用户名: 密码: 验证码:
高速永磁发电机转子涡流损耗优化及对温度分布影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速永磁发电机具有体积小、噪音低、动态响应快、功率密度大、传动系统效率高等优点,已成为微型燃气轮机分布式供能系统的关键发电设备,满足微型燃气轮机发电系统朝着小型化和集成化方向发展的要求。作为便携电源的发电设备,高速永磁发电机已广泛应用在军事、医疗、矿山救助等领域;作为机械形式的不间断电源(飞轮储能)与化学储能相比具有环境友好、寿命长等优势,可以广泛应用在航天、工业、通讯机网络服务等领域。高速永磁电机转速高、功率密度大,同样造成了电机单位损耗相对较大,而且气隙内的高频磁场将直接在护套和永磁体内产生涡流,形成涡流损耗,增加了转子的温升;由于永磁体在高温环境下易出现热退磁问题,而且相同功率电机体积小,转子散热相对困难,转子内的涡流损耗将直接威胁高速永磁发电机的安全运行,因此对于高速永磁发电机转子涡流损耗准确计算及降低转子涡流损耗方面的研究具有重要意义。
     针对定子背绕式绕组、转子合金护套结构的100kW级高速永磁电机的转子涡流损耗开展了深入的研究,基于三维时步有限元计算方法,对高速永磁电机转子涡流损耗进行了计算,深入研究了护套和永磁体内涡流电密的分布规律;建立了转子涡流损耗解析计算模型,对高速永磁电机护套和永磁体内的涡流损耗进行了解析公式推导,并与三维有限元涡流损耗计算结果进行了对比,突出体现了解析计算方法的快速性、通用性以及变量间影响关系明确的优势;分别利用三维有限元计算与解析计算方法,分析了护套轴向分段和永磁体圆周方向分段对转子涡流损耗的影响关系,揭示了转子分段在减小转子涡流损耗方面的作用机理,并提出了转子永磁体分段数量确定的依据与准则,满足高速永磁电机降低转子涡流损耗的设计要求。
     在降低转子涡流损耗方面,针对于转子护套自身材料电磁特性对电机电磁场的影响进行了深入的研究;在给出护套材料电磁特性的基础上,研究了护套材料的改变引起的电机电磁场、转子表面涡流电密及损耗的变化情况;基于电磁场透入深度理论,提出了合金护套转子表面镀铜的方法,解决了高速永磁电机护套高涡流密度的问题,并与现有的永磁电机铜屏蔽方法进行了对比,验证了转子表面镀铜在降低转子涡流损耗方面的优势。
     建立了永磁电机等效磁路模型,提出了永磁体漏磁系数迭代收敛的方法来确定永磁体励磁边界条件,采用向量磁位对不同磁导率护套的高速永磁发电机空载感应电动势进行了解析公式推导;改变永磁电机护套采用非铁磁材料的思维,创新提出弱磁性护套高速永磁电机的结构形式,充分发挥了弱磁性护套减小主磁路磁阻,提升永磁体工作点,提高永磁体材料利用率的优势,探索研究了护套磁导率对发电机空载感应电动势的影响,得出了护套磁导率调磁特性曲线;对定子绕组磁动势进行面电流等效,基于磁场叠加原理,对发电机负载运行时气隙及转子护套内的磁场进行了解析计算,根据坡印亭能量流传定理,求出了护套磁导率不同时,高速永磁发电机定转子间能量流传的大小;同时结合时步有限元计算方法,对比研究了护套材料磁导率的变化对电机磁场分布的影响,揭示了永磁体工作点随护套磁导率的变化规律,全面系统地分析了高速永磁电机主磁通、漏磁通、永磁体工作点间的相互影响关系,确定了护套磁导率的优化策略,最大限度发挥弱磁性护套的优势;此外针对转子护套电导率对转子表面涡流损耗的影响进行了研究,综合谐波透入深度理论、涡流损耗影响因素,深入阐述了转子表面涡流损耗随护套电导率的双因素非线性变化机理,获取了转子涡流损耗相对较大时,转子护套电导率的取值范围。
     建立电机电磁场与整流负载一体化仿真模型,构建整流负载高速永磁发电机试验系统,对比研究三相桥式整流负载对电机电磁场的影响,结合傅里叶变换理论,对发电机输出电压和电流的谐波进行了分析,给出了发电机整流负载运行时电流的各次谐波占有率和电流谐波总畸变率;然后分别计算了发电机电阻性负载和整流负载运行时,电机转子部分涡流损耗的变化,并对损耗变化的机理进行了研究;此外对比分析了这两种负载状态下发电机输出电压的变化情况,通过对非线性负载功率因数的计算,揭示了发电机输出电压变化的机理。
     建立了高速永磁发电机的三维流体与温度耦合计算模型,在电磁场损耗计算的基础上,对发电机转子护套材料、转子复合结构、护套电磁特性、负载性质对电机内温度场的影响进行了研究,对比分析了不同转子结构电机内定转子温升变化情况,并给出了不同转子结构下转子永磁体温度的分布,对防止高速永磁电机永磁体热退磁具有重要的意义。
Due to the advantages of small size, low noise, fast dynamic response, high power density and high transmission efficiency, the high speed permanent magnet generator (HSPMG) has become a critical equipment in microturbine distributed energy supply system and could meet the requirements of the power system developing towards to the miniaturization and integration. As the' generation equipment in portable power, HSPMG has been used widely in military, medical and mine rescue. As a mechanical form of uninterruptible power supply(flywheel energy storage), compared with the chemical energy storage, it is friendly with the working environment and has the longer life, so it can be widely used in aerospace, industrial and computer netword services. In the HSPMG, the higher power density could cause the larger losses in unit volume. The high frequency harmonic magnetic field in the air gap could induce the eddy current in the rotor sleeve and permanent magnets, which will cause the eddy current losses and increase the temperature of the rotor directly. Since the permanent magnets working in high temperature environment could be demagnetized, the eddy current losses could directly affect the normal operation of the generator. So it is of significance to have some researches on rotor eddy current losses.
