. Uekawa, Y. Sasaki, K. Kakegawa. Microstructures and pyroelectric properties of multicomposition 0.9PbZrO_3·xPbTiO_3(0.1-x)·Pb(Zn_(1/3)Nb_(2/3))O_3 ceramics. J. Am. Ceram. Soc., 2002, 85: 1988-1992.
    130 H. Xue, Z. X. Xiong. The structure and dielectric tunable properties of fine-grained Ba_(0.6)Sr_(0.4)TiO_3 ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc., 2007, 90: 2653-2656.
    131 Q. H. Jiang, J. Ma, Y. H. Lin, C. -W. Nan, Z. Shi, Z. J. Shen. Multiferroic properties of Bi_(0.87)La_(0.05)Tb_(0.08)FeO_3 ceramics prepared by spark plasma sintering. Appl. Phys. Lett., 2007, 91:022914.
    132 X. Y. Deng, X. H. Wang, H.Wen, L. L. Chen, L. Chen, L. T. Li. Ferroelectric properties of nanocrystalline barium titanate ceramics. Appl. Phys. Lett., 2006, 88: 252905.
    133 X. T. Wang, N. P. Padture, H. Tanaka. Contact-damage-resistant ceramic/ single-wall carbon nanotubes and ceramics/graphite composites. Nat. Mater., 2004, 3: 539-544.
    134 T. Isobe, K. Daimon, T. Sato, T. Matsubara,Y. Hikichi, T. Ota. Spark plasma sintering technique for reaction sintering of Al2O_3/Ni nanocomposite and its mechanical properties. Ceram. Int., 2008, 34: 213-217.
    135 C. -B. Rong, V. Nandwana, N. Poudyal, J. P. Liu, T. Saito, Y. Wu, M. J. Kramer. Bulk FePt/Fe_3Pt nanocomposite magnets prepared by spark plasma sintering. J. Appl. Phys.,2007, 101:09K515.
    136 S. -L. Shia, J. Liang. Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites. J. Appl. Phys., 2007, 101: 023708.
    137 Z. Chen, Y. W. Yan. Influence of sintering temperature on microstructures of Nb/Nb_5Si_3 in situ composites synthesized by spark plasma sintering. Journal of Alloys and Compounds, 2006, 413: 73-76.
    138 T. Saitoa. Magnetic properties of Nd-Fe-Ti-C-B nanocomposite magnets produced by spark plasma sintering method. J. Appl. Phys., 2006, 99: 08B522.
    139 K. Morita, K. Hiraga, B. -N. Kim, H. Yoshida, Y. Sakka. Synthesis of dense nanocrystalline ZrO_2-MgAl_2O_4 spinel composite. Scripta Materialia, 2005, 53: 1007-1012.
    140 G. -D. Zhan, J. E. Garay, A. K. Mukherjee. Ultralow-temperature superplasticity in nanoceramic composites. Nano Lett., 2005, 5: 2593-2597.
    141 J. Martin, G. S. Nolasa, W. Zhang, L. Chen. PbTe nanocomposites synthesized from PbTe nanocrystals. Appl. Phys. Lett., 2007, 90: 222112.
    142 H. Feng, Y. Zhou, D. Jia, Q. Meng, J. Rao. Growth mechanism of in situ TiB whiskers in spark plasma sintered TiB/Ti metal matrix composites. Crystal Growth & Design, 2006, 6: 1626-1630.
    143 M. Yue, J. X. Zhang, H. Zeng, H. L. Chen, X. B. Liu. Magnetocaloric effect in layer structural Gd_5(Si_xGe_(1-x))_4/Gd composite material. J. Appl. Phys., 2007, 101: 09C520.
    144 T. T. Sasaki, T. Mukaib, K. Honoa. A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scripta Materialia, 2007,57: 189-192.
    145 G. Ji, T. Grosdidier, N. Bozzolo, S. Launois. The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics, 2007, 15: 108-118.
    146 张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用.粉末冶金技术,2002,20:129-134.
