STATCOM非线性H_2/H_∞混合控制与模块化嵌入式数字系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静止同步补偿器(STATCOM)是FACTS家族的重要装置成员之一,在世界各地正得到越来越广泛的应用。因为先进的控制性能,STATCOM已经成为世界上静止无功补偿发展研究的方向。作为STATCOM的重要组成部分,控制器和控制系统直接影响它的运行性能。本文针对混合型级联多电平主电路,结合其控制器和控制系统的设计和研究,对控制器和控制系统的软、硬件设计进行了系统性分析并加以实现。
     首先,在分析了STATCOM装置的工作原理和工作特性的基础上,给出了STATCOM控制系统的两层模型,即系统层与装置层,它的优点是可以将一个复杂系统分为两个设计相对容易的子系统,并且每个子系统有各自的控制对象,同时各子系统之间还存在着一定的控制关系。分析了STATCOM控制系统模型中由于参数不确定性带来了STATCOM模型的不确定性和摄动性,影响了模型的精确性。
     随着装置容量变得越来越大以及对输出波形谐波频谱更高的要求,多电平STATCOM主电路成为未来的发展方向。在分析多电平STATCOM主电路结构和原理的基础上,对单元级联式多电平主电路的构成和工作原理进行了研究,而混合型级联多电平主电路与输出相同电平的其它类型多电平主电路相比,具有所需的功率器件最少的优点。采用SHE PWM技术,降低了主电路输出注入系统电流中的低次谐波含量,分析了开关角误差与谐波之间的关系,并给出了通过选择开关角鲁棒系数来降低其影响的方法。
     其次,在分析了STATCOM系统存在非线性、参数摄动和外部扰动的基础上,建立了存在参数摄动和外部扰动的两种模型,即单机无穷大系统的系统级数学模型与装置级数学模型。采用H_2/H_∞混合控制理论和直接反馈线性方法,分别设计了两种模型的非线性控制器。利用线性矩阵不等式(LMI)对控制器进行求解。通过Matlab仿真,表明了H_2/H_∞混合控制兼有鲁棒性能和最优性能,可使系统快速平息振荡,有效提高系统的暂态稳定,改善系统的动态性能,提高系统的传输容量,同时又能满足故障切除后电压精度的要求。所设计的控制器在保证控制性能的基础上,对参数的不确定具有鲁棒性,同时保证在所有参数摄动范围内具有渐近稳定性。
     接着,分析了传统集中控制中存在的局限性,依照建立的数学模型,针对混合型级联多电平主电路的特点,在STATCOM控制系统设计中提出了基于模块化嵌入式的分布式控制系统结构,即基本控制单元执行层、协调层和组织层。在这种控制系统结构下,系统具有很好的自适应性,当外界环境变化或出现故障时,通过同级子系统之间以及子系统和较高层次系统之间的信息交换,相关层次的子系统的结构与功能进行调整,从而实现了整个系统的动态平衡,因此整个系统反应灵活,柔性好,可靠性高。采用标准化组件和标准化通讯接口规范,各层之间可以通过明确的接口进行交互,因此不需要关心层内结构的细节。各个组件一般实现不同的功能范畴,要求功能相对独立,组件之间耦合为松耦合。这样可以实现所谓的“即插即用”功能,并使得控制软件的调试、维护和升级都得到简化。
     随后,在硬件设计方面,详细地设计了基本控制单元执行层和协调层。根据基本控制单元执行层的功能要求,设计了模块化嵌入式单相控制单元。该单元采用基于ARM内核的32位LPC2129局部控制器和CPLD设计方案,完成了对基本控制单元执行层的触发电路、驱动单元、通信单元、同步电路及保护等电路单元的设计。根据协调层的功能要求,采用双DSP方案,设计了模块化嵌入式主控制器单元。DSP56F807(1)完成采集、判断及控制策略等功能,而DSP56F807(2)则负责整个系统的运行、协调及人机交互等功能。
     同时,还对STATCOM保护进行了初步讨论,提出了主电路故障检测方案,给出了控制性保护是STATCOM装置中一种特殊而且有效的保护,并且具体说明了控制性保护在STATCOM中的实现方法。
     最后,结合硬件平台和STATCOM的两种运行方式,对STATCOM控制系统的软件进行了设计。利用uC/OS-Ⅱ嵌入式实时多任务操作系统,提高了系统软件的移植性、维护性和扩展性。
As one of the important members of FACTS,Static Synchronous Compensator(STATCOM) has widely applied all over the world.Because STATCOM has advanced control performance,it has become the direction of development research in the world's SVC.As the important components of STATCOM,controller and control system directly impact on the operation performance of STATCOM.Aiming at the mixed-cascade multi-level main circuit and with the design and research of its controller and control system,this paper carries out and achieves system analysis in relation to controller and the control system hardware and software design.