     According to the special structure of a100kW level HSPMG, including the stator back wound windings and rotor alloy sleeve, the eddy current losses in the rotor sleeve and permanent magnets are studied. Based on the three-dimensional time-stepping finite element method, the rotor eddy current losses are calculated accurately, and the eddy current distribution in the rotor sleeve and permanent magnets could be obtained. Establishing the analytical calculation model of the surface mounted permanent magnet machine, the rotor eddy current loss expression could be derived, and the calculation results are compared with the finite element calculation results. It proves that the analytical method has the advantages of rapidity and universality. Combined with the3D finite element analysis and the analytical calculation method, the influences of the rotor sleeve segmenting in axial direction and the permanent magnets segmenting in circumferential diection on rotor eddy current losses are studied. Based on the above analyses, the principles of the permanent magnet segmenting are obtained.
     In order to reduce the eddy current losses, the influence of the sleeve materials on generator is studied. The variations of the electromagnetic field, eddy current density and eddy current losses are analyzed, when the electromagnetic property of the sleeve material is given. Based on the theory of harmonic field penetration depth, the copper plating which could reduce effectively the rotor eddy current losses is presented, which is also analyzed compared with the copper shield. The resulets show that the copper plating is a better way to reduce the rotor eddy current losses.
     The equivalent magnetic circuit model of HSPMG is established. In order to determine the boundary condition of permanent magnets, the iterative method of leakage coefficient is presented. The ferromagnetic material sleeve is adopted in the HSPMG, which could reduce the reluctance of the main magnetic circuit, improve the operating point and material utilization of permanent magnets. Using the vector magnetic potential, the induced noload electromotive forces of the HSPMG with different permeability sleeves are calculated analytically. And therewith the influence of the sleeve permeability on the induced electromotive force is analyed. The adjusting magnetic field character curve of sleeve permeability could also be obtained. Based on the priciple of the magnetic field superposition and the equivalent current sheet of fundamental MMF, the magnetic fields in the air gap and the rotor sleeve are calculated analytically when the generator operating at rated load. According to the Poynting Vector, the generator electromagnetic power transmitting from the rotor to the stator is calculated when the generator adopting different permeability sleeves. And therewith combined with the finite element method, the influence of the sleeve permeability on the generator magnetic field is studied comparatively. The relationship of the operating point of permanent magnets, the main flux and leakage flux is further analyzed. The optimal strategy is presented, which could take advantages of ferromagnetic material sleeve. In addition, the influence of the sleeve conductivity on rotor eddy current losses is also analyzed. According to the theory of the harmonic field penetration depth and the influence factors of the rotor eddy current losses, the variation principles of the eddy current losses with different conductivity sleeves are discovered. The range of the sleeve conductivity of the generator which will generate larger eddy current losses is given.
     The influence of the three-phase bridge rectifier load on the HSPMG is studied comparatively based on the field-circuit coupling electromagnetic model and the test plat. According to the Fourier transform theory, the voltage harmonics and current harmonics are studied. The content rate of the current harmonics and the current Total Harmonic Distortion(THD) are obtained. In addition, the rotor eddy current losses are ananlyzed comparatively, when the generator connected with the rectifier load and the resistance load respectively. With the same output power, the variations of the output voltage and the power factor of the generator with different loads are further analyzed.
     The3D coupling field between the fluid and temperature is established based on the calculation of the generator losses. And the influences of the rotor sleeve materials, the rotor structure, the electromagnetic properties of sleeve and the form of the load on the generator temperature field are studied. The temperature variations in different parts of the generator are given when the HSPMG adopts different rotors and loads respectively. The influences on the temperature of permanent magnets are further analyzed, and it is very important for the research on the permanent magnet demagnetizing.
