低功率YAG激光+TIG复合热源焊接技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光+电弧复合热源焊接技术作为一种新型、高效的焊接技术,以其焊接熔深大、焊接速度快、变形小、搭桥能力强等优点,受到国内外学者的广泛关注。近年来,随着激光器的发展,大功率激光器越来越多地应用于复合焊接技术,目前激光+TIG电弧复合焊接技术研究主要采用几千瓦甚至几十千瓦的大功率激光与电弧进行复合,以大功率激光为主,TIG电弧为辅。但是激光器电-光转换效率普遍较低,同时电弧对激光具有吸收和散焦作用,并随着激光功率的增大而增强,导致激光能量利用率降低,因此,大功率激光的应用必然导致能源的大量消耗及浪费。基于我国激光器发展现状,开发焊接效率高、能源消耗少、具有自主知识产权的低功率YAG激光+TIG电弧复合焊接技术具有重要的现实意义,有利于推动复合焊接技术在生产中的应用和发展。因此,本文采用低功率YAG激光(小于500W)与TIG电弧复合,系统地研究了低功率YAG激光+TIG电弧复合焊接工艺特点,开发了低功率YAG激光+TIG复合热源填丝焊接技术;分析了复合焊接过程中的电弧等离子体形态及光谱信息的变化,深入探讨了低功率YAG激光与TIG电弧的相互作用机理;并在此基础上,对低功率YAG激光+TIG电弧复合焊接过程中激光脉冲与交流电弧的相位匹配进行控制,进一步改善复合焊接效果。本文主要研究内容:
     1.系统地研究了低功率YAG激光+TIG电弧复合焊接(未填丝及填丝)工艺特点,得到了镁合金、钛合金薄板结构件的焊接参数范围。结果表明,低功率YAG激光+TIG电弧复合焊接焊缝成形良好,单面焊双面成形,焊接速度相比TIG焊接成倍提高;焊丝的加入避免了焊缝塌陷、咬边等缺陷的产生,后送丝方式下复合填丝焊接熔深达到前送丝复合填丝焊接的2倍左右,焊接接头热影响区窄,晶粒长大不明显,接头拉伸性能达到母材的95%左右。复合热源填丝焊接技术为低功率YAG激光+TIG电弧复合焊接中厚板材提供了可行性。
     2.采集焊接过程中等离子体形态及等离子体光谱信息,系统研究了低功率YAG激光对焊接等离子体的影响。结果表明:激光加入后,镁合金大量蒸发、电离,焊接等离子体的亮度急剧增强,体积发生膨胀,激光作用在电弧负半波时显著提高电弧等离子体的稳定性。焊接等离子体光谱表明,激光焊接等离子体光谱只有少量的Mg原子线状谱,并且强度比较低;TIG焊接和复合焊接等离子体光谱主要由Mg I谱线,MgΠ谱线,ArI谱线和ArΠ谱线组成,激光加入后,Mg元素谱线强度增强,而Ar元素谱线强度降低;利用Mg I谱线计算等离子体的电子温度和电子密度,结果表明:激光加入后电弧等离子体电子温度降低,电子密度提高;焊丝的加入使填丝焊接过程中激光对电弧等离子体形态、等离子体电子温度和电子密度的影响不如未填丝焊接过程强烈;进一步实验发现未填丝焊接过程中激光增强TIG电弧等离子体的临界功率值为50-60W,填丝焊接过程为70W左右。
     3.通过分析焊缝成形特征、等离子体形态、光谱信息及电弧电压的变化,系统探讨了低功率YAG激光与TIG电弧等离子体之间的相互作用机制。结果表明:低功率YAG激光与TIG电弧的相互作用分为电弧对低功率YAG激光的辅助作用和YAG激光对电弧等离子体的增强作用两个方面。一方面,TIG电弧通过改变板材表面状态,使激光小孔的初始形成条件从“加热母材”阶段转变为“等离子体形成”阶段,促进了激光小孔的形成过程,同时电弧和保护气的作用使激光等离子体向后倾斜,减弱了激光等离子体对激光能量的吸收和散焦作用;另一方面,低功率YAG激光提高了TIG电弧的稳定性,并使电弧等离子体整体膨胀而高温导电通道收缩,引起电弧电压升高,导致电弧能量密度提高;两方面的综合作用使得复合热源焊接熔深显著提高。
     4.研究激光脉冲波形及脉冲激光与交流电弧的相位匹配对复合热源焊接质量的影响,设计激光脉冲与交流电弧的相位匹配控制系统,对复合焊接过程进行控制和改善。结果表明:在保持激光脉冲能量不变的前提下,在激光脉冲波形前部设置高功率密度的短时脉冲,适当延长激光脉冲脉宽,可以加快复合焊接过程中激光小孔的形成过程,增强激光对熔池的冲击作用,延长激光小孔对电弧等离子体的作用时间,有利于提高复合热源焊接熔深,熔深可提高15%-20%。脉冲激光与交流电弧相位匹配实验结果表明:无论脉冲激光作用于交流电弧正半波还是负半波,都能获得良好的复合焊接效果,但是复合焊接过程中激光小孔稳定电弧负半波有利于改善焊缝成形,同时由于电弧负半波对板材的输入功率相对较大,作用在激光小孔处的阴极斑点力比正半波时的阳极斑点力大,导致脉冲激光作用于电弧负半波时的焊接熔深相比作用于正半波提高5%-10%。
As a new welding technique with high quality, laser+arc hybrid welding process has received significant attentions all over the world for its particular advantages, such as the large welding penetration, high welding speed, less deformations and good bridging ability for relatively large gaps, etc. In recent years, with the development of high-power laser apparatus, high-power laser beam are increasingly