     At first,the principle and performance of STATCOM are introduced in this thesis.Control system of STATCOM is a two-layer model,the system layer and the equipment layer.Its advantage is that a complex system can be divided into two designed relative easy subsystems, and each subsystem has not only its own control object but also a certain relationship between the various subsystems.In the control system model of STATCOM,parameter uncertainty not only brings uncertainty and perturbation of the STATCOM model but also impacts on the accuracy of the model.
     As equipment capacity becomes bigger and bigger,and then requirements of output waveform harmonic spectrum become higher,main circuit of the multi-level STATCOM becomes the direction of development in the future.Based on the main circuit structure and principle of STATCOM,the structure and principle of unit cascade multi-level main circuit are studied,and mixed-cascade multi-level main circuit compared with multi-level main circuit of other types of output same level has a advantage of the least needed power devices.Using SHE PWM technology lowers the low harmonic content of the main circuit output injection system current,analyzes the relationship between Switch angle error and harmonic and gives a method reducing its influence through the select switch angle robust coefficient.
     Secondly,based on nonlinear,parameter perturbation and external disturbance,STATCOM establishes two models existing parameter perturbation and external disturbance,system-level mathematical model and device-level mathematical model of the single infinite system.Using H_2/H_∞Mixed Control theory and direct feedback linear method,the two models are designed for the non-linear controller.Using LMI(LMI)for Solving the controller,through Matlab simulation,it shows the H_2/H_∞Mixed Control both robust performance and optimal performance, rapidly subsides oscillation of the system,effectively improves transient stability of the system, improves dynamic performance of the system,increases transmission capacity of the system and can satisfy the requirement of voltage precision after failure removal.The designed controller based on control performance has robust on uncertain parameters and has asymptotic stability within the perturbation range of all parameters.
     Then,analyzing the limitations of the traditional centralized control,according to the established mathematical model in this thesis,with the characteristics of the mixed-cascade multi-level main circuit,the distributed control system structure of modular embedded is presented in the control system design of STATCOM,namely,the basic control unit implementation layer,the coordination layer and the organizing layer.In this control system,the system has a good adaptability,when the external environment change or failure,through information exchange in the same level subsystems,as well as between subsystem and higher level subsystem,and the adjustment of the structure and function between the relevant level subsystems,thus the dynamic balance of the whole system is realized,so the whole system has response flexible,good flexibility and high reliability.At the same time,using standardized components and standardized communication interface specifications and interaction between the layers through the clear interface,there is no need of concern within the internal layer structure details.Generally,various components achieve different functional areas to function relatively independent,and the coupling of various components is loosely coupled.This realizes the so-called "plug-and-play" feature,and makes the control software debugging,maintaining and upgrading simplify.
     Subsequently,in hardware design,the basic control unit implementation layer and coordination layer are designed in detail.According to the functional requirements of the basic control unit implementation layer,the modular embedded single-phase control unit is introduced. Based on the ARM core of the 32 bits LPC2129 local controller and the CPLD design scheme, this unit completes the circuit unit design of the basic control unit implementation layer,such as trigger circuit,drive unit,communication unit,synchronization circuit and protection,and so on. According to the functional requirements of the coordination layer,using a dual-DSP project,the modular embedded main controller unit is designed.DSP56FS07(1)completes some functions, such as,acquisition,estimation and control strategy,and so on,while DSP56FS07(2)is responsible for the operation of the whole system,coordination and human-computer interaction.