引文
[1]刘正谊,谈顺涛,曾祥君.分布式发电及其对电力系统分析的影响[J].华北电力技术,2004,(10):18-21.
    [2]朱民.关于分布式能源供电系统与电力系统并网的探讨[J].科技创新导报,2008,(18):49-50.
    [3]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用[J].工程热物理学报,2004,25(5):786-788.
    [4]Stephen P Gillette, Market development of microturbine combined heat and power applications[J]. Cogeneration and Distributed Generation Journal, 2004,19(2):46-59.
    [5]R. Esmaili, D. Das, D.A. Klapp,O. Dernici and D.K. Nichols. A novel power conversion system for distributed energy resources[C]. IEEE Proc. PESGM,2006:1-6.
    [6]A. K. Saha, S. Chowdhury, S. P. Chowdhury, P. A. Crossley. odeling and simulation of microturbine in islanded and grid-connected mode as distributed energy resource[C]. IEEE Proc. PESGM 2008-Conversion and Delivery of Electrical Energy in the 21st Century,2008:1-7.
    [7]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景[J].热能动力工程,2003,18(2):111-116.
    [8]刘宏伟,李晓,等.微型燃气轮机技术[J].热能动力工程,2003,18(1):1-5.
    [9]Jin-Woo Jung, A. Keyhani. Fuel cell based distributed generation system[C]. IEEE Power System Conference,2008:610-616.
    [10]魏兵,王志伟,李莉,蒋露.微型燃气轮机冷热电联供系统及其在国外的发展状况[J].电力需求侧管理,2006,8(6):62-64.
    [11]靳智平.微型燃气轮机发电在我国的应用前景.电力学报[J],2004,19(2):95-97.
    [12]赵豫,于尔铿.新型分散式发电装置-微型燃气轮机[J].电网技术,2004,28(4):47-50.
    [13]B. P. James, B. A. T.Al Zahawi. A high speed alternator for a small scale gas turbine CHP unit[C]. International Conference on Electrical Machines and Drives,1995:281-285.
    [14]Stefano C and Ennio M. Technical and tariff scenarios effect on micro-turbine trigenerative application[J]. Journal of Engineering for Gas Turbines and Power of the ASME,2004(126):581-589.
    [15]Krahenbuhl D., wyssig C., and Kolar J.W.. Half-Controlled boost rectifier for low-power high-speed permanent-magnet generators[J]. IEEE Trans. Ind. Electron.,2011,58(11):5066-5075.
    [16]Jian Guo Zhu, You Guang Guo, Zhi Wei Lin, et al. Development of PM transverse flux motors with soft magnetic composite cores [J]. IEEE Transactions on Magnetics,2011,47(10):4376-4383.
    [17]Fengzheng Zhou, Jianxin Shen, Weizhong Fei and Ruiguang Lin. Study of retaining sleeve and conductive shield and their influence on rotor loss in high speed PMBLDC motors[J]. IEEE Trans. Magn.,2006,42(10):3398-3400.
    [18]Do-Kwan Hong, Daesuk Joo, Byung-Chul Woo, Yeon-HoJeong and Dae-Hyun Koo. Investigatons on a super high speed motor-generator for microturbine applications using amorphous core[J]. IEEE Trans. Magn., 2013,49(7):4072-4075.1-54
    [19]Do-Kwan Hong, Jae-Hak Choi, Dong-Jun Kim, Yon-Do Chun, Byung-Chul Woo and Dae-Hyun Koo. Development of a high speed induction motor for spindle systems[J]. IEEE Trans. Magn.,2013,49(7):4088-4091.1-56
    [20]Dong-Jun Kim, Do-Kwan Hong, Jae-Hak Choi, Yon-Do Chun, Byung-Chul Woo and Dae-Hyun Koo. An analytical approach for a high speed and high efficiency induction motor considering magnetic and mechanical problems[J]. IEEE Trans. Magn.,2013,49(5):2319-2322.1-57
    [21]Ki-Chang Lee, Do-Kwan Hong, Yeon-Ho Jeong, Chi-Yen Kim and Min-Cheol Lee. Dynamic simulation of radial active magnetic bearing system for high speed rotor using ADAMS and MATLAB co-simulation[C].8th IEEE International Conference on Automation Science and Engineering.2012,20-24.1-63
    [22]Do-Kwan Hong, Ki-Chang Lee, Yeon-Ho Jeong and Byung-Chul Woo. Magnetic field and rotordynamic analysis of 30 krpm 220 kW rated high speed motor for blower supported magnetic bearing[C].14lh Biennial IEEE Conference on Electromagneic Field Computation,2010,1.1-60
    [23]Do-Kwan Hong, Byung-Chul Woo, Dae-Hyun Koo and Chan-Woo Ahn. Electrical structural and rotordynamic analysis of ultra high speed motor with shrink fit rotor for air blower cooling fuel cells[C].14th Biennial IEEE Conference on Electromagneic Field Computation,2010,1.1-62
    [24]Do-Kwan Hong, Byung-Chul Woo and Dae-Hyun Koo. Rotordynamics of 120 OOOr/min 15 kW ultra high speed motor[J]. IEEE Trans. Magn.,2009, 45(6):2831-2834.1-59