applied in hybrid welding applications, in which high-power laser plays the principal role with the assistance of arc. Due to the low electric-photo transformation efficiency of laser apparatus and the absorption and defocusing effects of arc plasma on laser beam, which intensifies with the increase of laser power, the utilization ratio of laser energy decreases significantly. Therefore, the applications of high-power laser beam will induce serious waste of energy. Based on the development status of laser apparatus in our country, it is significative to develop low-power YAG laser+TIG arc hybrid welding technique with high welding efficiency, low energy consumption and proprietary intellectual property rights, and it is benefit for the application and development of hybrid welding technique in industries. Therefore, low-power YAG laser (less than 500W) hybrid with TIG arc is used to weld and the characteristics of lower-power YAG laser+TIG arc welding process is studied. Low-power YAG laser+TIG hybrid welding technique with filler wire is developed. The variety of arc plasma behaviors and spectra in hybrid welding process is analyzed and the interaction between low-power YAG laser and TIG arc is discussed. Based on these, the phase matching mode between laser pulse and alternating current (AC) arc in low-power YAG laser+TIG arc hybrid welding process is controlled and the hybrid welding quality is improved. The main research contents are as follows:
     1. The characteristics of low-power YAG laser+TIG arc hybrid welding process (with or without filler wire) are investigated and the hybrid welding parameters of magnesium alloy and titanium alloy structures are obtained. The results indicate that the hybrid welding seam formation is good by single-side welding with both sides formation and the welding speed is much higher than TIG welding. The addition of filler wire avoids the defects of collapse and undercut. The hybrid welding penetration with back-feeding filler wire is two times deeper than that with front-feeding filler wire. The heat-affected-zone (HAZ) in hybrid welding joint with back-feeding filler wire is narrow and the grain size hardly grows, so the tensile strength of hybrid welding joint reaches 95% of base metal. Hybrid welding technique with filler wire supplies the feasibility to weld thick plates by low-power YAG laser+TIG arc hybrid welding process.
