油水两相流阵列电导探针与环形电导传感器组合测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垂直和倾斜上升管中油水两相流流动结构及其相态逆转特性对流量检测影响很大。本文设计了阵列电导探针测量系统,并将该系统与纵向多级阵列电导传感器(VMEA)组合后,提出了研究油水两相流流动结构的一种新方法。经过阵列电导探针信号及VMEA信号综合处理分析后,取得了如下研究结论:
     1.对于垂直上升管中油水两相流不同流型,阵列电导探针输出信号波形具有明显不同的特点,根据波形曲线形态特征,可以实现对水包油流型、过渡流型和油包水流型的有效识别。采用递归分析方法处理VMEA传感器电导波动信号结果表明,具有平均测量特性的VMEA电导波动信号可以实现对上述三种流型的有效识别,并且阵列探针信号与VMEA电导信号识别流型结果具有较好的一致性。
     2.在阵列电导探针波形分析和VMEA传感器电导波动信号分析基础上,确定了所测量流动工况范围内的流型转换图,并与国内外发表的4种垂直上升管中油水两相流流型边界模型进行了对比,结果表明:运动波理论模型对由过渡流型向油包水流型转化的较高水流量区比较准确,而基于实验观察模型对由过渡流型向油包水流型转化的较低水流量区比较准确。
     3.对于倾斜上升管中油水两相流不同流型,采用阵列电导探针信号与VMEA电导传感器信号组合方式,可以对四种典型流型进行有效识别(D O/W PS、D O/W CT、TF和D W/O流型)。VMEA传感器直流电导信号在宏观上指示四种不同流型的结构特点,而阵列电导探针信号则能够识别每种流型在管道不同位置处的两相流体流动结构。此外,还得到了倾斜油水两相流相干系数与流动特性之间的变化关系。
The flow structure and the phase inversion have great influence on the flow measurement in vertical and inclined upward oil-water two-phase flow. This paper describes the design of the mini- conductance array probes measurement system. With the combination mini-conductance array probes and VMEA measurement system, a new method is proposed for the research of the flow structure of oil-water two-phase flow. By the integrated analysis of the signals of mini-conductance array probes and VMEA sensor, following conclusions have been achieved:
     1. Different flow patterns result in very different output waveforms of the mini- conductance array probes in vertical upward oil-water two-phase flow. According to the characterization of the waveform, three kinds of flow pattern, which are oil-in-water flow, transitional flow and water-in-oil flow, were classified efficiently. The conductance fluctuating signals of VMEA sensor were processed by recurrence analysis method and the results indicate that the conductance fluctuating signals of VMEA sensor could also identify the three flow patterns, which is consistent with mini- conductance array probes results.
     2. Based on the analysis of the waveform of the mini-conductance array probes and the conductance fluctuating signals of VMEA sensor, we get the vertical upward oil-water two-phase flow pattern map in the range of this flow condition. Compared with other four published vertical upward oil-water two-phase flow pattern transition boundary models, it is founded that the oil-water two-phase flow model based on kinematic wave theory is good for the transition from transitional flow to water-in-oil flow pattern in the range of higher water superficial velocity, and the former model based on experimental observation is good for the transition from transitional flow to water-in-oil flow pattern in the range of low water superficial velocity.
     3. With the combination of mini-conductance array probes and VMEA sensor, four typical flow patterns (D O/W PS, D O/W CT, TF and D W/O) are identified efficiently in inclined upward oil-water two-phase flow. It is pointed out that the DC conductance signals of VMEA sensor can indicate the flow structures of four different flow patterns in macroscopic point of view and the output signal waveforms of mini-conductance array probes can identify the different flow pattern structures of different position of the pipe. In addition, we get the relationship between correlation coefficient of the oil-water two-phase flow and flow characteristics.