     At the same time,the protection of STATCOM is discussed preliminarily.The main circuit fault detection schemes are presented.The controlled protection is a special and effective protection in STATCOM devices.The implementation method of the controlled protection is explained concretely in STATCOM.
     Finally,combining the hardware platform with two operation modes of STATCOM,the software of the STATCOM control system is designed.Using uC/OS-Ⅱembedded real-time multi-tasking operating system improves the transplantation,maintainability and scalability of the system software.
引文
[1]余岳辉,王惠刚,彭昭廉.大功率电力电子器件的新发展[J].电源技术应用,1999,2(3):1-4
    [2]N.G..Hingorani.High Power Electronics and Flexible AC Transmission System.IEEE Power Engineering Review,1988,July,p3-4
    [3]王仲鸿,沈斐,吴铁铮.FACTS技术研究现状及其在中国的应用与开发[J].电力系统自动化,2000,24(23):1-5
    [4]Y.Sumi,Y.Harumoto,I.Hasegawa,et al.New Static Var Control Using Forced Commutated Invers.IEEE Trans on Power Apparatus and Systems.1981,100(9):4216-4224
    [5]A.S.Mehraban,J.H.Provanzana,A.Edris,et al.Installaction,Commissioning and Operation of the World's First UPFC AEP System.IEEE POWERCON'98,Aug 18-21,Beijing,321-327
    [6]C.Schauder,E.Stacey,M.Lund,et al.AEP UPFU Project:Installation,Commissioning and Operation of the ±160MVA STATCOM(Phsae I).IEEE Trans.on PWRD,paper no.PE-515-PWRD-0-12-1997
    [7]K.H.Sobrink,K.W.Ren,H.K.Tyll.Operational Experience and Field Tests of the ASVG at Rejsby Hede.IEEE POWERON'98,Aug 18-21,Beijing,p318-322
    [8]Shousuke Mori,katsuhiko Matsuno,Taizo Hasgawa,et al.Development of a Lage Staic Var Generator Using Slef-Commutated Iverters for improving Power System Stablity.IEEE Trans.on PWRS,1993,8(1),P371-377
    [9]姜齐荣,谢小荣,陈建业.电力系统并联补偿-结构、原理、控制与应用[M].北京:机械工业出版社.2004
    [10]何仰赞,温增银.电力系统分析[M].武汉:华中科技大学出版社.2002
    [11]粟时屏,刘桂英.静止无功功率补偿技术[M].北京:中国电力出版社,2006
    [12]L.H.Walker.10MW GTO Converter for Battery Peaking Svervice,IEEE Trans Industry Application,1990,26(1):63-72
    [13]F.Ichikawa,K.Suzuki,T.Nakajima,et al.Development of Self-commutated SVC for Power System In PCC.Yokohama,1993,pp 198-203
    [14]]F.Iehikawa,M.Yajima,T.Nakajima,et al.Operating Experience of a 50MVA Self-commutated SVC at the Shin-Shinano Substation In:IPEC.Yokohama,1995,pp597-602
    [15]C.Sehauder,M.Gernhardt,E.Stacey,et al.Development of a ±100Mvar Static Condenser for Voltage Control of Transmission Systems,IEEE Trans on Power Delivery,1995,10(3):1-8
    [16]C.Schauder,M.Gernhardt,E.Stacey,et al.Operation of ±100Mvar TVA STATCOM,IEEE Trans on Power Delivery,Vol 12,No 4,Oct.,1997,pp1805-1811
    [17]K.Bergmann,K.Renz,F.Schettler.Application of GTO-Based SVCs for Improved Use of the Rejsby Hede Windfarm.In:Materials of EVNP,Siemens AG,Germany,1996