    [25]Do-Kwan Hong, Byung-Chul Woo, Ji-Young Lee and Dae-Hyun Koo. Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells[J]. IEEE Trans. Magn.,2012,48(2):871-874.1-58
    [26]Do-Kwan Hong, Byung-Chul Woo, Dae-Hyun Koo and Chan-Woo Ahn. Unbalance analysis of 15kW,120krpm, ultra high speed permanent magnet synchronous motor[C].6th International Conference on Electromagneitc Field Problems and Applications,2012,1-4.1-61
    [27]Joo Daesuk, Do-Kwan Hong and Byung-Chul Woo. Iron loss of 50W, 100000rpm permanent magnet machine in micro gas turbine[C].6th International Conference on Electromagneitc Field Problems and Applications,2012,1-4.1-31
    [28]Katsumi Yamazaki, Masaki Kumagai, Takeshi Ikemi and Shunji Ohki. A novel rotor design of interior permanent magnet synchronous motor to cope with both maximum torque and core loss reduction[J]. IEEE Trans. Ind. Appl.,2013:1.1-73
    [29]Katsumi Yamazaki and Yoshiaki Seto. Iron loss analysis of interior permanent magnet synchronous motors-variation of main loss factors due to dirving condition[J]. IEEE Trans. Ind. Appl.,2006,42(4):1045-1052.1-75
    [30]Katsumi Yamazaki, Shunji Ohki, Akira Nezu and Takeshi Ikemi. Development of interior permanent magnet motors-reduction of harmonic iron losses by optimizing rotor structures[C].7th IEEE International Conference on Electric Machines and Drives,2007,1:489-494.1-76
    [31]Katsumi Yamazaki and Hiroki Ishigami. Rotor shape optimization of interior permanent magnet motors to reduce harmonic iron losses. IEEE Trans. On Ind. Electron.,2010,57(1):61-69.1-41
    [32]Katsumi Yamazaki and Hiroki Ishigami. Reduction of harmonic iron losses in interior permanent magnet motors by optimization of rotor structures [C]. International Conference on Electrical Machines and Systems.2008:2870-2875.1-74
    [33]Katsumi Yamazaki and Kazuya Kitayuguchi. Investigation of magnet arrangements in double layer interior permanent magnet motors[C]. IEEE Conference on Energy Conversion Congress and Exposition.2010:1384-1391.1-70
    [34]Katsumi Yamazaki, Satoshi Kuramochi, Noriaki Fukushima, Shinichiro Yamada and Shin Tada. Characteristics analysis of large high speed induction motor using 3-D finite element method[J]. IEEE Trans. Magn.,2012, 48(2):995-998.1-69
    [35]Katsumi Yamazaki, Akihiro Suzuki, Motomichi Ohto and Teruyuki Takakura. Harmonic loss and torque analysis of high speed induction motors[J]. IEEE Trans. Ind.Appl.,2012,48(3):993-941.1-64
    [36]Katsumi Yamazaki, Akihiro Suzuki, Motomichi Ohto and Teruyuki Takakura. Harmonic loss analysis and air gap optimization of high speed induction motors[C]. IEEE Conference on Energy Conversion Congress and Exposition.2010:3963-3970.1-66
    [37]Katsumi Yamazaki, Akihiro Suzuki, Motomichi Ohto, Teruyuki Takakura and Satoshi Nakagawa. A novel equivalent circuit involving stray load loss and harmonic torques for high speed induction motors driven by inverters[C]. IEEE Conference on Electirc Machines and Drives.2011: 902-907.1-67
    [38]Katsumi Yamazaki, Yuji Kanou, Yu Fukushikma, Shunji Ohki and Akira Nezu. Reduction of magnet eddy current loss in interior permanent magnet motors with concentrated windings [J]. IEEE Trans. Ind. Appl.,2010, 46(6):2432-2441.1-71
    [39]Katsumi Yamazaki, Yuji Kanou, Yu Fukushikma, Shunji Ohki and Akira Nezu. Reduction of magnet eddy current loss in interior permanent magnet motors with concentrated windings[J]. IEEE Conference on Energy Conversion Congress and Exposition.2009:3963-3969.1-72
    [40]Han Wook Cho, Kyoung Jin Ko, Jang Young Choi, Hyun Jae Shin and Seok Myeong Jang. Rotor natural frequency in high speed permanent magnet synchronous motor for turbo-compressor application[J]. IEEE Trans. Magn., 2011,47(10):4258-4261.1-20
    [41]Seok-Myeong Jang, Min-Mo Koo, Yu-Seop Park, Jang-Young Choi and Sung-Ho Lee. Characteristic analysis of permanent magnet synchronous machines under differnent construction conditions of rotor magnetic circuits by using electromagnetic transfer relations[J]. IEEE Trans. Magn.,2011, 47(10):3665-3668.1-21