     2. The welding plasma behaviors and spectra are acquired and the effect of low-power YAG laser on welding plasma is studied. When laser beam act on the arc plasma and target metal, magnesium alloy is vaporized and ionized rapidly. The welding plasma intensifies and expands in a large extent. Especially in the negative wave of AC arc, the stability of arc plasma is improved significantly. The plasma spectra shows that there are only spectral lines of Mg I in laser welding and the intensities are weak. The spectra of TIG welding and hybrid welding processes consists of Mg I, Mg II, Ar I and Ar II lines. When laser beam is added, the intensities of spectral lines of Mg are much stronger than that in TIG welding, while the intensities of spectral lines of Ar are a little weaker than that in TIG welding. Spectral lines of Mg I are used to estimate the electron temperature and density of welding plasma and the results indicate that the electron temperature decreases and the electron density increases under the action of laser beam. The effects of laser beam on plasma behaviors, electron temperature and density in hybrid welding process with filler wire are weaker than that without filler wire. The threshold value of laser power which can intensify the TIG arc plasma is 50W-60W in hybrid welding process without filler wire and about 70W in hybrid welding process with filler wire.
     3. The weld seam formation, plasma behaviors, plasma spectra and arc voltage are analyzed and the interaction between low-power YAG laser and TIG arc plasma is studied. The results indicate that the interaction between low-power YAG laser and TIG arc includes the assistance effect of arc plasma on low-power YAG laser and the intensifying effect of YAG laser on arc plasma. On one hand, the action of TIG arc changes the surface condition of target metal and the initial condition of keyhole formation changes from the stage of heating base metal to the stage of plasma formation, which accelerates the process of keyhole formation in hybrid welding process. Meanwhile, the arc plasma and the Ar gas make the laser-induced plasma spray away from the workpiece with a gradient from the incident direction of laser beam, which weakens the absorption and defocusing effects of laser induced-plasma on laser beam. On the other hand, low-power YAG improves the stability of TIG arc plasma and expands the arc plasma with the concentration of the electric conducting channel with high temperature, which increases the arc voltage and arc energy density. The cooperation of both effects increases the welding penetration significantly.
     4. The effect of pulse laser wave and the phase matching between pulsed laser and AC arc on hybrid welding process is investigated. The phase matching controlling system of pulsed laser and AC arc is designed to control and improve the hybrid welding process. The results indicate that with the laser pulse energy as a constant, a high power density pulse with short duration is set at the beginning of pulse wave and the laser pulse duration is increased properly, which can accelerate the forming process of laser keyhole, intensify the impact effect of laser pulse on molten pool and increase the effecting time of laser keyhole on arc plasma, then the hybrid welding penetration increases with the percents of 15%~20%. The experimental results of phase matching mode between laser pulse and AC arc show that hybrid welding joints with high quality can be obtained whether the laser pulse acts on the positive wave or the negative wave. However, in hybrid welding process, it is helpful to improve the weld formation when laser pulse acts on the negative wave of AC arc. Meanwhile, both the power input and the spot force to base metal in the negative wave are higher than those in the positive wave, so the hybrid welding penetration with the phase matching mode that laser pulse acts on the negative wave of AC arc is 5%~10% higher than that of the positive wave.
引文
[1]关振中.激光加工工艺手册(第二版)[M].北京:中国计量出版社,1997.
    [2]陈彦宾.现代激光焊接技术[M].北京:科学出版社,2005.
    [3]Steen W M, Eboo M. Arc augmented laser welding [J]. Metal Construction,1979,7:332-335.
    [4]Steen W M. Arc augmented laser processing of materials [J]. Journal of Applied Physics, 1980,51:5636-5641.
    [5]Graf T, Staufer H. Laser-hybrid welding drives VW improvements [J]. Welding Journal, 2003,82(1):42-48.
    [6]陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量[J].焊接学报,2003,24(3):56-58.
    [7]阎毓禾,钟毓霖.高功率激光器加工及其应用[M].天津:天津大学科技出版社,1992.
    [8]樊丁,中田一博,牛尾诚夫.YAG激光与脉冲MIG复合焊接[J].焊接学报,2002,23(5):81-83.
    [9]Matsuda J, Utsumi A, Katsumura M, et al. TIG or MIG augmented laser welding of thick mild steel plate [J]. Joining of Material,1988,1(1):31-34.
    [10]芦凤桂,唐新华,姚舜,等.铝合金MIG+激光复合焊接工艺研究[J].现代制造工程,2006,(3):71-73.
    [11]Steen W.M. Arc augmented laser processing of materials [J]. Journal of application physics,1980,51 (11):5636-5641.
