YAG激光+脉冲双MIG电弧复合焊接热源耦合机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
YAG激光+脉冲双电弧复合焊接是在激光焊与双丝焊的基础之上将复合焊的理念加以拓展,开发出的一种新型的焊接加工技术。目前,国内外对于复合焊的研究主要集中在激光与单电弧复合焊接方法的工艺研究与焊接过程模拟上,而对激光+双MIG/MAG复合焊接方法及其耦合机理本质的研究几乎没有。
     YAG激光+双MIG/MAG复合焊接过程中除了激光与电弧之间的耦合作用外,两个电弧之间也有复杂的交互作用,电弧之间的距离大小、焊枪夹角大小、电源供电模式的不同、激光作用点的改变等均会使整个焊接过程热场,力场,流场,电场,磁场以及三个热源之间的耦合机制发生变化,进而影响熔滴过渡、焊缝成形和微观组织。作为焊接加热的直接热源,激光复合电弧的性质对于整个焊接过程具有决定的意义,了解激光与双MIG/MAG电弧的相互作用方式与作用机理,对进一步的研究激光+双脉冲MIG/MAG复合焊接方法工艺具有指导性意义。本文系统地研究了Q235低碳钢YAG激光+脉冲双丝MIG复合焊接工艺特点及激光与双MIG电弧耦合机制。
     1.利用自行搭建的YAG激光+脉冲双丝MIG复合焊接系统,系统地研究了Q235低碳钢YAG激光+脉冲双丝MIG复合焊接工艺特点。试验结果表明:YAG激光的加入,改变了焊接熔池液态金属的流动方式。与双MIG电弧焊接相比,YAG激光+脉冲双丝MIG复合焊这种向熔池底部传热的熔池金属流动形式,有利于促使复合焊接熔池表面激光作用区域的高温、过热的液态金属向下运动,从而更多的热量被带到熔池底部而增加了焊接熔深。YAG激光+双MIG电弧复合焊接过程中,激光在工件表面作用区域由于金属蒸汽多、电子密度大而作为阴极斑点,稳定MIG电弧弧根,有效解决Q235低碳钢高速焊接时出现的咬边、断续等缺陷,获得连续、平滑的焊缝。Q235低碳钢YAG激光+双MIG电弧复合焊与双MIG焊焊缝组织对比发现,激光复合前后,焊缝区、熔合区以及热影响区的金相组织形态基本相同,只是YAG激光+双MIG电弧复合焊焊缝晶粒更为细小。
     2.利用光谱仪、采集卡和高速摄像机同步采集了YAG激光+脉冲双MIG电弧复合焊接过程中的电压、电流信号,光谱辐射信号,电弧形态以及熔滴过渡过程,结果表明:YAG激光的加入加速熔池表面金属蒸发电离,在熔池表面激光作用点附近形成包含大量导电粒子的电离通道,电弧被吸引至狭窄的电离通道处燃烧而导致弧柱横截面缩小。YAG激光的加入,能够降低MIG电弧电压,促进MIG电弧引弧,同时稳定电弧的阴极斑点,促进高速条件下电弧的稳定、规律燃烧,提高了复合焊接过程稳定性。激光应处于两个电弧之间,且与双个电弧之间的距离存在最佳范围值,在这个范围内两个电弧对激光的电磁作用力基本相等,激光等离子体内部的电子受到两侧电弧产生的洛伦兹力和电场力大致平衡,电子比较均匀地分布在等离子体中,此时,激光等离子体不发生偏移,两侧电弧稳定燃烧。间距过小或激光偏向其中一个电弧时,都会因为激光等离子体内部的平衡被破坏而导致的电弧阴极斑点的不稳定;而间距过大时,又会因为激光等离子体与电弧等离子体分离而失去复合的作用。在激光的热辐射、高温等离子体的反作用力、表面张力的改变的综合作用下,复合焊接的熔滴质量为双MIG焊的2倍左右,焊接熔滴过渡频率降低,与双MIG电弧焊相比,过渡频率降低10~20%。
     3.通过对YAG激光+双MIG电弧复合等离子体辐射强度、电子温度、电子密度空间分布的研究表明:激光复合后,没有新的线谱增加,但是光谱辐射强度明显大于双MIG焊,与双MIG焊接电弧相同区域相比,激光作用点上方复合焊接电弧弧柱区形成强烈收缩且该局部收缩区域的电子温度、电子密度升高,而远离复合焊电弧弧柱收缩区位置的差别不大,两个电弧等离子体被吸引靠拢到激光作用线附近,最高温度点也随之偏向激光作用线。激光作用线附近的电子温度随着双丝间距的减小及激光功率的增大而增加。YAG激光+双MIG复合等离子体符合局部热力学平衡条件。
     4.从非线性理论出发对YAG激光+双MIG电弧复合焊接电流的最大Lyapunov指数(LE)计算,结果表明:YAG激光+双MIG电弧复合焊接是一个复杂的混沌过程,LE的大小与焊接过程的稳定性有着紧密的联系,即焊接过程越稳定,最大LE值越小,其标准方差也越小。当处于最佳焊接规范时,最大LE最小。YAG激光+双MIG电弧复合焊接电流最大LE可以作为焊接过程稳定性的评价指标。
YAG laser+pulse twin-MIG arc hybrid welding is a new joining technologybased on laser welding and tandem welding, which is the development of laser+archybrid welding. Currently, hybrid welding researches mainly focus on the applicationsof welding procedure and simulation of laser+single arc hybrid welding, but less onlaser+twin-arc hybrid welding.
     In addition to interactions of laser and arcs, there is also complex co-actionbetween the two arcs in YAG laser+pulse twin-MIG arc hybrid welding process. Asdirect heat sources, laser and arc have significance to welding process. Wire-wiredistance, angle between the wires, power supply mode and laser spot location all caninfluence thermal field, force field, magnetic field and coupling mechanism betweenthe heat sources, and then affect droplet transfer, weld appearance and microstructure.So sophisticated understanding of interactions between laser and arc can offerguidance for further practical research of YAG laser+pulse twin-MIG arc hybridwelding technology. In the paper, characteristic of welding technology and theinteraction mechanism between laser and arcs are investigated in the YAG laser+pulse twin-MIG arc hybrid welding of Q235mild steel.