    [42]Seok-Myeong Jang, J. Y. Choi, D. J. You and H. S. Yang. Electromagnetic analysis of high speed machines with diametrically magnetized rotor considering slotting effect and applied to new magnetization modeling[C]. IEEE Conference on Electirc Machines and Drives.2005: 1204-1211.1-53
    [43]Gabriel Munteanu, A. Binder, T. Schneider and B. Funieru. No load tests of a 40kW high speed bearingless permanent magnet synchronous motor[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion,2010:1460-1465. Z-9
    [44]Gabriel Munteanu, Andreas Binder and Tobias Schneider. Loss measurement of a 40kW high speed bearingless PM synchronous motor[C]. IEEE Conference on Energy Conversion Congress and Exposition.2011:722-729.1-13
    [45]T.Schneider, J. Petersen and A. Binder. Influence of pole pair combinations on high speed bearingless permanent magnet motor performance[C].4th IET Conference on Power Electronics, Machines and Drives.2008:707-711.1-15
    [46]T. Schneider and A. Binder. Design and evaluation of a 60 OOOrpm permanent magnet bearingless high speed motor[C].7th International Conference on Power Electronics and Drive Systems.2007:1-8.1-84
    [47]Andreas Binder, Tobias Schneider and Markus Klohr. Fixation of buried and surface mounted magnets in high speed permanent magnet synchronous machines[J]. IEEE Trans. Ind.Appl.,2006,42(4):1031-1037.1-23
    [48]Ayman M. EL-Refaie, Manoj R. Shah, Ronghai Qu and John M. Kern. Effect of number of phases on losses in conducting sleeves of high speed surface PM machine rotors[C].42nd IAS Annual Meting Conference Record of Industry Applications Conference.2007:1522-1529.1-30
    [49]A. S.Nagorny, N. V. Dravid, R. H. Jansen and B. H. Kenny. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications[C]. IEEE International Conference on Electric Machines and Drives.2005:635-641.1-14
    [50]Ahmed Chebak, Philippe Viarouge and Jerome Cros. Analytical model for design of high speed slotless brushless machines with SMC stators[C]. IEEE International Conference on Electric Machines and Drives.2007,1:159-164.1-81
    [51]Zlatko Kolondzovski, Antero Arkkio, Jaakko Larjola and Petri Sallinen. Power limits of high speed permanent magnet electrical machines for compressor applications[J]. IEEE Trans. Energy Conversion,2011, 26(1):73-82.1-22
    [52]Zlatko Kolondzovski, A. Belahcen and A. Arkkio. Comparative thermal analysis of different rotor types for a high speed permanent magnet electrical machinc[J]. IET Electric Power Applications.2009,3(4):279-288.1-29
    [53]Z. Kolondzovski, P. Sallinen, A. Belahcen and A. Arkkio. Rotordynamic analysis of different rotor structures for high speed permanent magnet electrical machines[J]. IET Electric Power Applications.2010,4(7):516-524.1-36
    [54]Z. Kolondzovski, P. Sallinen and A. Arkkion. Thermal analysis of a high speed PM machine using numerical and thermal network method[C]. International Conference on Electrical Machines.2010:1-6.1-26
    [55]Z. Kolondzovski, A. Belahcen and A. Arkkion. Multiphysics thermal design of a high speed permanent magnet machine[J]. Applied Thermal Engineering.2009,29(13):2693-2700.1-35
    [56]Z. Kolondzovski. Thermal and mechanical analyses of high speed permanent magnet electrical machines[D]. Espoo:Aalto University, Doctoral Dissertation,2010:1-97.1-34
    [57]O. Aglen and A. Andersson. Thermal analysis of a high speed generator[C].38th IAS Annual Meeting Conference Record of the Industry Applications Conference.2003,1:547-554.1-25
    [58]O. Aglen. Loss calculation and thermal analysis of a high speed generator[C]. IEEE International Conference on Electric Machines and Drives,2003,2:1117-1123. Z-3
    [59]O. Aglen. Back to back tests of a high speed generator[C]. IEEE International Conference on Electric Machines and Drives,2003,2:1084-1090. Z-4
    [60]O. Aglen. A high speed generator for microturbines[C]. IEEE International Conference on Electric Machines and Drives,2001:1-5.1-33