    [12]Chen F F. Introduction to plasma physics [M]. New York:Plenum press,1974.
    [13]陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社,1996.
    [14]Moor P L, Howse DS, Wallach E R. Development of Nd:YAG laser and laser/MAG hybrid welding for land pipeline applications [J]. Welding and Cutting,2004,3(3):174-180.
    [15]Pace D P, Kenney K L, Galiher D L. Laser Assisted Arc Welding Of Ultra High Strength Steels [C].6th International Trends in Welding Research Conference Proceedings,2002, Pine Mountain, GA, ASM International,2003:442-447.
    [16]Jun Yan, Xiaoyan Zeng, Ming Gao, et al. Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO2 laser-MIG hybrid welding [J]. Applied Surface Science.2009,255:7307-7313.
    [17]许良红,田志凌,彭云,等.高强铝合金的MIG以及激光-MIG焊接工艺对比[J].焊接学报,2007,28(2):38-42.
    [18]高明,曾晓雁,严军,等.激光-电弧复合焊接的坡口间隙桥接能力[J].中国机械工程,2008,19(20):2496-2500.
    [19]Y. P. Kim, N. Alam, H. S. Bang, et al. Observation of hybrid (cw Nd:YAG laser+MIG) welding phenomenon in AA5083 butt joints with different gap condition [J]. Science and Technology of Welding and Joining.2006,11(3):295-307.
    [20]R Ohashi, S Fujinaga, S Katayama, et al. Extension of gap tolerance in square butt joint welding with Nd:YAG laser[J]. Welding International,2004,18(1):16-23.
    [21]S. M Kelly, S. W Brown, J. F Tressler, et al. Using hybrid laser-arc welding to reduce distortion in ship panels [J]. Welding Journal.2009,88(3):32-36.
    [22]Malmuth N D. Hybrid Laser Welding Developed for Ship Building [J]. Advanced Materials and Processes:Materials Selection,2001,159(9):20-30.
    [23]吴圣川,刘建华,胡伦骥.ZL114铝合金激光-电弧的复合焊接[J].电焊机,2004,34(9):10-12.
    [24]刘黎明,王继锋,宋刚.激光电弧复合焊接AZ31B镁合金[J].中国激光,2004,31(12):1523-1526.
    [25]姚伟,巩水利,陈俐.激光/等离子电弧复合热源能量参数对钛合金焊缝成形的影响[J].焊接学报,2006,27(9):81-84.
    [26]Tishide, Nayama M. Coaxial TIG-YAG & MIG-YAG welding methods [J]. Welding International, 2001,15(12):940-945
    [27]陈彦宾,徐庆鸿,苏彦东.激光-同轴电弧复合焊接热源焊接[J].焊接学报,1995,16(4):239-243.
    [28]清华大学.激光-电弧同轴复合焊炬,中国:CN1446661A[P].2003,10,8.
    [29]Ming Gao, Xiaoyan Zeng, Qianwu Hu. Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding [J]. Journal of Materials Processing Technology,2007,184:177-183.
    [30]严军,曾晓雁,高明,等.316L不锈钢激光-钨极惰性气体复合焊接工艺研究[J].激光技术,2007,31(5):489-492.
    [31]迟鸣声,刘黎明,宋刚.镁合金AZ31B的激光-TIG复合热源缝焊工艺[J].焊接学报,2005,26(3):21-24.
    [32]高明,曾晓雁,胡乾午,等.C02激光-TIG复合焊接气体的保护方式[J].中国激光,2006,33(10):1422-1426.
    [33]Liu Liming, Song Gang, Liang Guoli, et al. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B-Mechanism and remedy [J]. Materials Science and Engineering A,2005,390(1-2):76-80.
    [34]Ming Gao, Xiaoyan Zeng, Qianwu Hu, et al. Laser-TIG hybrid welding of ultra-fine grained steel [J]. Journal of Materials Processing Technology,2009,209:785-791.
    [35]宋刚,刘黎明,王继锋,等.激光-TIG复合焊接镁合金AZ31B焊接工艺[J].焊接学报,2004,25(3):31-34.