     1. The welding technology of YAG laser+pulse twin-MIG arc hybrid welding isinvestigated using self-built welding system. The results indicate that: in YAG laser+pulse twin-MIG arc hybrid welding, flow mode of molten pool is altered after theinput of YAG laser, compared with twin-MIG welding, the flow mode of hybridmolten pool is helpful to force high-temperature liquid metal flow downward, andweld penetration increase accordingly. Because of much metal vapor and high densityelectron, laser spot location can offer a stable cathode spot for arcs. It is helpful toprevent the formation of undercut on the weld surface and make the weld formingcontinuous. The microstructure in weld center and heat affected zone produced byYAG laser+pulse twin-MIG arc hybrid welding is basically the same as that oftwin-arc welding. Proeutectoid ferrite along the grain boundary is less and smaller inhybrid welding.
     2. The arc behavior, droplet transfer, electrical signal and arc spectrum signal ofYAG laser+pulse twin-MIG arc hybrid welding process are recorded by high-speedcamera, DAQ card and spectrograph synchronously. The results indicate that thehybrid arcs are attracted to the laser-heated spot and the cross-section of hybrid arc column is constricted obviously. Voltage needed for arc ignition and combustiondecrease and stability of hybrid welding is prominent, especially in high-speedwelding. When laser-arc distance and arc-arc distance is optimal, electron in laserplasma is in equilibrium under the action of Lorentz force and electromagnetic force.Electrons evenly distributed at both side of the laser plasma to offer stable cathodespot. Internal equilibrium of laser plasma is broken because of short distance or laserdeviation, which lead to unstable of cathode spot. Laser plasma and arc plasmaseparate with each other and serve no purpose whatsoever in large distance. Droplettransfer frequency of hybrid welding reduces under the coactions of laser heat effect,reactive force offered by high temperature plasma and surface tension, which makesthe gravity of hybrid droplet is about2times than that of twin-arc droplet. Comparedwith twin-arc hybrid welding, droplet transfer frequency of hybrid welding decreasesby10~20%。
     3. Study on spatial distribution of radiation intensity, electron temperature anddensity of hybrid plasma indicate spectrum radiation, electron temperature and densitydistribution of hybrid plasma increase at the concentrated zone of hybrid arc columnbut there is no evident difference in the area far from concentrated zone. Electrontemperature near laser plasma increases with laser power but decreases with wire-wiredistance. Hybrid plasma of YAG laser+pulse twin-MIG arc hybrid welding is in alocal thermal equilibrium condition.