    147 T. Sekimoto, K. Kurosaki, H. Muta, S. Yamanaka. Thermoelectric and thermophysical properties of ErPdX (X=Sb and Bi) half-heusler compounds. J. Appl. Phys., 2006, 99: 103701.
    148 J. L. Mi, T. J. Zhu, X. B. Zhao, J. Ma. Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb_3. J. Appl. Phys., 2007, 101: 054314.
    149 T. Takeuchi, M. Tabuchi, I.Kondoh, N. Tamari, H. Kageyama. Synthesis of dense lead titanate ceramics with submicrometer grains by spark plasma sintering. J. Am. Ceram. Soc., 2000, 83: 541-544.
    150 K. Hirota, Y. Takanob, M. Yoshinaka, O. Yamaguchi. A new composite material with high saturation magnetization density and high electrical resistivity. Materials Research Bulletin, 2000, 35: 1137-1141.
    
    151 T. M. Rearick, G. L. Catchen, J. M. Adams. Combined magnetic-dipole and electric-quadrupole hyperfine interactions in rare-earth orthoferrite ceramics. Phys. Rev. B, 1993,48:224-238.
    152 M. Eibschutz, S. Shtrikman, D. Treves. Mossbauer studies of Fe57 in othoferrites. Phys. Rev., 1967, 156: 562-577.
    153 K. Konieczny. Pyroelectric and dielectric study of NaNbO_3 single crystals. Mater. Sci. Eng. B, 1999, 60: 124-127.
    154 Y. Ma, X. M. Chen, Y. Q. Lin. Relaxorlike dielectric behavior and weak ferromagnetism in YFeO_3 ceramics. J. Appl. Phys., 2008, 103: 124111.
    155 Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, T. R. Shrout. Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys., 2008, 103: 07E507.
    156 S. Mathur, M. Veith, R. Rapalaviciute, H. Shen, G. F. Goya, W. L. W. Filho, T. S. Berquo. Molecule derived synthesis of nanocrystalline YFeO_3 and investigations on its weak ferromagnetic behavior. Chem. Mater., 2004, 16: 1906-1913.
    157 Y. S. Didosyan, H. Hauser, H. Wlfmayer, J. Nicolics, P. Fulmek. Magneto-optical rotational speed sensor. Sens. Actuators A, 2003, 106: 168-171.
    158 D. S. Schmool, N. Keller, M. Guyot, R. Krishnan, M. Tessier. Magnetic and magneto-optic properties of orthoferrite thin films grown by pulsed-laser deposition. J. Appl. Phys., 1999, 86: 5712-5717.
    159 Z. Wang, X. M. Chen, L. Ni, X. Q. Liu, Y. Y. Liu. Dielectric relaxations in Ba(Fe_(1/2)Ta_(1/2))O_3 giant dielectric constant ceramics. Appl. Phys. Lett., 2007, 90: 102905.
    160 Y. Y. Liu, X. M. Chen, X. Q. Liu, L. Li. Giant dielectric response and relaxor behaviors induced by charge and defect ordering in Sr(Fe_(1/2)Nb_(1/2))O_3 ceramics. Appl. Phys. Lett., 2007, 90: 192905.
    161 C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, A. P. Ramirez. Optical response of high-dielectric-constant perovskite-related oxide. Science, 2001, 293: 673-676.
    162 Y. J. Wu, Y. Gao, X. M. Chen. Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Appl. Phys. Lett., 2007, 91: 092912.
    
    163 T. Choi, J. Lee. Bi modification for low-temperature processing of YMnO_3 thin films. Appl. Phys. Lett., 2004, 84: 5043-5045.
    164 S. L. Samal, W. Green, S. E. Lofland, K. V. Ramanujachary, D. Das, A. K. Ganguli. Study on the solid solution of YMn_(1-x)Fe_xO_3: structural, magnetic and dielectric properties. J. Solid State Chem., 2008, 181: 61-66.
    165 J. F. Scott. Ferroelectrics go bananas. J. Phys.: Condens. Matter, 2008, 20: 021001.
    166 M. Dawber, K. M. Rabe, J. F. Scott. Physics of thin-film ferroelectric oxides. Reviews of Modern Physics, 2005, 77: 1083-1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700