    [61]Sung-II Kim, Young-Kyoun Kim, Geun-Ho Lee and Jung-Pyo Hong. A novel rotor configuration and experimental verification of interior PM synchronous motor for high speed applications[J]. IEEE Trans. Magn., 2012,48(2):843-846.1-16
    [62]M. Etemadrezaei, J. J. Wolmarans, H. Polinder and J. A. Ferreira. Precise calculation and optimization of rotor eddy current losses in high speed permanent magnet machine[C]. International Conference on Electrical Machines.2012:1399-1404. [1-6]
    [63]Fabio Crescimbini, Alessandro Lidozzi and Luca Solero. High speed generator and multilevel converter for energy recovery in automotive system[J]. IEEE Trans. Ind. Electron.,2012,59(6):2678-2688.1-38
    [64]Sang-Yub Lee and Hyun-Kyo. Eddy current loss analysis in the rotor of permanent magnet traction motor with high power density[C]. IEEE Conference on Vehicle Power and Propulsion,2012:210-214.1-39
    [65]Sang-Yub Lee, Sang-Yeop Kwak, Jang-Ho Seo and Hyun-Kyo Jung. Develop of multi-layer interior permanent magnet synchronous machine for vehicle[C]. Inernational Conference on Electrical Machines and Systems,2007:935-938.1-78
    [66]Jason D. Ede, Z. Q. Zhu and David Howe. Rotor resonances of high speed permanent magnet brushless machines[J]. IEEE Trans. Ind. Appl.,2002: 38(6).1542-1548. Z-5
    [67]J. D. Ede, Z. Q. Zhu and D. Howe. Design considerations for high speed sensorless permanent magnet brushless DC motors [C].2nd International Conference on Power Electronics, Machines and Drives,2004,2:686-690. Z-6
    [68]A. S. Thomas, Z. Q. Zhu and G. W. Jewell. Comparison of flux switching and surface mounted permanent magnet generators for high speed application[J]. IET Electr. Syst. Transp.,2011,1(3):111-116.1-55
    [69]Pierre-Daniel Pfister and Yves Perriard. A 200 OOOrpm,2kW slotless permanent magnet motor[C]. International Conference on Electrical Machines and Systems,2008:3054-3059.1-18
    [70]Pierre-Daniel Pfister and Yves Perriard. Very high speed slotless permanent magnet motors:analytical modeling, optimization, design and torque measurement methods[J]. IEEE Trans. Ind. Electron.,2010,57(1):296-303.1-51
    [71]F. Papini and P. Bolognesi. Preliminary design and analysis of a high speed permanent magnets synchronous generator[C]. IEEE Mediterranean Electrotechnical Conference,2010:1198-1203.1-1
    [72]Bjorn Riemer, Marc Lemann and Kay Hameyer. Rotor design of a high speed permanent magnet synchronous machine rating 100 OOOrpm at 10kW[C]. IEEE Conference on Energy Conversion Congress and Exposition,2010:3978-3985.1-37
    [73]Jang-Ho Seo, Sang-Yeop Kwak, Sang-Yong Jung, Cheol-Gyun Lee, Tae-Kyung Chung and Hyun-Kyo Jung. A research on iron loss of IPMSM with a fractional number of slot per pole[J]. IEEE Trans. Magn.,2009,45(3): 1824-1827.1-45
    [74]Jang-Ho Seo, Tae-Kyung Chung, Cheol-Gyun Lee, Sang-Yong Jung and Hyun-Kyo Jung. Harmonic iron loss analysis of electrical machines for high speed operation considering driving condition[J]. IEEE Trans. Magn., 2009,45(10):4656-4659.1-77
    [75]Jang-Ho Seo, Sung-Min Kim and Hyun-Kyo Jung. Rotor design strategy of IPMSM for 42V integrated starter generator[J]. IEEE Trans. Magn.,2010, 46(6):2458-2461.1-79
    [76]Jang-Ho Seo, Dong-Kyun Woo, Tae-Kyung Chung and Hyun-Kyo Jung. A study on loss characteristics of IPMSM for FCEV considering the rotating field[J]. IEEE Trans. Magn.,2010,46(8):3213-3216.1-80
    [77]N. Ishihara, M. Sanada and S. Morimoto. Structure of the PM Synchronous motor for low iron loss characteristic in the high speed region[C]. Inernational Power Electronics Conference,2010:1317-1321. Z-7
    [78]D. Gerada, A. Mebarki, R. P. Mokhadkar and C. Gerada. Design issues of high speed permanent magnet machines for high temperature applications [C]. IEEE Interational Confernence on Electric Machines and Drives,2009:1036-1042.1-27