    [18]杨以涵,石新春,张一工.可控硅无功电源的原理与实验,全国高等学校电力系统及其自动化专业第一届学术年会论文集,1985,pp21-26
    [19]骆济寿,王莹,纪延超.GTO无功电源的原理与试验,电工电能新技术,1992(1):5-8
    [20]刘文华.基于GTO的新型静止无功发生器的分析与参数设计:[博士学位论文].北京:清华大学电机工程与应用电子系,1996
    [21]C.Schauder,H.Mehta.Vector Analysis and Control of Advanced Static Var Compensators.In:Fifth International Conference on AC and DC Power Transimission.London,1991:266-272
    [22]罗承廉,纪勇,刘遵义.静止同步补偿器(STATCOM)的原理与实现[M].北京:中国电力出版社,2005
    [23]Yu Yaonan,V ongsuriya K and W edm an L.N.Application of an Optimal Control theory to Power System.IEEE Trans PAS,1970,89(1):52-62
    [24]卢强,王仲鸿,韩英铎.输电系统最优控制[M].北京:科学技术出版社,1982
    [25]Abadalla O.H,Hassan S.A,Tweig N.T.Coordinated Stabilization of a Multi-machine Power System.IEEE Trans PAS,1984,vol 103
    [26]Astram K.J and Wittenmark B.Self-Tuning Controllers Based on Role-Placement.lEE Proceedings,1980,127 Pt.D(3):120-130
    [27]Ghosh A,Ledwich G,Malik O.P and Hope G.S.Power System Stabilize Based on Adaptive Control Techniques.IEEE Trans.on Power Apparatus and Systems,1984,PAS-103(8):1983-1989
    [28]Irving E,Barret J.P,Charcossey C and Monville J.P.Improving Power Network Stability and Unit Stress with Adaptive Generators Control Autamatica,1979,15(1):31-46
    [29]Yousef H,Simaan M.A.Model Reference Adaptive Control for Large Scale Systems with Application to Power Systems.IEE Proceeding with Application to Power System,lEE Precedings-D,138(4)
    [30]Utkin V.I and Yand K.D.Methods for Constructing of Discontinuity Planes in Multid imensional Variable Structure System.Automation and Remote Control,1978:1466-1470
    [31]Erschler J,et al.Automation of a Hydroelectric Power System Using Variable Structure Control System.Automatica,1974,10:31-36
    [32]卢强,孙元章.电力系统非线性控制[M].北京:科学出版社,1993
    [33]Lu Qiang and Sun Yuanzhang.Nonlinear Stability Control of Multimachine Systems.IEEE Trans on Power Systems,1989,4(1)
    [34]孙元章,杨志平,王志芳,等.ASVG非线性控制及其对电压稳定性改善的研究[J].电力系统自动化,1996,20(6):21-26
    [35]Zames G.Feedback and Optimal Sensitivity:Model Reference Transformations,Multiplicative Seminorms,and Approximate Inverse.IEEE Trans.Auto.Control.1981.26:301-320
    [36]Doyle J.C.,et al.State-Space Solution to Standard H_2 and H_∞ control Problems,Proc.American Control Conference,Atlanta,1988,817-823
    [37]J.G.VanAntwerp,R.D.Braatz.Atutorial on Linear and Bilinear Matrix Inequalities.J.Proc.Control.2000,10:363-385
    [38]M.Chilali.et al.Robust Pole Placement in LMI Regiuons.IEEE.Tran.Auto.Control.1999,44(12):2257-2269
    [39]俞立.鲁棒控制-线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    [40]J.C.Doyle,K.Glover,P.Khargonekar and B.A.Francis.State-Space Solutions to Standard H_2and H_∞ control Problems.IEEE Trans.Automat.contr.,Vol.34,pp831-847,1989
    [41]王德进.H_2/H_∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001
