级联式STATCOM控制策略及功率单元设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为柔性交流输电系统中一种重要的无功补偿装置,STATCOM由于具有能够迅速地提供系统动态电压支撑、维持母线电压稳定、补偿系统中的无功功率、降低系统中的损耗、提高经济效益、有效抑制电压波动和闪变、改善系统三相电压不平衡等作用,不仅在输电领域,而且在化工、煤炭等工业应用场合都获得了广泛应用。目前,级联式结构被认为是中压系统STATCOM装置性价比较高的拓扑结构,因此,研制STATCOM装置,使其获得更广泛的应用,具有重要的意义。
     本文首先对基于H桥级联结构的STATCOM装置工作原理进行了分析,并分别对其调制策略和控制算法进行了数学建模和仿真验证。调制策略采用调制波反相的单级倍频CPS-SPWM调制,使等效开关频率提高;控制算法交流侧则采用状态反馈解耦控制,以期实现电流的完全解耦;直流侧则采用分层控制,上层将电容电压控制为固定值,下层则采用有功矢量叠加的算法来分别控制。在Matlab环境下对该调制策略和控制算法的响应速度、无功补偿效果、直流侧电容电压维持平衡能力进行仿真验证。
     其次,对级联式STATCOM中功率单元进行了分析设计。结合该功率单元要实现的具体功能,对包括IGBT的驱动与保护部分、三相输入缺相检测部分、故障监测部分及高输入电压的多路输出开关电源部分在内的硬件电路进行了设计。根据上位机与驱动电路通信要实现强电与弱电间的有效隔离,通信速度要快的要求,选择了光纤通信,并对通信控制进行了软件编写。
     最后,在硬件调试环境下,对驱动电路各部分功能进行了调试。外部模拟电路应用环境,验证功率单元驱动电路设计是否正确。最后给出了主电路参数的初步计算方法,并选择各参数数值。
As one of the important reactive power compensators in Flexible AC Transmission Systems, STATCOM has gain world-wide application not only in the transmission system, but also in the chemical, coal and other industrial applications, for it can provide fast dynamic voltage support, maintain bus-voltage stability, provide reactive power, inhibition voltage fluctuation and flicker effectively, change unbalance of the system,and so on. Cascade structure is considered to be cost-effective topology of high pressure STATCOM .Therefore,it make great senses to develop the STATCOM device and make it more popular.
     This paper derived from the basic principle of STATCOM based on cascaded H-bridges, of which modulation strategies and control algorithm were mathematical analyzed and simulated. The unipolar dual-frequency carrier phase-shifted PWM with inverting modulation wave were choosen as the modulation strategy,which can double the equivalent switching frequency. When came to control algorithm,state feedback decoupled control algorithm ,which realizing the full decoupling of active and reactive power, were applied to AC side, while DC voltage balancing were layered controlled, in the upper it was fixed with a constant value, and in the lower it was controlled with active voltage vector superposition. Modulation strategy and control algorithm were simulated in Matlab environment, in order to verify the response speed, effect of reactive power compensation, the DC bus voltage balance.
     Secondly, accomplished the design of power cell in cascaded STATCOM. Combined with the specific functions of the hardware circuit, the circuit that can finish driving and protecting IGBT, three-phase input missing detection, and the multi-output switching power supply with high input-voltage were designed. Communication between PC and the drive circuit should be fast, achieve good electromagnetic isolation, therefore, optical fiber were choosen, and the relative software program were finished.
     At last, all the functions of the drive circuit are debugged in the hardware debugging environment. Applications environment were simulated to verify the correctness of the power cell design. Also a preliminary calculation of the main parameters are given, and the model parameters were selected.