    [79]Co Huynh, Liping Zheng and Dipjyoti Acharya. Losses in high speed permanent magnet machines used in microturbine applicationsp[J]. Journal of Engineering for Gas Turbines and Power,2009,131:1-6. Z-11
    [80]M. Sadeghierad, H. Lesani, H. Monsef and M. Sadeghierad,. Leakage flux consideration in modeling of high speed axial flux PM generator[C]. IEEE International Conference on Industrial Technology,2008:1-6. Z-10
    [81]M. Sadeghierad, M. Sadeghierad, H. Lesani and H. Monsef. Rotor yoke thickness of coreless high speed axial flux permanent magnet generator[J]. IEEE Trans. Magn.,2009,45(4):2032-2037.1-46
    [82]M. Sadeghierad, H. Lesani, H. Monsef and A. Darabi. Design considerations of high speed axial flux permanent magnet generator with coreless stator[C]. International Conference on Power Engineering,2007: 1097-1102.1-47
    [83]M. Sadeghierad, H. Lesani, H. Monsef and A. Darabi. High speed axial flux permanent magnet generator with coreless stator[J]. Can. J. Elect. Comput. Eng.,2009,34(1):63-67.1-48
    [84]Jason D. Ede, Kais Atallah and Geraint W. Jewell. Effect of axial segmentation of permanent magnet on rotor loss in modular permanent magnet brushless machines [J]. IEEE Trans. Ind. Appl.,2007,43(5):1207-1213. b-8
    [85]Seok-Myeong Jang, Kyoung-Jin Ko, Han-Wook Cho, Jang-Young Choi and Won-Kyu Oh. Characteristic analysis of a 2 kW high speed permanent magnet synchronous generator using the equivalent circuit method[C]. Interational Conference on Electrical Machines and Systems, 2007:868-873.1-49
    [86]Seok-Myeong Jang, Sang-Sub Jeong, Dong-Wan Ryu and Sang-Kyu Choi. Design and analysis of high speed slotless PM machine with Halbach array[J]. IEEE Trans. Magn.,2001,37(4):2827-2830.1-42
    [87]Seok-Myeong Jang, Han-Wook Cho, Sung-Ho Lee, Hyun-Sup Yang and Yeon-Ho Jeong. The influence of magnetization pattern on the rotor losses of permanent magnet high speed machines[J]. IEEE Trans. Magn.,2004, 40(4):2062-2064.1-8
    [88]John Kim. Non-linear calculation of high power density and high speed permanent magnet DC motor including demagnetization effects[C].12th Biennial IEEE Conference on Electromagneitc Field Computation,2006: 328.1-52
    [89]Masayuki Morimoto, Kenichi Aiba, Takao Sakurai, Akihiro Hoshino and Masao Fujiwara. Position sensorless starting of super high speed PM generator for micro gas turbine[J]. IEEE Trans. Ind. Electron.,2006, 53(2):415-420.1-3
    [90]J. B. Ahn, Y. H. Jeong, D. H. Kang and J. H. Park. Development of high speed PMSM for distributed generation using microtrubine[C].30th Annual Conference of the IEEE Industrial Electronics Society,2004:2879-2882.1-40
    [91]Riccardo Zich and Morris Brenna. EMC analysis of high speed generators in microturbines[C]. IEEE International Symposium on Electromagnetic Compatibility,2003,2:987-990.1-50
    [92]J. L. F. Van der Veen, L. J. J. Offringa and A. J. A. Vandenput. Minimising rotor losses in high speed high power permanent magnet synchronous generator with rectifier load[J]. IEE Proceedings Electric Power Applications,1997,144(5):331-337.1-28
    [93]K. Ng, Z. Q. Zhu and D. Howe. Oper circuit field distribution in a brushless motor with diametricall magnetized PM rotor, accounting for slotting and eddy current effects[J]. IEEE Trans. Magn.,1996,32(5):5070-5072. Z-8
    [94]B. C. Mecrow, A. G. Jack and J. M. Masterman. Determination of rotor eddy current losses in permanent magnet machines[C].6th International Conference on Electrical Machines and Drives,1993:299-304. b-6
    [95]王凤翔.高速电机的设计特点及相关技术研究[J].沈阳工业大学学报,2006,28(3):258-264.
    [96]王继强,王凤翔,孔晓光.高速永磁发电机的设计与电磁性能分析[J].中国电机工程学报,2008,28(20):105-110.
    [97]张殿海.高速永磁电机流体场分析与温升计算[D].沈阳:沈阳工业大学学位论文,2009:33-44.
    [98]王继强.高速永磁电机的机械和电磁特性研究[D].沈阳:沈阳工业大学学位论文,2006:12-21.
    [99]Wang F X, Zheng W P, Zong M, etal. Design considerations of high-speed PM generators for micro-turbines[C]. IEEE International Conference on Power System Technology Proceedings.2002(1):158-162.
    [100]赵义学,王永军,吴文峰,董朝武,王长志,耿加民.车载式燃气轮机发电机组[P],中国,01272160.3.