    [42]林孔兴,李菊根,李向荣,等.STATCOM应用于2010年华中电网的初步研究[J].电力系统自动化,2000,24(23):10-13
    [43]Qingguang Yu,Pei Li,Wenhua Liu,Xiaorong Xie.Overview of STATCOM Technologies.IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies(DRPT2004).2004.4:647-652
    [44]Bor Ren Lin,Ta Chang Wei.A Novel NPC Inverter for Harmonics Elimination and Reactive Power Compensation.IEEE Transaction on Power Delivery.2004.7.Vol.19(3):1449-1456
    [45]沈斐,王娅岚,刘文华,等.大容量STATCOM主电路结构的分析与比较[J].电力系统自动化,2003.4.V27(8):59-65
    [46]K.V.Patil,R.M.Mathur,J.Jiang,S.H.Hosseini.Distribution System Compensation using a new Binary Multilevel Volatage Source Inverter.IEEE Transactions on Power Delivery,1999,14(2):459-465
    [47]王兆安,杨军,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2004
    [48]L.Gyugy.Dynamic Compensation of AC Transmission Lines by Solid-State Synchronous Voltage Sources.IEEE Tansaction on Power Delivery,Vol.9,No.2,APRIL 1994,PP.904-911
    [49]R.Mohan,Rajiv K.Varma著.徐政译.基于晶闸管的柔性交流输电控制装置[M].北京:机械工业出版社,2005
    [50]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].北京:清华大学出版社,2003
    [51]陈华元,王幼毅,周汝景.STATCOM鲁棒非线性控制[J].电力系统自动化,2001,电力系统非线性控制专题:44-49
    [52]Pertitclar P,Bacha S,Rognon J P.Averaged Modelling and Nonlinear Control of an ASVC (Advanced Static VAR Compensator).In:Proceedings of 27~(th)Power Electronics Specialists Conference.1996
    [53]Schauder C,Mehta H.Vector Analysis and Control of Advanced Static VAR Compensators.IEE Proceedings-C,1993,Vol.140(4):299-306
    [54]何湘宁,陈阿莲.多电平变换器的理论和应用技术[M].北京:机械工业出版社,2006
    [55]林渭勋.电力电子技术基础[M].北京:机械工业出版社,1990
    [56]Hirofumi Akagi.The State-of-the-Art of the Power Electronics in Japan[J].IEEE Trans.On Power Electronics,1998,13(2):345-356
    [57]Lai Jih-Sheng,Peng Fangzheng.Multilevel Converters-a New Breed of Power Converters[J].IEEE Trans.On Industry Applications,1996,32(3):509-517
    [58]Yuan Xiaoming,Ivo Barbi.A New Diode Clamping Multilevel Inverter[C].IEEE Proc.of APEC'99.Dallas,Texas,USA,1999,495-501
    [59]Y Liang,Nwankpa,C.O.A Power-Line Conditioner Based on Flying-Capacitor Multilevel Voltage-Source Converter with Phase-Shift SPWM[J].IEEE Trans.on Industry.Applications,2000,36(4):965-971
    [60]F.Tourkhani,P.Viarouge,T.A.Meynard.A Simulation-Optimization System for the Optimal Design of a Multilevel Inverter[J].IEEE Trans.on Power Electronics,1999,14.6:1037-1045
    [61]R.H.Baker,L.H.Bannister.Electric Power Converter:United States,3867643[P].1975
    [62]C Rech.Anaysis and Comparison of Hygrid Multilevel Voltage Source Inverter[C].IEEE Proe.of PESC'02.cairns,Queensland,Australia,2002.491-496
    [63]刘凤君.正弦波逆变器[M].北京:科学出版社,2002
    [64]郑红平.链式STATCOM系统与控制及诊断保护的研究[D].江苏大学博士学位论文,2005
