Cu/QCr0.5载流条件下摩擦磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以紫铜/铬青铜为摩擦副,模拟电力机车接触网中受电弓滑板和接触网导线的服役条件,在自制的HST-100销盘式摩擦磨损试验机上进行载流摩擦学特性研究。采用正交试验方法探讨载流条件下电流、载荷和速度这三个主要影响因素对载流摩擦副摩擦磨损性能的影响程度,对比研究了该摩擦副在有无电流条件下的摩擦磨损特性;使用单因素试验方法考察了载流条件下摩擦磨损条件、摩擦磨损性能、电弧能量与销试样表面温度之间的关系。利用扫描电子显微镜(SEM)、能谱仪(EDS)对材料的磨损表面进行观察,探讨了不同参数条件下的载流摩擦磨损机制。
     正交试验表明,电流是影响载流摩擦副摩擦磨损性能的最显著的因素,载荷和速度次之。与无电流相比,载流条件下在同载荷不同速度时摩擦系数呈减小趋势,磨损率较大;同速度不同载荷时摩擦系数也减小,磨损率较大;在不同电流条件下,随着电流的增大,摩擦系数逐渐减小,而磨损率逐渐增大。
     不同参数条件下的销试样摩擦过程中表面温度变化是不一样的,但都要经过一个先急剧增大,然后平稳的过程。并且不同参数下销试样传热达到稳态时的表面温度值也是不一样的。在同载荷同速度不同电流条件下,销试样表面温度增大时摩擦系数降低,磨损率增大;在同电流同速度不同载荷条件下,销试样表面温度的变化与摩擦副的摩擦磨损性能之间关系较为复杂,并在载荷为0.26MPa时销试样表面温度达到最大值;在同电流同载荷不同速度条件下,销试样表面温度增大时摩擦系数降低,磨损率增大。同时试验表明电弧能量与销试样表面温度有密切的关系,电弧能量越大,销试样表面稳态温度值也越大。
     对磨损面微观分析表明:无电流条件下,销试样磨损机制主要表现为粘着磨损,而载流条件下,销试样磨损表面有大量的粘着和塑性流动痕迹,并且可以看到有熔化,烧蚀坑的痕迹和由于热应力导致的裂痕,同时由能谱图可以得到磨损表面有氧的生成,说明摩擦表面生成了氧化物。因此其主要磨损机制为粘着磨损、氧化磨损和电弧烧蚀。
The test was carried out on the HST-100 pin-on-disc tribo-tester with Cu/QCr0.5 couples, which simulated working conditions of the pantograph-wire system used in electric railway. The effects of current, loading and speed on friction and wear properties were investigated by orthogonal experiment. The differences in the friction and wear properties with and without current were studied. Single-factor tests were conducted to investigate the relationship between the pin surface temperature and the friction and wear properties, arc energy. With the help of SEM and EDS, the morphologies of worn surface of the pin were examined, in order to study the tribological mechanism under different parameters.
     According to the orthogonal experiment, the current is the most notable factor affecting the friction and wear properties of this couple under the conditions of electrical current, and followed by load and speed. Compared with non-current conditions, the friction coefficient declined and the wear rate of the couple was much higher at the same loading and different velocities, and in the same under the conditions of the same velocities and different loadings. What’s more, with the increasing current, the friction coefficient decreased, while the wear rate was gradually increasing.
     The temperaturverlauf of the pin specimens isn’t the same under different parameters. But there would be a sharp increase in the first, and then gently change. And the steady-state surface temperature value is not the same under different parameters. At the same loading and velocity, the pin surface temperature increased, and so done the wear rate, while the friction coefficient decreased. At the same current and velocity, the relationship between temperaturverlauf and the friction and wear properties is more complex, and the sample surface temperature reached the maximum at the loading of 0.26MPa. Under the conditions of the same current and loading, as the pin surface temperature increased, the friction coefficient, but the wear rate increased. Also, arc energy is closely related to the sample surface temperaturverlauf, which can be concluded from the test.