    [101]耿加民.100kW级燃机配套高速永磁发电机设计研制与工程验证[C].中国航空学会第五届轻型燃气轮机学术交流会,2007.
    [102]黄旭珍.高功率密度永磁电机的损耗及温升特性的研究[D].哈尔滨:哈尔滨工业大学学位论文,2008:25-40.
    [103]Z. Kolondzovski, P. Sallinen and A. Arkkio. Thermal analysis of a high-speed PM machine using numerical and thermal-network method[C]. International Conference of Electrical Machines(ICEM),2010: 1-6.
    [104]Han Wook Cho, Seok Myeong and Sang-Kyu Choi. A design approach to reduce rotor losses in high speed permanent magnet machine for turbocompressor[J]. IEEE Trans. Magn.,2006,10:3521-3523.
    [105]J. F. Gieras and U. Jonsson. Design of a high speed permanent magnet brushless generator for microturbines[C]. International Conference on Electric Machinery,2004:86-91.
    [106]Koichi Shigematsu, Jun Oyama and Yasuhiro Ueno. The study of eddy current in rotor sad circuit coupling analysis for small size and ultra-high speed motor[C]. International conference on power elctreonics and motion control,2004:275-279.
    [107]Kais Atallah, David Howe, Philip H. Mellor and David A. Stone. Rotor loss in permanent magnet brushless AC machines[J]. IEEE Trans. Ind. Appl., 2000:36(6).1612-1617
    [108]Yoshihiro Kawase, Tomohiro Ota and Hiromu Fukunaga.3D eddy current analysis in permanent magnent of interior permanent magnet motors[J]. IEEE Trans. Magn.,2000,36(4):1863-1866.
    [109]Katsumi Yamazaki and Atsushi Abe. Loss analysis of interior permanent magnet motors considering carrier harmonics and magnet eddy currents using 3D FEM[C]. IEEE International Conference on Electric Machines and Drives,2007,2:904-909.
    [110]Hiroaki Toda, Zhenping Xia, Kais Atallah and David Howe. Rotor eddy current loss in permanent magnet brushless machines[J]. IEEE Trans. Magn.,2004,40(4):2104-2106.
    [111]Jokinen T and Saari J. Modeling of the coolant flow with heat flow controlled temperature sources in thermal networks [J]. IEEE Proceedings Electric Power Applications,1997,144(5):338-342.
    [112]邱洪波,李伟力,张晓晨,程树康.背绕式定子绕组高速永磁电机三维端部区域电磁场分析与计算[J].中国电机工程学报,2012,32(24):80-87.
    [113]陈世坤.电机设计[M].北京:机械工业出版社,2012:76-86.
    [114]汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2006:119-139.
    [115]Wen Y. F. and Sun J.. Theoretical prediction of mechanical stability of ferromagnetic fcc Fe-Cu alloys form fist principles[J]. Journal of Applied Physics,2012,111(5):053517-053521.
    [116]J. L. F., Van Der Veen, L. J. J. Offringa and A. J. A. Vandenput. Minimizing rotor losses in high speed high power permanent magnet synchronous generator with rectifier load[J]. IEEE Proceeding Electrical Power Applications,1997,144(5):331-337.
    [117]李金贵,赵进.携手发展21世纪表面工程[J].中国表面工程,2001,1:15-19
    [118]师昌绪,张平.21世纪表面工程发展趋势[J].中国表面工程,2001,1:2-8.
    [119]刘世参,徐滨士.21世纪表面工程的发展和应用[C].第九届全国焊接会议论文集,1999,2:248-252.
    [120]李宝来,兰建军.带整流负载的同步发电机设计特点[J].防爆电机,2005,125(40):4-8.
    [121]王丽芬.带整流负载的同步发电机的分析与研究[D].南昌:南昌大学学位论文,2007:10-40.
    [122]郑砥中.潜油电机温升计算特点及表面散热系数计算[J].电机技术, 1994,2:10-12.
    [123]丁舜年.大型电机的发热与冷却[M].北京:科学出版社,1992:58-69.
    [124]Li Weili, Ding Shuye, Zhou Feng. Diagnostic numerical simulation of large hydro generator with insulation aging[J]. Heat Transfer Engineering,2008, 29(10):902-909.
    [125]Weili L, Yu Z, Yuhong C. Calculation and analysis of heat transfer coefficients and temperature fields of air-cooled large hydro-generator rotor excitation windings[J]. IEEE Transactions on Energy Conversion, 2011, 26(3):946-956.
    [126]张晓晨.高速永磁发电机温度分布于结构优化设计研究[D].哈尔滨:哈尔滨工业大学学位论文,2012:30-52.
    [127]张晓晨,李伟力,邱洪波,程树康.超高速永磁同步发电机的多复合结构电磁场及温度场计算[J].中国电机工程学报,2011,31(30):85-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700