     4. Largest Lyapunov exponent (LLE) of current data in YAG laser+pulsetwin-MIG arc hybrid welding is calculated in term of non-linear theory. The resultsindicate YAG laser+pulse twin-MIG arc hybrid welding is a complex chaotic process.LLE is closely related to stability of welding process: the more stable the weldingprocess, the smaller LLE and its standard deviation. The smallest LLE can beacquired when welding technology is optimum. LLE can serve as evaluation index ofstability of.YAG laser+pulse twin-MIG arc hybrid welding process.
引文
[1]潘际銮,郑军,屈岳波.激光焊技术的发展[J].焊接,2009,(2):18~21
    [2]王勇.激光深熔焊技术控制技术及其原理研究[D].北京:清华大学机械工程系,1996.
    [3]陈武柱.激光焊接与切割质量控制[M].北京,机械工业出版社,2010
    [4]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2006
    [5]王家金.激光加工技术[M].北京:中国计量出版社,1992
    [6] G. Padmanaban, V. Balasubramanian. Optimization of laser beam welding processparameters to attain maximum tensile strength in AZ31B magnesium alloy [J].Optics&Laser Technology,2010,42(8):1253~1260
    [7] S. Palanco, M. Klassen, J. Skupin, et al. Spectroscopic diagnostics on CW-laserwelding plasmas of aluminum alloys [J]. Spectrochimica Acta Part B,2001,56:651~659
    [8] Shuhai Chen, Liqun Li, Yanbin Chen,et al. Joining mechanism of Ti/Al dissimilaralloys during laser welding-brazing process [J]. Journal of Alloys andCompounds2011,509(3):891~898
    [9] Chunming Wang, Xuanxuan Meng, Wei Huang. Role of side assisting gas onplasma and energy transmission during CO2laser welding [J]. Journal ofMaterials Processing Technology,2011,211(4):668~674
    [10] B. Genc Oztoprak, E. Akman, M.M. Hanon, et al. Laser welding of copper withstellite6powder and investigation using LIBS technique [J]. Optics&LaserTechnology.2013,45:748~755.
    [11] Mizutani M, Katayama S, Matsunawa A. X-Ray observation of keyholeinstability in zinc molten pool and estimation of recoil pressure in laser welding[J]. PICALO2004, Melbourne, VIC, Australia,2004,23~28.
    [12] Mizutani M, Katayama S, Matsunawa A. Observation of molten metal behaviorduring laser irradiation-Basic experiment to understand laser weldingphenomena [J]. Proceedings of SPIE, Osaka, Japan,2002,208~213.
    [13] Mizutani M, Katayama S. Keyhole behavior and pressure distribution duringlaser irradiation on molten metal [J]. ICALEO2003, Jacksonville, FL, Unitedstates,2003.
    [14] Fabbro R, Hamadou M, Coste F. Metallic vapor ejecting effect on melt pooldynamics in deep penetration laser welding [J]. Journal of Laser Applications,2004,16(1):16~19
    [15] Tua J., Miyamoto I. and Inoue T. characterizing keyhole plasma light emissionand plasmaplume scattering for monitoring20kW class CO2laser weldingprocesses [J]. Journal of Laser Applications,2002,14(3):146~153.
    [16] Sun Z., Salminen A.S. and Moisio T.J.I. Quality improvement of laser beamwelds by plasma control [J]. Journal of Materials Science letters,1993,12:1131~1133.