     Combination of the SEM images of the worn surface, adhesive wear was the dominant mechanism without current. But under the current conditions, there was a large number of adhesion wear and plastic flow traces on the sliding surfaces. And a few melting or arc pit traces can be observed. And the cracks can be also observed due to the role of thermal stress generated in Instantaneous and concentration high temperature of arc. And the EDS of the worn surface indicated that oxidation took place in the friction process. In a word, adhesive wear, oxidative wear and electrical wear were the dominant mechanism.
引文
[1]林修洲,朱旻昊,陈光雄,等.高速电气化铁路弓/网系统的摩擦磨损研究进展[J].润滑与密封,2007,32(2):180-183.
    [2]赵飞.高速列车受电弓滑板新材料展望[J].湖南有色金属,2007,23(4):53-54.
    [3]于正平,张弘,吴鸿表,等.高速电气化铁路接触网—受电弓系统的研究[J].中国铁道科学, 1999,20(1):69-71.
    [4] Azevedo C R F, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering failure analysis, 2004, 11:829-841.
    [5]李占君,孙乐民,张永振.载流摩擦磨损研究现状及前景[J].铁道运输与经济,2005,(1):83.
    [6]李鹏.载流摩擦磨损性能研究[D].洛阳:河南科技大学,2003,3-31.
    [7]刘建军,朱波,王成国.电力机车受电弓滑板的技术现状[J].机械工程师,2003,(10):23-24.
    [8] He D H, Manory R R, Grady N. Wear of railway contact wires against current collector materials[J]. Wear, 1998, 215:146-155.
    [9] Senouci A, zaidi H, Frene J, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144-145: 287-291.
    [10] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite-copper electrical sliding contact [J]. Wear, 1999, 225/229:949-953.
    [11] Bouchoucha A, Zaidi H, Kadiri E K, et al. Influence of electric fields on the tribological behavior of electrodynamical copper/steel contacts[J]. Wear, 1997, 203/204:434-441.
    [12] Csapo E, zaidi H, Paulmier D. Friction behavior of graphite–graphite dynamical electric current in the presence of Argon[J]. Wear, 1992, 192:151-156.
    [13] zaidi H, Csapo E, Nery H, et al. Friction coefficient variation in a graphite–graphite dynamical contact crossed by an electric current[J]. Surface and Coatings Technology, 1993, 62:388-392.
    [14] Paulmier D, Mansori M E, Zaidi H. Study of magnetized or electrical sliding contact of steel XC48/ graphite couple[J]. Wear, 1997, 203–204:148-154.
    [15] Bouchoucha A, Chekroud S, Paulmier D. In?uence of the electrical sliding speed on friction and wear processes in an electrical contact copper–stainless steel[J]. Applied Surface Science, 2004, 223:330-342.
    [16] Zhao H, Barber G C, Liu J. Friction and wear in high speed with and without electricalcurrent[J]. Wear, 2001, 249:409-414.
    [17] He D H, Manory R R, Sinkis H. A sliding wear tester for overhead wires and current collectors in light rail systems[J]. Wear, 2000, 239:10-20.
    [18] Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear, 1998, 216:179-180.
    [19] Kubo S, Kato K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear, 1998, 216:172-178.
    [20] Kubo S, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International, 1999, 32:367-378.
    [21] Bucca G, collina A. A procedure foe the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009, 266:46-59.
    [22]戴利民,丁新华,林吉忠.铝包覆浸金属碳滑板材料受流磨损性能的试验研究[J].铁道机车车辆, 2002(3):22-24.
    [23]上官宝,张永振,邢建东,等.铜-二硫化钼粉末冶金材料的载流摩擦磨损性能研究[J].润滑与密封,2007,32(11):21-23.
    [24]张晓娟,孙乐民,李鹏,等.铜基粉末冶金材料载流摩擦磨损特性研究[J].热加工工艺,2007,36(14):22-30.
    [25]刘军,严红革,陈刚,等.铜基复合材料受电弓滑板摩擦磨损及电阻率的研究[J].矿冶工程,2007,27(2):27,37,47.
    [26]赵彦文.碳材料高速载流摩擦磨损性能研究[D].洛阳:河南科技大学,2007,20-29.
    [27]贾步超,李灵敏,陈光雄.载流条件下的1Cr18Ni9Ti_浸金属碳摩擦磨损性能研究[J].润滑与密封,2007,32(12):62-65.