引文
[1] N.G.Hingorani. High power electronics and flexible AC transmission system. IEEE Power Engineering Review. 1988, 8(7):3~4
    [2] IEEE FACTS Terms & Definitions Task Force of the FACTS Working Group of the DC and FACTS subcommittee. Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Transactions on Power Delivery. 1997, 12(4):1848~1853
    [3]谢小荣,姜齐荣编著.柔性交流输电系统的原理与应用.北京:清华大学出版社, 2006:146~192
    [4] Sumi.Y, Harumoto.Y, Hasegawa.T, et al. New Static Var Control Using Force-Commutated Inverters. IEEE Transactions on Power Apparatus and System. 1981, 100(9):4216~4224
    [5] Mori Shosuke, Matsuno Katsuhiko, Takeda Masatoshi, et al. Development of a Large Var Generator Using Self-commutated Inverters for Improving Power System Stability. IEEE Transactions on Power System. 1993, 8(1):371~377
    [6] Nakajima T. Operating Experience of STATCOM and a Three-terminal HVDC System Using Voltage Sourced Converters in Japan. 2002 IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific. 2002, 2:1387~1392
    [7] K.Matsuno, I.Iyoda, Y.Oue. An experience of FACTS developed 1980s and1990s. Transmission and Distribution Conference and Exhibition. 2002, 2:1378~1381
    [8] Schauder.C, Gernhardt.M, Stacey.E, et al. Operation of±100 MVAr TVA STATCON. IEEE Transactions on Power Delivery. 1997, 12(4):1805~1811
    [9] Schauder.C, Gernhardt.M, Stacey.E, et al. Development of a±100Mvar Static Condenser for Voltage Control of Transmission Systems. IEEE Transactions on Power Delevery. 1995, 10(3):1486~1496
    [10] Uzunovic.E, Fardanesh.B, Hopkins.L, et al. NYPA convertible static compensator(CSC)application phase I:STATCOM. 2001 IEEE/PES Transmission and Distribution Conference and Exposition. 2001, 2:1139~1143
    [11]刘文华,姜齐荣,梁旭等.±20Mvar STATCOM的工业现场测试及试运行.电力系统自动化. 2000, Dec(23):43~46
    [12]王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社[M]. 1998:29~40,120~150
    [13]国家电网公司建设运行部,中国电力科学研究院组编.灵活交流输电技术在国家骨干电网中的工程应用[M].北京:中国电力出版社, 2008:30~97
    [14]李永东等.大容量多电平变换器:原理控制应用[M].北京:科学出版社, 2005:58~96
    [15] Jih-Sheng Lai, Fang Zheng Peng. Multilevel converters-a new breed of power converters[J]. Industry Applications Conference, Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE. 1995,3:2348~2356
    [16]赖日生.新型功率变换器——多电平变换器.美国橡树岭国家实验室,1996
    [17] Nabae, Akira, Takahash, et al. A New Neutral-Point-Clamped PWM Inverter[J]. IEEE Transactions on Industry Applications. 1981, IA-17(5):518~523
    [18] T.Meynard, J.P.Lavieville, P.Carrerer, et al. Electronic circuit for converting electrical energy. U.S.Patent 5706188. Jan.1998
    [19]刘凤君.多电平逆变技术及其应用[M].北京:机械工业出版社, 2007:30~150
    [20] R.H.Baker, L.H.Bannister. Electric power converter. U.S.Patent 3867 643,Feb.1975
    [21]郑红平.链式STATCOM系统与控制及诊断保护的研究[D].江苏大学博士学位论文. 2005, 12
    [22] Lee.C.K, Leung.J.S.K, Hui.S.Y.R, et al. Circuit-level comparison of STATCOM technologies. 2003 IEEE 34th Annual Power Electronics Specialist Conference. 2003, 4: 1777~1784
    [23] Bor Ren Lin, Ta Chang Wei. A novel NPC inverter for harmonics elimination and reactive power compensation. IEEE Transactions on Power Delivery. 2004, 19(3): 1449~1456