    [36]Nagata S, Katsummura M, Matsuda J, et al. Laser Welding Combined with TIG or MIG [J]. ⅡW-Doc. Ⅳ-390-85,1985:1-8.
    [37]Beyer E, Brenner B, Poprawe R. Hybrid Laser Welding Techniques for Enhanced Welding Efficiency [C]. Conf. Proc. of ICALEO, Orlando, USA,1996, Section D:157-166.
    [38]Frank R, Thomas R, Guido P. Laser welding in shipbuilding-an overview of the activities at meyer werft [J]. Welding in the World,2002,46(9):103-115.
    [39]Staufer H. Laser-Hybrid Welding of Ships [J]. Welding Journal,2004,(6):39-43.
    [40]Kairle S, Bongard K, Dahmen M, et al. Innovative Hybrid Welding Process in an Industrial Application. Proceedings of the Laser Materials Processing Conference, Section C-ICALEO [C],2000. Orlando:Laser Institute of America,2000:91-98.
    [41]Glumann C, Rapp J, Dausinger F and Hugel H. Welding with combination of two CO2 lasers-Advantages in processing and quality [C].1993 International Conference on Applications of Laser and Electro-Optics (ICALEO'93), Orlando,1993:672-681.
    [42]Vitek J M, David S A, Richey M W, et al. Weld pool shape prediction in plasma augmented laser welded steel [J]. Science and Technology of Welding and Joining,2001,6:305-314.
    [43]P. T. Swanson, C. J. Page, E. Read, et al. Plasma augmented laser welding of 6mm steel plate [J]. Science and Technology of Welding and Joining,2007,12(2):153-160.
    [44]Dykhno, Igor S, Krisvtun, et al. Combined laser and plasma arc welding torch: USA,4700989 [P],1994.
    [45]Philip W, Fuerschbach. Laser Assisted Plasma Arc Welding. Section D-ICALEO [C]. US:San Diego,1999:102-109.
    [46]Dilthey U, Lueder F, Wieschemann A. Technical and economical advantages by synergies in laser arc hybrid welding [J]. Welding in the World.1999,43(4):141-152
    [47]Dilthey U, Wieschemann A. Prospects by Combining and Coupling Laser Beam and Arc Welding Processes [J]. Welding in the World,2000,44(3):37-46.
    [48]T. Shide, M. Nayama, N.Sakamoto, et al. Hybrid YAG Laser Welding for Aluminum Alloy [J]. IIW Doc,1997, IV:687-697
    [49]高明,曾晓雁,严军,等.激光-电弧复合焊接的热源相互作用[J].激光技术,2007,31(5):465-468.
    [50]Shinn B W, Farson D F, Denney P E. Laser stabilization of arc cathode spots in titanium welding [J]. Science and Technology of Welding and Joining,2005,10(4):475-481.
    [51]Avilov V V, Decker I. Study of A Laser Enhanced Welding Arc Using Advanced Split Anode Technique [J]. Welding Journal,1994,11(2):112-123.
    [52]陈彦宾,陈杰,李俐群,等.激光与电弧相互作用时的电弧形态及焊缝特征[J].焊接学报,2003,24(1):55-60.
    [53]Y. B Chen, Z. L. Lei, L. Q. Li, et al. Experimental study on welding characteristics of CO2 laser-TIG hybrid welding process [J]. Science and Technology of Welding and Joining, 2006,11 (4):403-411.
    [54]O. Moriaki, S. Yukio, Y. Akihide, et al. Development of laser-arc hybrid welding [J]. N KK Technical Review,2002, (86):8-12.
    [55]B. Hu, G. den Ouden. Synergetic effects of hybrid laser/arc welding [J]. Science and Technology of Welding and Joining,2005,10(4):427-431.
    [56]0. B. Bibik, V. N. Brodyaqin, Y. P. Rokladov. Special features of interaction of laser radiation with the electric welding arc in the combined laser2arc welding [J]. Physics and Chemistry of Materials Treatment,1990,24(2):176-178.