引文
[1]. D. M. Maron (Chief Editor), International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, November 3-7,1997,Begell House,Inc,1998
    [2]. Jose G Flores, X Tom Chen, Cem Sarica, James P Brill:Characterization of oil-water flow patterns in vertical and deviated wells, SPE56108, 1999
    [3]. N. Brauner, D. M. Maron, Flow pattern transitions in two-phase liquid-liquid flow in horizontal tubes. International Journal of Multiphase Flow, 1992, 18:123~140
    [4].康万利,潘攀,不同倾角管中油水两相流研究进展,油气储运,2005,24(9),1~5
    [5]. Govier G.W., Sullivan G.A. and Wood R.K. The Upward Vertical Flow of Oil-Water Mixtures. The Canadian Journal of Chemical Engineering, 1961, April, 67~75.
    [6]. Hasson D, Mann U, Nir A, Annular flow of two immiscible liquids, The Canadian Journal of Chemical Engineering, 1970, 48: 514~520.
    [7]. Vigneaux P.G., Chenais P., Hulin J.P. Liquid-Liquid Flows in an Inclined Pipes. AICHEJ, 1988, Vol.34 (5), 781~789
    [8].钟兴福,黄志尧,吕鹏举等,125mm垂直圆管中油水两相流流型辨识研究[J].石油学报,2001,22(5):89~94.
    [9].赵冬建,郭烈锦,胡晓玮等,垂直管内油水两相流局部相分布特性实验研究。工程热物理学报,2006,27(4):628~630.
    [10].金宁德,聂向斌,任玉英等.垂直上升管中油水两相流流型辨识[J].工程热物理学报,2003,24(5):793~796.
    [11]. Hasan A R, Kabir C S, A simplified model for oil-water flow in vertical and deviated wellbores. SPE49163, 1998.
    [12].徐苓安,两相流测量技术的现状及发展趋势,第二届全国多相流检测技术学术会议论文集,南京:1988
    [13]. N D Jin, X Zhao, J Wang, Z Y Wang, X H Jia, W P Chen. Design and geometry optimization of a conductive probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow. Meas. Sci. Technol. 2008,19, 045403 (19pp)
    [14].胡金海,刘兴斌,黄春辉等,一种同时测量流量和含水率的电导式传感器。测井技术,2002,26(2):154~157
    [15]. Jones Jr, Zuber N, The interrelation between void fraction fluctuation and flow pattern in two-phase flow, Int. J. Multiphase Flow, 1975, Vol.2(2): 273~306.
    [16]. Hubbard M G, Dukler A E, The characterization of flow regimes for horizontal two-phase flow, Proc. Heat Transfer &Fluid Mechanics Inst, 1966: 100~121
    [17]. Albrecht R W et al, Measurement of two-phase flow properties using the nuclear reactor instrument, Prog. Nucl. Energy, 1982, 37~50
    [18].黄志尧,王保良,李海青等,软测量技术在多相流检测中的应用,仪器仪表学报,2001,22(3):421~424
    [19]. Wu H J, Zhou F D, Wu Y Y, Intelligent identification system of flow regime of oil/gas/water, Int. J. Multiphase Flow, 2001,27: 459~475
    [20].赵鑫,金宁德,李伟波,油水两相流相含率的软测量方法。化工学报,2005,56(10):1875~1879
    [21]. Oddie G M, On the detection of a low-dimensional attractor in disperse two-component (oil-water) flow in a vertical pipe, Flow. Meas. Instrum. 1991, 2: 225~229
    [22].金宁德,李伟波,赵鑫,“利用符号时间序列分析方法表征垂直上升管中油水两相流流型”,化工学报,2005,56(1):116~120
    [23].吴昊天,陈国定,DNA编码和混沌神经网络的两相流型辨识.。机械设计,2006,23(6):46~48
    [24].段玉波,刘继承,RBF神经网络在油水两相流含率超声测量中的应用。信息与控制,2005,34(4):476~480
    [25].贾志海,牛刚,基于神经网络的两相流流型识别方法研究。高校化学工程学报,2005,19(3):368~372
    [26].张凤娟,陈国定,基于遗传算法/神经网络组合技术的气液两相流型辨识。机械科学与技术,2005,24(6):670~672
    [27].孙斌,周云龙,基于小波包能量特征的气液两相流流型识别方法.化学工程,2006,34(2):33~36
    [28].李菊,董守平,小波分析在多相流流型识别中的应用.石油大学学报,2000,24(2):93~94
    [29]. X.Q. Wang, R.M.C. So, W.C. Xie, Features of flow-induced forces deduced from wavelet analysis, Journal of Fluids and Structures, 2006, 1~20