    [17] Hotfman J., Moscicli T. and Szymansli Z. Laser beam-plasma plume interactionduring laser welding [C]. Proceedings of SPIE,2003,5229:228~292.
    [18] Steen W. M. Arc augmented laser processing of materials [J]. Journal ofapplication physics,1980,51(11):5636~5641
    [19] Steen W. M. Eboo M. Arc augmented laser welding [J]. Metal Construction,1979,11(6):332~335.
    [20] Dykhno, Igor S, Krisvtun, etal. Combined laser and plasma arc welding torch[p]. USA:4700989,1994.
    [21] Philip W, Fuersehbaeh. Laser Assisted Plasma Arc Welding [J]. SectionD-ICALEO,1999:102~109.
    [22]肖荣诗,吴世凯.激光-电弧复合焊接的研究进展[J].中国激光,2008,35(11):1680~1685
    [23] Claus Emmelmann, Marc Kirchhoff, Nikolai Petri. Development ofplasma-laser-hybrid welding process [J]. Physics Procedia,2011(12):194~200
    [24] U. Dilthey. H. Keller. Prospects in laser-GMA hybrid welding of steel [J].Proceedings of the first international WLT-conference on lasers inmanufacturing, Munich, June,2001:453~465.
    [25] C.Campana, A.Ascari, A. Fortunato, et al. Hybrid laser-MIG welding ofaluminum alloys: The influence of shielding gases [J]. Applied Sueface Science,2009,255(10):5588~5590
    [26] J. Mirapeix, P.B. Garc a-Allende, A. Cobo, et al. Real-time arc-welding defectdetection and classifcation with principal component analysis and artifcialneural networks [J]. NDT&E International2007,40(4):315~323
    [27] Walz. C, Stiebe-Springer. I, El Rayes. M. Hybrid welding of steel for offshoreapplications[C], Proceedings of the International Offshore and PolarEngineering Conference,2001,263~266
    [28] Ouden den G, Yukio Shinbo, Akihide Yoshitake, et al. Development ofLaser-Arc Hybrid Welding [J]. NKK Technology, Review,2002,(86):8~11
    [29] Lee.Mok Young, Chang WoongSeong, et al. Laser-MIG hybrid weld ability ofhigh stregnth steel for car industry[C],24th International Congress onApplications of Lasers and Electro-Optics, ICALEO2005-CongressProceedings,2005:134~142.
    [30] Shibata.K, Sakamoto.H, Iwase.T, Laser-mig hybrid welding of aluminium alloys[J]. Welding in the World,2006,2:28~34
    [31] Dilthey.U, Brandenburg.A, Reich.F, Investigation of the strength and quality ofaluminium laser-MIG-hybrid welded joints [C]. Welding in the World,2006:7~10
    [32] Dilthey U, Lueder F, Wieschemann A. Technical and Economical Advantags bySynergies in Laser Arc Hybrid Welding [J]. Weling in the World,1999,43(3):141~152
    [33] Dilthey U, Wieschemann A. Prospects by Combining and Coupling Laser Beamand Arc Welding Process [J]. Welding in the World,2000,44(3):37~46
    [34] C. Roepke, S. Liu, and S. Kelly, Hybrid Laser Arc Welding Process Evaluationon DH36and EH36Steel [J]. Welding Journal,2010,89(7):140~150
    [35] M. Kutsuna and L. Chen, Interaction of Both Plasma in CO2Laser-MAGHybrid Welding of Carbon Steel [J]. International Institute of Welding, IIWdocument, XII2002,1708-02
    [36] Tani.Giovanni, Campana.Giampaolo, Fortunato.Alessandro, Ascari.Alessandro.The influence of shielding gas in hybrid LASER-MIG welding [J]. AppliedSurface Science,2007,253(19):8050~8053.