    [57]胡绳荪,张绍彬,赵家瑞.电弧强化激光焊[J].焊接学报,1993,14(3):159-163.
    [58]宋刚.镁合金低功率激光-氩弧复合热源技术的研究[D].大连:大连理工大学,2006.
    [59]陈彦宾.激光-TIG复合热源焊接物理特性研究[D].哈尔滨:哈尔滨工业大学,2003.
    [60]C. Bagger, L. C. Sondrup, F.O. Olsen. Laser/TIG hybrid welding of pot for induction heater, Proceedings of ICALEO 2004, Hybrid Laser Welding [C]. San Francisco, California, 2004:60-69.
    [61]Diebold T P, Albright C E. Laser-GTA welding of aluminum alloy 5052 [J]. Welding Journal, 1984,63(6):18-24.
    [62]H Cui, I. Decker and J. Ruge. Wechselwirkungen zwischen WIG SchweiBlichtbogen and fokussiertem Laserstrahl, Proc. of the Conference Laser'89 [C]. Springer, Berlin, 1989:577-581.
    [63]H Cui, I. Decker, H. Pursch, et al. Laserinduziertes Fokussieren des WIG-Lichtbogens [C]. DVS-Ber,1992,146:139-143.
    [64]Albright C B, Eastman J and Lempert W. Low-Power lasers assist arc welding [J]. Welding Journal,2001, (80):55-58.
    [65]Paulini J, Simon G. A theoretical lower limit for laser power in laser enhanced arc welding [J]. Journal of Physics D:Applied Physics,1993,26(9):1523-1527.
    [66]Liming liu, Song G and Chi M. S. Laser-tungsten inert gas hybrid welding of dissimilar AZ based magnesium alloys [J]. Materials Science and Technology,2005,21(9):1078-1082.
    [67]Song G, Liu L. M and Wang P. C. Overlap welding of magnesium AZ31B sheets using laser-arc hybrid process [J]. Materials Science and Engineering A.2006,429(1-2):312-319
    [68]康乐,黄瑞生,刘黎明,等.低功率YAG激光-MAG电弧复合焊接不锈钢[J].焊接学报,2007,28(11):69-72.
    [69]Huang Ruisheng, Kang Le, Ma Xiang. Microstructure and Phase Composition of a Low-Power YAG Laser-MAG Welded Stainless Steel Joint [J]. Journal of Materials Engineering and Performance,2008,17(6):928-935.
    [70]柳绪静,刘黎明,王恒,等.镁铝异种金属激光-TIG复合热源焊焊接性分析[J].焊接学报,2005,26(8):31-34.
    [71]Liming Liu, Xujing Liu, Shunhua Liu. Microstructure of laser-arc hybrid welds of dissimilar magnesium alloy and aluminum alloy with Ce as interlayer [J]. Scripta Materialia,2006,55(4):383-386.
    [72]单闯,宋刚,刘黎明.激光-TIG复合热源焊接参数对镁/钢异种材料焊接接头的影响[J].焊接学报,2008,29(6):57-60.
    [73]Liming Liu, Xiaodong Qi, Zhonghui Wu. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element [J]. Materials Letters,2010,64(1):89-92.
    [74]Ruisheng Huang, Liming Liu. Infrared Temperature Measurement and Interference Analysis of Magnesium Alloys in Hybrid Laser-TIG Welding Process [J]. Materials Science & Engineering A,2007,447(1-2):239-243.
    [75]王红阳,迟鸣声,黄瑞生,等.激光-电弧复合热源焊接镁合金残余应力分析[J].焊接学报.2006,27(11):33-36.
    [76]黄瑞生,刘黎明,迟鸣声.镁合金激光-TIG焊接温度场的红外测量与数值模拟[J].焊接学报,2006,27(10):89-93.
    [77]刘黎明,迟鸣声,宋钢,等.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):82-85.
    [78]赵华洋.低功率YAG激光-MAG电弧复合焊接的研究[J].激光杂志,2009,30(3):57-59.
    [79]徐虎.变形镁合金的C02激光填丝焊研究[D].哈尔滨:哈尔滨工业大学,2006.