    [30]. C. Galletti, E. Brunazzi, M. Yianneskis, A. Paglianti, Spectal and wavelet analysis of the flow pattern transition with impeller clearance variations in a stirred vessel, Chemical Engineering Science, 2003, 58:3859~3875
    [31].王雷,冀海峰,黄志尧,李海青,基于ECT传感器和模式识别的气液两相流空隙率测量新方法研究,仪器仪表学报,2005,26(6):557~561
    [32]. Sanehiro Wada, Hiroshige Kikura, Masanori Aritomi, Pattern recognition and signal processing of ultrasonic echo signal on two-phase flow, Flow Measurement and Instrumentation, 2006, 17:207~224
    [33]. Huang Norden E, Shen Zheng, Long Steven R et al, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 1998, 454: 903~995
    [34]. Raper J A, PhD Thesis, University of New South Wales, 1979
    [35]. James Cory. The Measurement of Volume Fraction and Velocity Profiles in Vertical and Inclined Multiphase Flows. 1999
    [36]. P. Angeli, G. F. Hewitt, Pressure gradient in horizontal liquid-liquid flows, International Journal of Multiphase Flow, 1998, 24:1183~1203
    [37]. Teyssedou A, Tapucu A, Impedance probe to measure local void fraction profiles, Review of Scientific Instruments, 1988, Vol.59: 631~63
    [38]. Trallero J L, Intevep S A, Sarica C, Brill J P, A study of flow patterns in horizontal pipes, SPE 36609, 1995
    [39]. S. Hogsett, M. Ishii, Local two-phase flow measurements using sensor techniques. Nuclear Engineering and Design. 1997, vol.175:15~24
    [40].孙科霞,陈学俊,张鸣远,杨健,应用双头电导探针技术测量气液两相泡状流局部参数,计量学报,1999,20(4),297~303
    [41]. Q. Wu, M. Ishii, Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. International Journal of Multiphase Flow, 1999, vol.25:155~173
    [42]. Hibiki T, Ishii M, Experimental study on interfacial area transport in bubbly two-phase flow, Int. J. Heat Mass Transfer 1999, 4:3019~3035
    [43]. Hibiki T, Situ R, Mi Y, Ishii M, Local flow measurement of vertical upward bubbly flow in an annulus, Int. J. Heat Mass Transfer, 2003,Vol.46: 1479~1496.
    [44]. Lucas G P, Mishra R, Panayotoulos N, Power law approximations to gas volume fraction and velocity profiles in low void fraction vertical gas-liquid flows, Flow Measurement and Instrumentation, 2004,15:271~283
    [45]. Lucas G P, Mishra R, Measurement of bubble velocity components in a swirling gas-liquid pipe flow using a local four-sensor conductance probe, MST, 2005,16:749~758
    [46]. Lucas G P, Cory J C, Waterfall R C, A six-electrode local probe for measuring solids velocity and volume fraction profiles in solids–water flows, MST, 2000, 11:1498~1509
    [47]. Echmann J P, Kamphorst S O, Ruelle D, Recurrence plots of dynamical systems, Europhysics Letters, 1987, 5: 973~977
    [48]. Takens F, Detecting strange attractors in turbulence, Lecture notes in mathematics, 1981, 898: 366~381
    [49]. N.D. Jin., X.B. Nie, J. Wang, Y.Y. Ren.Flow pattern identification of oil/water two-phase flow based on kinematic wave theory[J].Flow measurement and instrumentation,2003,14:177~182
    [50].徐苓安,相关流量测量技术,天津大学出版社,1988
    [51]. Beck M S, Plaskowski A, Cross Correlation Flowmeters—their Design and Application (Bristol: Hilger) , 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700