    [37]张绍彬,赵家瑞.焊接电弧与激光相互作用机理的研究[J].焊接技术,1991,4:6~8
    [38]樊丁,中田一博等. YAG激光与脉冲MIG复合焊接[J].焊接学报,2002,23(5):81~83
    [39]陈俐,董春林,吕高尚等. YAG/MAG激光电弧复合焊工艺研究[J].焊接技术,2004,33(4):21~23
    [40]董春林,陈俐,吕高尚等.不锈钢YAG-MAG激光电弧复合焊接工艺[J].航空制造技术,2005,3:69~71
    [41]高明,曾晓雁,胡乾午,低碳钢CO2激光-脉冲MAG电弧复合焊接工艺研究[J],激光技术,2006,30(5):498~500
    [42]高明,曾晓雁,胡乾午等. CO2激光-MAG电弧复合焊接保护气体的影响规律[J].焊接学报,2007,28(2):85~88
    [43]高明,曾晓雁,胡乾午等.激光-电弧复合焊接咬边缺陷分析及抑制方法[J].焊接学报,2008,29(6):85~88
    [44]高明. CO2激光-电弧复合焊接工艺、机理及质量控制规律研究[D].武汉:华中科技大学,2007.
    [45]雷振,秦国梁,林尚扬等.铝/钢异种金属Nd:YAG激光-MIG复合热源熔-钎焊接工艺[J],焊接,2006,(6):35~37
    [46]秦国梁,雷振,王旭友等. Nd:YAG激光+脉冲MAG电弧复合热源焊接规范参数对焊缝表面成形的影响[J],应用激光,2006,26(2):97~100
    [47]秦国梁,雷振,林尚扬等. Nd:YAG激光+脉冲MAG电弧复合热源规范参数对平板堆焊焊缝表面成形的影响[J].中国表面工程,2006,19(3):23~27
    [48] Guoliang Qin, Zhen Lei, Xuyou Wang, et al. Infuences of Nd: YAG laser pulsedMAG arc hybrid welding parameters on weld penetration [J]. Chinese Journalof Mechanical Engineering2007,43(1):225~228.
    [49] Zhou.J, Tsai.H.L, Wang. P.C, Menassa.R.J, Marin.S.P, Modeling of hybridlaser-MIG keyhole welding process[C], ICALEO2003-22nd InternationalCongress on Applications of Laser and Electro-Optics, Congress Proceedings,2003:197~210
    [50] Zhou.Jun, Tsai.Hai-Lung, Wang.Pei-Chung. Investigation of mixing phenomenain hybrid laser-MIG keyhole welding[C]. ICALEO2004-23rd InternationalCongress on Applications of Laser and Electro-Optics, Congress Proceedings,2004:410~412
    [51] Uchiumi.Satoru, Wang.Jing-Bo, Katayama.Seiji, Mizutani.Masami, Hongu,Toshinori, Fujii. Kouji, Penetration and welding phenomena in YAG laser-MIGhybrid welding of aluminum alloy[C]. ICALEO2004-23rd InternationalCongress on Applications of Laser and Electro-Optics, Congress Proceedings,2004:592~599
    [52] Aden M,Kreutz E W. Influence of the Laser Radiation on the Plasma Dynamiesduring Arc-Laser Welding [J]. ICALEO, Section C,1998:139~147.
    [53] Hu B, Ouden den G. Laser induced stabilization of the welding arc [J]. Scienceand Technology of Welding and Joining,2005,10(1):76~81.
    [54] Zhiyong Li, WeiWang, Xuyou Wang, HuanLi. A study of the radiation of Nd:YAG laser–MIG hybrid plasma [J]. Optics&Laser Technology.2010,42(1):132~140
    [55] Zhiyong Li, Lijun Yang, Ying Gao, Huan Li, Wei Wang. Analysis of the hybridpulsed MAG-YAG laser plasma with synchronization of multiple signals [J].Journal of Laser Application.2010,22(3):106~115
    [56]李志勇,王威,王旭友,等.大功率YAG激光-MAG复合热源的光谱诊断与分析[J].光谱学与光谱分析,2010,30(11):3127~3131
    [57]李志勇,王威,王旭友,等.基于光谱的激光-MAG复合焊耦合机理分析[J].机械工程学报,2010,46(8):62~67.