    [28]翟文杰,郝广平.外加电对边界油润滑下摩擦系数的影响[J].哈尔滨工业大学学报,2003,35(8):946-949.
    [29]翟文杰,山本熊二.外加电场对边界润滑条件下钢钢摩擦副摩擦磨损性能的影响[J].摩擦学学报,2000,20(6):435-438.
    [30]董霖,李丰学,陈光雄,等.有无电流工况下钢铝复合轨/受电靴的摩擦磨损特性[J].润滑与密封,2006,(6):36-38.
    [31]李丰学,陈光雄,朱旻昊,等.两种受电靴材料与不锈钢带电接触摩擦磨损特性的试验研究[J].润滑与密封,2007,32(2):13-18.
    [32] Dong L, Chen G X, Zhu M H, et al. Wear mechanism of aluminum-stainless steel composite conductor rail sliding against collector shoe with electric current[J]. 2007, 263:598-603.
    [33]胡道春,孙乐民,上官宝,等.电弧能量对浸金属碳滑板材料载流摩擦磨损性能的影响[J].摩擦学学报,2009,29(1):36-42.
    [34]冀盛亚,孙乐民,上官宝,等.铜基粉末冶金/铬青铜摩擦副载流摩擦磨损的电弧侵蚀特性研究[J].润滑与密封,2009,34(2):5-7.
    [35]戴雄杰.摩擦学基础[M].上海:上海科学技术出版社,1984,51-82.
    [36]孙家枢.金属的磨损[M].北京:冶金工业出版社,1992,126-130.
    [37] He D H, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors [J]. Wear, 2001, 249:626-636.
    [38]久保俊一.受电弓滑板与接触导线材料及其磨损的研究[J].国外机车车辆工艺,2007,(3):36-40.
    [39]戴利民.滑板材料受流摩擦磨损性能的研究[D].北京:铁道科学研究院,2002,71-72.
    [40]戴利民,林吉忠,丁新华.滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响[J].中国铁道科学,2002,23(2):111-117.
    [41]上官宝,张永振,邢建东,等.电流密度对铬青铜/黄铜载流配副表面温度和摩擦学特性的影响[J].中国有色金属学报,2008,18(7):1237-1241.
    [42]王贵青,陈敬超,孙加林.电力机车受电弓滑板的研究状况及发展趋势[J].材料导报,2003,17 (1):18-20.
    [43]刘建军,朱波,王成国.电力机车受电弓滑板的技术现状[J].机械工程师,2003,(10):23-24.
    [44]马行驰,何国求,陈成澍,等.现代轨道交通摩擦集电材料及相关载流摩擦磨损研究进展[J].材料导报,2007,22(3):63-65.
    [45]肖军,张鹏,杜云慧,等.电力机车受电弓滑板材料的发展[J].铁道机车车辆,2005,25(6):65-68.
    [46]久保俊一.碳系受电弓滑板的开发[J].国外机车车辆工艺,2000,(5):4.
    [47]徐春园,张思成.铜合金电接触摩擦性能的研究现状[J].甘肃科技,2005,21(6):107-108.
    [48]李娜,张弘,于正平.受电弓滑板-接触导线摩擦磨损机理与特性分析[J].中国铁道科学,1996,17(4):63-68.
    [49]高允彦.正交及回归试验设计方法[M].北京:冶金工业出版社,1991,10-35.
    [50]杨惠连.误差理论与实验设计[M].北京:机械工业出版社,1988,162-172.
    [51]胡道春.滑板材料载流摩擦磨损中电弧侵蚀特性研究[D].洛阳:河南科技大学,2008,20-21.
    [52]张永振.钢铁干滑动摩擦副摩擦学特性研究[D].西安:西安交通大学,2001,91-92.
    [53]久保骏一.碳系滑板材料[J].国外机车车辆工艺,2008,(4):31-33.
    [54]涂川俊,陈振华,陈刚,等.炭系电力机车受电弓滑板材料的研究进展[J].碳素技术,2007,26(4):23-29.
    [55]荣命哲.电接触理论[M].北京:机械工业出版社,2004,22-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700