    [65]C.K.;Leung,J.S.K;Hui,S.Y.R.;Chung,H.S.H.Circuit-level comparison of STATCOM technologies.Power Electronies,IEEE Transactions,on 2003.7.Vol.18(4):1084-1092
    [66]陈阿莲,何湘宁,吴洪详.等.基于基本单元串-并(并-串)思想生成多电平变换器拓扑的方法[J].电工技术学报,2004,19(2):41-46
    [67]李永东,肖羲,高跃.大容量多电平变换器-原理.控制.应用[M].北京:科学出版社,2005
    [68]Manjrekar M D,Lipo T A.A hybird multilevel inverter topology for drive apllications.Applied Power Electronics Conference and Exposition.1998,2:523-529
    [69]陈远华.混合多电平逆变器的控制策略研究[D].北京:清华大学,2004
    [70]Sideny R.Bowes,Paul R.Clark.Simple Microprocessor Implementation of New Regular-Sampled Harmonic Elimination PWM Teehniques.IEEE Trans.on Industry Applications,Vol.28,No.1,January/February,p89-95
    [71]Yen-Shin Lai,S.R.Bowes.A Novel Harmonic Elimination Pulse-Width Modeulation Technique for Static Converter and Drives.APEC'98,p108-115
    [72]S.R.Bowes,S.Grewal.A novel harmonic elimination PWM strategy.IEE Power Electronics and Variable Speed Drives,September 1998,p426-432
    [73]M.Mohaddes,A.M.Gole,P.G.Melaren.A Neural Network Controlled Optimal Pulse-Width Modulated STATCOM,IEEE Trans.on Power Delivery,VOL.14,No.2,April 1999,p481-487
    [74]Tsorng-Juu Liang,Robert M.O,Richard G.Hoft.Inverter Harmonic Reduction Using Walsh Function Harmonic Elimination Method.IEEE Trans.on Power Electronics.Vol.12,No.6,November 1997,p971-981
    [75]单庆晓.级联型逆变器关键技术研究[D].长沙,国防科学技术大学,2003
    [76]H.Nyquist.Regeneration Theory.Bell System Technical Journal.1932,1:65-74
    [77]H.W.Bode.Network Analysis and Feedback Amplifier Design.D.Van Nostrand.Princeton.NT,1945:29-30
    [78]Anderson,B.D.O.and Moore,J.B..Linear optimal control.Prentice-HALL,inc.,1991
    [79]Doyle,J.C..Guaranteed margins for LQG regulator.IEEE Trans.Automat.Contr.,1978,Vol.AC- 23:756-757
    [80]申铁龙.H_∞控制理论与应用[M].北京:清华大学出版社,1996
    [81]B.C.Chang,J.B.Pearson.Optimal Disturbance Reduction in Linear Multivariable System.IEEE Tran.Auto.Control.1984,29:880-887
    [82]B.Delsarte,Y.Genin and Y.Kamp.The Nevanlinna-Pick Problem for Matrix Valued Functions.SIAM J.Appl.Math.1979,36:47-61
    [83]M.G.Safonov and M.Verma.L~∞-optimization and Hankel Approximation.IEEE Tran.Auto.Control.1985,30:279-280
    [84]M.GSafonov and M.Verma.Multivariable L~∞-sensitivity Optimization and Hankel Approximation.Proc.American Control Conference.Atlanta,1988:245-256
    [85]D.C.Youla,H.Jabr and J.J.Bongiorno.Modern Wiener-Holp Design of Optimal Controllers-Part Ⅱ the Multivariable Case.IEEE Tran.Auto.Control.1976,21:319-338
    [86]H.Kimura.Conjugation,Interpolation and Model-matchingin H_∞.Int.J.Control.1989,49: 269-307
    [87]J.C.Doyle.Analysis of Feedback Systems with Structured Uncertainty.IEEE Proc.Part.D.1982,129:242-251
    [88]J.C.Doyle.Synthesis of Roubust Controllers and Filters.Proc.IEEE Conf.on Decision and Control.San antonio,TX,1983:461-472