    [58]胡绳荪,张绍彬,赵家瑞.电弧强化激光焊[J].焊接学报,1993,14(3):159~163.
    [59] Shengsun H,Shaobin Z,Dengping L,etal. A study of arc augmented laserwelding [C]. IIW Doc.,1991,(Xl-1267-91):207~213.
    [60] Liming Liu, Minghua Chen. Interactions between laser and arc plasma duringlaser–arc hybrid welding of magnesium alloy [J]. Optics and Lasers inEngineering,2011,49(9-10):1224~1231
    [61] Liming.Liu, Ruisheng.Huang, Gang.Song, Behavior and Spectrum Analysis ofWelding Arc in Low-Power YAG Laser-MAG Hybrid welding Process [J],IEEE Transactions on Plasma Science,2008,36(4):1937~1943
    [62]黄瑞生.低功率YAG激光+MAG电弧复合焊接技术研究[D].大连:大连理工大学,2010
    [63] Chen Yanbin, Lei Zhenglong, Li Liqun. Influence of shielding gas pressure onwelding characteristics in CO2laser-MIG hybrid welding process [J], ChineseOptics Letters,2006,4(1):33~35
    [64]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量[J].焊接学报,2003,24(3):56~58.
    [65]陈彦宾,李俐群,陈凤东.激光维持燃烧波对激光一TIG复合热源的影响[J].哈尔滨工业大学学报,2003,35(6):695~697.
    [66]雷正龙,陈彦宾,李俐群. CO2激光-MIG复合焊接射滴过渡的熔滴特性[J].应用激光,2004,24(6):361~364.
    [67] Lei Zhenglong, ChenYanbin, Li Liqun, etal. Charaeteristies of droplet transfer inCO2laser-MIG hybrid welding with short-circuiting mode [C]. Proeeedings ofthe lst International Conferenee on New Forming Technology, ICNFT, Harbin,China,2004:73~578
    [68]张旭东,陈武柱.激光焊接技术在进展及其在汽车制造中的应用[J].汽车世界,2003(7):53~56
    [69] Staufer Herbert. LaserHybrid激光复合焊在大众和奥迪铝汽车的应用[J].材料科学与工艺,2006,14:202~204
    [70] Lee Mok-Young, Chang Woong-Seong, Kweon Young-Gak, et al. Laser-MIGhybrid weld ability of high strength steel for car industry[C].24th InternationalCongress on Applications of Lasers and Electro-Optics, ICALEO2005-Congress Proceedings,2005,134~142.
    [71]左敦桂,李芳,华学明.铝合金焊接新技术在汽车制造中的应用[J].电焊机,37(7):1~4
    [72] Ueyama, Tomoyuki, Tong.Hongjun, Yazawa. Ichizo, Hirami. Masayuki,Nakata.Kazuhiro, Ushio.Masao, High speed welding of aluminium alloy sheetsusing laser AC pulsed MIG arc hybrid welding process[J], Welding in the World,2004,7:139~144
    [73] Shibata.K, Sakamoto.H, Iwase.T, Laser-MIG hybrid welding of aluminumalloys[J]. Welding in the World,2006,2:28~34
    [74] Lee. Kyoung-Don, Park, Ki-Young. A study on the process robustness ofNd:YAG laser-MIG hybrid welding of aluminum alloy6061-T6[C]. ICALEO2003-22nd International Congress on Applications of Laser and Electro-Optics,Congress Proceedings,2003:180~184
    [75] Dr. Staufer Herbert.高效焊接在船厂的应用[J].电焊机,37(6):40~44
    [76] Frank R., Luciano M., Pentti K., et al. Advanced Joining Techniques inEuropean Shipbuilding [J]. Journal of Ship Production,2004,20(3):200~210.
    [77] Staufer H. LaserHybrid welding for Industrial Applications[C]. Proceedings ofSPIE,2007,6346:634614-1-634614-8
    [78] Tsukamoto S., Kawaguchi I, Arakane G, et al. Development of high power CO2laser welding process [J]. Science and Technology of Welding and Joining,2001,6(6):363~367.