    [80]X. Cao, M. Jahazi, J. P. Immarigeon, et al. A review of laser welding techniques for magnesium alloys [J]. Journal of Materials Processing Technology,2006,171:188-204.
    [81]Lih-Ren Hwang, Chung-Hau Gung, Teng-Shih Shih. A study on the qualities of GTA-welded squeeze-cast A356 alloy [J]. Journal of Materials Processing Technology, 2001,116:101-113.
    [82]Liming Liu, Changfu Dong. Gas tungsten-arc filler welding of AZ31 magnesium alloy [J]. Materials Letters,2006,60(17-18):2194-2197.
    [83]K. Shanmugam, A. K. Lakshminarayanan, V. Balasubramanian. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints [J]. International Journal of Pressure Vessels and Piping,2009,88:517-524.
    [84]唐卓,赵良磊,蔡艳,等.国产厚板大功率激光填丝焊Y形焊缝的焊接工艺性[J].焊接学报,2008,29(5):81-84.
    [85]Tommi Jokinen, Veli Kujanpaa. High power Nd:YAG laser welding in manufacturing of vacuum vessel of fusion reactor [J]. Fusion Engineering and Design,2003,69:349-353.
    [86]姚舜,李铸国,吴毅雄,等.角焊缝低真空填丝电子束焊接[J].焊接学报,2000,21(3):86-88.
    [87]J. L. Barreda, F. Santamaria, X. Azpiroz, et al. Electron beam welded high thickness Ti6A14V plates using filler metal of similar and different composition to the base metal [J]. Vacuum,2001,62:143-150.
    [88]张松,吴世凯,陈铠,等.Nd:YAG-TIG填丝复合焊接实验研究[C].第12届全国特种加工学术会议专辑,长沙,2007:275-278。
    [89]何俊佳,武建文,邹积岩,等.长间隙真空电弧形态演变过程观察[J].华中理工大学学报,1999,27(7):54-56.
    [90]张赋升,马铁军,李京龙,等.A-TIG焊电弧的动态研究[J].电焊机,2003,33(12):17-19.
    [91]姜平,陈武柱,夏侯荔鹏,等.激光深熔焊等离子体的高速摄像实验研究[J].应用激光,2001,21(5):289-291.
    [92]J. D. Kim, Y. H. Kim, J. S. Oh. Diagnostics of laser-induced plasma in welding of Aluminum alloy [J]. Key Engineering Materials,2004,261-263:1671-1676.
    [93]陈彦宾,李俐群,陈凤东.激光维持燃烧波对激光-TIG复合热源的影响[J].哈尔滨工业大学学报,2003,35(6):695-697.
    [94]雷正龙,陈彦宾,李俐群,等.C02激光-MIG复合焊接射滴过渡的熔滴特性[J].应用激光,2004,24(6):361-364。
    [95]Yasuaki N, Masami M, Seiji K. Observation of Keyhole Behavior and Melt Flows during Laser-Arc Hybrid Welding [J]. The International Society for Optical Engineering, 2002,4831:357-362.
    [96]Abe N, Kunugita Y, Hayashi M, et al. Dynamic Observation of High Speed Laser-Arc Combination Welding of Thick Steel Plates [C]. ICALEO'97:Laser Materials Processing. USA:San Diego, California,1997,83:G155-163.
    [97]Cheolhee Kim, Hyunbyung Chae, Jun-ki Kim, et al. Optimization of laser-arc interspacing distance during CO2 laser-GMA hybrid welding by using high-speed imaging [J]. Advanced Materials Research,2007,26-28:481-484.
    [98]Hyunbyung Chae, Cheolhee Kim, Jeonghan Kim, et al. Welding Phenomena in Hybrid Laser-Rotating Arc Welding Process [J]. Materials Science Forum,2007,539-543: 4093-4098.
    [99]苏茂根,陈冠英,张树东,等.激光诱导Cu等离子体光谱的空间特性研究[J].应用激光,2004,24(5):409-412.
    [100]M. Milan, J. J. Laserna. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation [J]. Spectrochimica Acta Part B,2001,56:275-288.