    [89]A.Sideds,R.S.Sanchez Pena.Robustness Margin Calculation with Dynamic and Real Parametric Uncertainty.ACC,1990:157-164
    [90]R.S.Sanchez Pena,A.Sideris.A General Program to Compute the Multivariable Stability Margin for Systems with Parametric Uncertainty.ACC.1990:317-327
    [91]Kharitonov V.L.Asymptotic Stability an Equilibrium Position of a Family of Systems of linear Differential Equations.Differential,U raven,1978,14:2086-2088
    [92]M.G.Safonov,et al.Simplifing the H_∞ Theory via Loopshifting.Aatrixpencil and Descriptor Concepts.Int.J.Control.1989,50(6):2467-2488
    [93]I.Derese,et al.Design of Linesr Feedback Laws for Bilinear Systems.Int.j.CONTROL.1980,31:219-237
    [94]J.C.Huang,et al.Robust H_∞ Control for Uncertain Linear Time-Invariant Descriptor Systems.IEE Pric.Control Theory and Appl.2000,147(6):648-654
    [95]C.E desouza,Xi Li.Delay-dependent Robust H_∞ Control of Uncertain Linear State-delay Systems.Automatica.1999,35:1313-1321
    [96]D.S.Bernstein,et al.LQG Control with an H_∞ Performance Bound:Riccati Equation Approach.IEEE Tran.Automat.Control.1989,34(4):293-305
    [97]禁超豪.TCSC的H2/H_∞控制器设计[J].电力科学与工程,2005,No2:48-51
    [98]韩京清.线性系统的结构与反馈系统计算.全国控制理论及其应用学术交流会论文集,北京:科学出版社,1981
    [99]GAHINET P,NEMIROVSKI A,LAUB A J,et al.LMI Control Toolbox-for Use with Maflab[M].The MathWorks Inc.,1995
    [100]张宝芬,张毅,曹丽.自动检测技术及仪表控制系统[M].北京:化学工业出版社,2000
    [101]修林成,王强,沈东,等.高精度ASVG数字脉冲发生器研究[J].清华大学学报(自然科学版),1997,7(37):35-38
    [102]Walker L H.10-MW GTO converter for battery peaking serrice.IEEE Trans,1990,IAS-26(1):63-72
    [103]C.Schauder.STATCOM for compensation of large electric arc furnace installion.in proc,IEEE Power Eng.Soc.Summer Meeting,Vol.2,1999,pp 1109-1112
    [104]栗春,高辉,等.基于DSP的静止同步补偿器脉冲发生器及控制器的设计[J].电力系统自动化,1999,23(13):26-29
    [105]田杰,陈贤明,等.基于FPGA的静止补偿器PWM脉冲发生器设计[J].电力系统自动化,2000,24(23):47-49
    [106]ARM公司.ARM Architecture Rference Manul.ARM公司,2000
    [107]ARM嵌入式系统基础教程[M].北京:北京航空航天大学出版社,2005
    [108]王志鹏,付丽琴.可编程逻辑器件开发技术Max+plus Ⅱ[M].北京:国防工业出版社,2005
    [109]周志敏,周继海,纪爱华.IGBT和IPM及其应用电路[M].北京:人民邮电出版社,2006
    [110]田敬民,李守智.大功率集成器件的新发展-IGCT[J].国外电子元器件,2000,3:10-13
    [111]王颖,李双梅,等.新型功率半导体器件IGCT的核心技术[J].辽宁大学学报,2002.Vol.29(2):115-120
    [112]邵贝贝,龚光华,等.Motorola DSP型16位单片机原理与实践[M].北京:北京航空航天大学出版社,2003
    [113]DSP56F801/803/805/807 16Bit Digital Signal Processor User's Manual.Rev.3.0 Motorola Inc,2001
    [114]Jean J.Labrosse著,邵贝贝 译.uc/OS-原代码公开的实时嵌入式操作系统[M]北京中国电力出版社2001
    [115]F.Z.Peng,J.-S.Lai,J.W.MchKeever,and J.Vancoevering.A Multilevel Voltage-Source Converter with Separate DC Sources for Static Var Generation.IEEE Transactions on Industry Applications,Vol.32,No.5,September/October 1996,pp.1130-1138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700