    [79] C. Roepke, S. Liu, and S. Kelly. Hybrid Laser Arc Welding Process Evaluationon DH36and EH36Steel [J]. Welding Journal,2010,89(7):140~150
    [80] Walz. C, Stiebe-Springer. I, El Rayes. M. Hybrid welding of steel for offshoreapplications[C]. Proceedings of the International Offshore and PolarEngineering Conference,2001,263~266
    [81]曹梅青,邹增大,张顺善,等.双丝电弧焊研究现状及进展[J].山东科技大学学报,2008,27(2):88~91
    [82]冯曰海,周方明,蒋成禹.双弧焊接工艺研究现状及发展.焊接,2002(1):5~9
    [83] Chenfu Fang, Xiaohui Meng, Qingxian Hu, et al. TANDEM and GMAW TwinWire Welding of Q690Steel Used in Hydraulic Support. Journal of Iron andSteel Research,2012,19(5):79~85
    [84] Lin Sanbao,Gang Tie.An initial study on welding procedure using tandem MIGwelding of high strength aluminum alloy,China Welding,2004,13(2):81~85
    [85] E lassline.Narr.Narrow goove twin-wire GMAW of high-strenghth steel.WeldingJournal,1989,69(9):53~57
    [86] Tomoyuki Ueyama, Manabu Tanaka.High Speed Tandem Pulsed GMA Weldingof Steel Sheets. The Disquisition of Sino-Japanese Young Researcher Forum in2006,Beijin:2006,53~57
    [87]中国机械工程学会焊接学会.焊接手册(第一卷)[M].北京:机械工业出版社,1992.
    [88]过增援,赵文华.电弧和热等离子体[M].北京,科学出版社,1986
    [89] C.B.德列斯文.低温等离子体物理及技术[M].科学出版社,1980
    [90]李俊岳,宋永伦.电弧光谱信息及其在焊接过程测控上的应用[J].机械工程学报,1993,29(3):1~7
    [91]宋永伦.焊接电弧等离子体的光谱诊断法及其应用的研究[D].天津:天津大学,1990
    [92] Li Junyue, Song Yonglun, Spectral information of arc and welding automation[J]. Welding in the world,1994,34(9):317~324
    [93] Li Junyue, Song Yonglun, Measurement of hydrogen in a welding arc [J].Welding research abroad,1989,35(6-7):2~6
    [94] Li Junyue, Xue Haitao, Li Huan, Song Yonglun. Basic theory and applicationsof welding arc spectral information [J]. Chinese journal of mechanicalengineering,2007,20(4):44~51
    [95] Griem H R. Priciples of Plasma Spectroscopy [M]. UK: Cambridge UniversityPress,1997
    [96] Griem H R. Spectral Line Broadening by Plasma [M]. New York: Academic,1974
    [97] NIST Atomic Spectra Database[DB/OL].http://physics.nist.gov/PhysRefDataDatabase[DB/OL].http://physics.nist.gov/PhysRefData/ASD/index.html
    [98]屠昕.用于危险废弃物处理的直流等离子体射流特性研究[D].浙江:浙江大学,2007
    [99] Konjevic N., Lesage A., Fuhra J. R., et al. Experimental Stark Widths and Shiftsfor Spectral Lines of Neutral and Ionized Atoms[J]. J. Phys. Chem. Ref. Data,2002,31(3):870~873.
    [100] Goldbach C, Nollez G, Plomdeur P, J Phys. B, Atom.Molec.Phys,1977,10(6):1181.
    [101] Deron C, PhD Thesis,CNRS et Ecole Central de PaNs,2003(In French).
    [102] CorneyA. Atomie and Laser Speetroseopy [M]. Oxford University Press,Oxford,1977.
    [103] ThorneAP. Speetrophysies [M]. London: ChapmanandHall,1988.