    [24] Soto.D, Green.T.C. A comparison of high-power converter topologies for the implementation of FACTS controllers., IEEE Transactions on Industrial Electronics. 2002, 49(5): 1072~1080
    [25] Fang Zheng Peng, Jih-Sheng Lai, McKeever.J, et al. A multilevel voltage-source inverter with separate DC sources for static VAr generation. Industry Applications Conference, 1995. Thirtieth IAS Annual Meeting, IAS '95., Conference Record of the 1995 IEEE. 1995, 3: 2541~2548
    [26]李建林,王乔著.载波相移调制技术及其在大功率变流器中的应用.北京:机械工业出版社, 2009:18~58
    [27]刘凤君编著.环保节能型H桥及SPWM直流电源式逆变器.北京:电子工业出版社, 2010:20~84
    [28]姜齐荣,谢小荣,陈建业.电力系统并联补偿——结构、原理、控制与应用.北京:机械工业出版社, 2004:50~98
    [29]耿俊成.链式静止无功补偿器数学模型及控制策略的研究: [博士学位论文].北京:清华大学图书馆, 2003
    [30]沈东.基于标么值模型的静止同步补偿器性能分析与主电路参数评估:[博士学位论文].北京:清华大学图书馆, 1999
    [31]沈东,姜齐荣,韩英铎.静止同步补偿器的标幺化模型及开环响应时间常数分析[J].中国电机工程学报. 2000, 20(7):56~61
    [32]耿俊成,刘文华,袁志昌.链式STATCOM电容电压不平衡现象研究(一)仿真和试验[J].电力系统自动化. 2003, 27(16):53~57
    [33]耿俊成,刘文华,袁志昌.链式STATCOM电容电压不平衡现象研究(二)数学模型[J].电力系统自动化. 2003, 27(17):35~39
    [34] Yidan Li, Bin Wu. A Novel DC Voltage Detection Technique in the CHB Inverter-Based STATCOM. IEEE Transactions on Power Delivery. 2008, 23(3): 1613~1619
    [35]刘文华,宋强,滕乐天,等.基于链式逆变器的50 MVA静止同步补偿器的直流电压平衡控制[J].中国电机工程学报. 2004, 24(4):145~150
    [36]魏文辉,滕乐天,刘文华,等.基于链式逆变器的大容量STATCOM的直流电压平衡控制[J].电力系统自动化. 2004, 28(7):4~9
    [37] Barrena.J.A, Marroyo.L, Rodriguez.M.A, et al. DC Voltage Balancing for PWM Cascaded H-Bridge Converter Based STATCOM. IEEE Industrial Electronics, IECON. 2006: 1840~1845
    [38]刘钊.风力发电系统中链式STATCOM关键技术[D].武汉:华中科技大学图书馆, 2010
    [39]刘钊,刘邦银,段善旭,等.链式静止同步补偿器的直流电容电压平衡控制[J].中国电机工程学报. 2009, 29(30):7~12
    [40] Peng.F.Z, Jin Wang. A universal STATCOM with delta-connected cascade multilevel inverter. 2004 IEEE 35th Annual Power Electronics Specialists Conference. 2004, 5:3529~ 3533
    [41] Fang Zheng Peng, Jih-Sheng Lai. Dynamic performance and control of a static VAr generator using cascade multilevel inverters. IEEE Transactions on Industry Applications. 1997, 33(3):748~755
    [42]孙宜峰.阮新波.级联型多电平逆变器的功率均衡控制策略.中国电机工程学报. 2006, 26(4):126~133
    [43] Corzine.K.A, Wielebski.M.W, Peng, F.Z,et.al. Control of cascaded multilevel inverters. IEEE Transactions on Power Electronics. 2004, 19(3):732~ 738
    [44]许湘莲.基于级联多电平逆变器的STATCOM及其控制策略研究[D].武汉:华中科技大学图书馆, 2004
    [45]潘松,黄继业. EDA技术实用教程[M].北京:科学出版社, 2006 :75~120
    [46] Altera corporation .MAXⅡDevice Hand book[DB/OL] http://www.altera.com.cn/literature/hb/max2/max2_mii5v1.pdf.2008
    [47]童诗白,华成英.模拟电子技术基础.高等教育出版社[M], 2001
    [48]黄先进,蒋晓春.智能化IGBT驱动电路研究[J].电工技术学报. 2005, 20(04):89~93
    [49]訾振宁,郝瑞祥,游小杰,等.基于PC929的IGBT驱动和保护电路设计.电气技术. 2007, (9):28~31
    [50] SHARP公司PC929 Series芯片说明书. 2004
    [51] AD7991-7995-7999.pdf http://datasheet.ecgoo.net:81/A/AD/AD7999YRJZ-1,pdf
    [52] ON Semiconducter. UC3844[Datasheet][Z]. 2000.1
    [53]陈懿,童朝南,韩建军.采用UC3844的反澈式开关电源反馈回路的改进与设计[J].电子技术应用. 2008, 34(6):74~77
    [54] Abraham I. Pressman著,王志强等译.开关电源设计. Swiching power supply design.电子工业出版社. 2005, 9:71~92
    [55] The I2C-BUS Specification Version 2.1[Z]. Philips Semiconductors, Jan. 2000
    [56]倚鹏主编;北京利德华福电气技术有限公司组编.高压大功率变频器技术原理与应用[M].北京:人民邮电出版社, 2008.2

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700