    [104] Sadek C.A. Alfaro, Diogo de S. Mendon a, Marcelo S. Matos. Emissionspectrometry evaluation in arc welding monitoring system. Journal of Materials[J]. Processing Technology.2006,179(1-3):219~224
    [105]高莹.基于多信息融合的激光与脉冲MIG电弧作用机理研究[D].天津:天津大学,2010
    [106]胡连海.10Ni3CrMoV钢厚板激光焊接稳定性与接头组织及性能研究[D].上海:上海交通大学,2011
    [107] X.Y.Gu, H.L, L.J.Yang, and Y.Gao. Coupling mechanism of laser and arcs oflaser-twin-arc hybrid welding and its effect on welding process [J]. Optics&Laser Technology,2013,48:246~253
    [108] Jokinen T, et al.Optimisation of parameters in hybrid welding aluminum alloys[J]. Proc SPIE, V.4831[C]. Washington: SPIE,2003:307~312
    [109] Kutsuna, Muneharu, Chen, Liang, Interaction of both plasmas in CO2laser-MAG hybrid welding of carbon steel[C]. Proceedings of SPIE--TheInternational Society for Optical Engineering,2002,4831:341~346.
    [110] M. Kutsuna, L. Chen. Interaction of Both Plasma in CO2Laser-MAG HybridWelding of Carbon Steel [J]. International Institute of Welding, IIW document,XII2002
    [111]李志宁,都东,常保华.激光-等离子弧复合焊接熔池流动和传热的数值模拟[J].焊接学报,2007,28(7):37~40
    [112]叶晓虎,陈熙.激光加热熔池流动和传热的分区数值模拟[J].中国激光,2002,29(9):855~858
    [113]周琦,刘方军,齐铂金.电子束深穿透焊接熔质成分分布与熔池流动特征[J].中国机械工程,2003,14(5):406~409
    [114]王宏,史耀武,巩水利.激光深熔焊熔池流动换热特性研究[C].2005先进焊接/连接技术国际研讨会
    [115]孙霞,吴自勤.分形原理及其应用[M].合肥:中国科学技术大学出版社,2003
    [116] Kurzyna J. Searching for chaos in fluctuations of a plasma induced duringcw-CO2laser welding [J]. J.Phys.D:Appl.Phys.1998,31(6):680~692
    [117] Szymanski Z, Hoffman J, Kurzyna J. Plasma plume oscillations during weldingof thin metal sheets with a CW CO2laser. J.Phys.D:Appl.Phys,2001,34(2):189~199
    [118]罗震,单平,高展蛟.用Lyapunov指数研究点焊位移信号的混沌特性.焊接学报,2006,27(12):34~36
    [119]刘鹏飞,单平,罗震.铝合金点焊电极位移时序相空间重构及混沌特征分析.焊接学报,2008,29(1):1~4
    [120]罗震,李青松,单平.基于Lyapunov指数的电阻点焊声音混沌时间序列识别[J].天津大学学报,752~756
    [121]刘鹏飞,单平,罗震.电阻点焊焊接过程中电流信号时间序列混沌特征研究[J].中国机械工程,2007,18(21):2596~2599
    [122]吕小青.基于非线性特征参数的CO2焊短路过渡稳定性研究[D].上海,同济大学,2010
    [123] Ramasubramanian K, Sriram M S. A comparative study of computation ofLyapunov spectra with different algorithms [J]. Physica D,2000,139(1-2):72~86
    [124] Kim H S, Eykholt R, Sala J D. Nonlinear dynamics, delay times, and emeddingwindows [J]. Physica D,1999,127(1-2):48~60
    [125] Kuanfang He, Qi Li, Jun Chen. An arc stability evaluation approach for SW ACSAW based on Lyapunov exponent of welding current [J]. Measurement,2013,46(1):272~278
    [126] M.T. Rosenstein, J. J. Collins, and C. J. Deluca. A practical method forcalculating maximum Lyapunov exponents from small data [J]. Physica D,1993,65,(1-2):117~134.
    [127] M.B.Kennel, R.Brown, H.D.I.Abarbanel. Determining embedding dimensionfor phase-space reconstruction using a geometrical construction [J]. PhysicalReview A,1992,45,(6):3403~3411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700