    [101]刘凤尧,杨春利,林三宝,等.活性化TIG电弧光谱分布的特征[J].金属学报,2003,39(8):875-878.
    [102]G. Agapiou, C. Kasiouras, A. A. Serafetinides. A detailed analysis of the MIG spectrum for the development of laser-based seam tracking sensors [J]. Optics & Laser Technology, 1999,31:157-161.
    [103]Jacek Hoffman, Zygmunt Szymanski. Time-dependent spectroscopy of plasma plume under laser welding conditions [J]. Journal of Physics D:Applied Physics,2004,37:1792-1799.
    [104]J.-D Kim, J-S Oh, M.-H Lee, et al. Spectroscopic Analysis of Plasma Induced in Laser Welding of Aluminum Alloys [J]. Materials Science Forum,2004,449-452:429-432.
    [105]Teresa Sibillano, Antonio Ancona, Vincenzo Berardi, et al. A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation [J]. Optics and Lasers in Engineering,2006,44:1039-1051.
    [106]S. Palanco, M. Klassen, J. Skupin, et al. Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys [J]. Spectrochimina Acta Part B,2001,56:651-659.
    [107]B. Hu, G. den Ouden. Laser induced stabilisation of the welding arc [J]. Science and Technology of Welding and Joining,2005,10(1):76-81.
    [108]夏源,宋永伦,胡坤平,等.激光-TIG复合焊接热源机理研究现状与进展[J].焊接,2008,12:21-24.
    [109]陈俐,段爱琴.YAG激光等离子弧复合焊接热源光谱特征分析[J].电加工与模具,2007,6:18-21.
    [110]Aden M, Kreutz E W, Hausen 0. Influence of the Laser Radiation on the Plasma Dynamics during Arc-Laser Welding [C]. In Proc. International Congress on Applications of Lasers and Electro Optics (ICALEO), USA:Orlando,1998:139-147.
    [111]Zhiyong Li, Wei Wang, Xuyou Wang, et al. A study of the radiation of a Nd:YAG laser-MIG hybrid plasma [J]. Optics & Laser Technology,2010,42:132-140.
    [112]J. Mirapeix, A. Cobo,O. M. Conde, et al. Real-time arc welding defect detection technique by means of plasma spectrum optical analysis [J]. NDT&E International, 2006,39:356-360.
    [113]董春林,陈俐,吕高尚,等.不锈钢YAG-MAG激光电弧复合焊接工艺[J].航空制造技术,2005,3:69-71.
    [114]Bagger C, Sondrup L C, Olsen F O. Laser/TIG hybrid welding of pot for induction heater [C]. Proceedings of 23rd International Congress on "Applications of Lasers and Electro-Optics" ICALEO, USA:San Francisco,2004:60-69.
    [115]NIST Atomic Spectra Database [DB/OL]. http://physics.nist.gov/PhysRefData/ASD/ index.html
    [116]M J Torkamany, M J Hamedi, F Malek, et al. The effect of process parameters on keyhole welding with a 400W Nd:YAG pulsed laser [J]. Journal of Physics D:Applied Physics, 2006,39:4563-4567.
    [117]冶金工业部科技情报产品标准研究所编译.光谱线波长表[M].北京:中国工业出版社.1971.
    [118]Griem H R. Plasma Spectroscopy [M]. New York:MCG raw-Hill,1964.
    [119]Griem H R. Spectral Line Broadening by Plasma [M]. New York:Academic,1974.
    [120]J Sabbaghzadeh, S Dadras, M J Torkamany. Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteristics [J]. Journal of Physics D:Applied Physics,2007,40:1047-1051.
    [121]George B. Principles of laser plasmas [M]. New York:Wiley,1976.
    [122]I. H. Hutchinson. Principles of plasma diagnostics,2nd-edited [M]. Cambridge: Cambridge University Press,2002
    [123]Anne P. Thorne. Spectrophysics,2nd-edited [M]. London:Chapman and Hall,1988
    [124]A. Corney. Atomic and Laser Spectroscopy [M]. Oxford, New York:Clarendon Press,1977.
    [125]B. Le Drogoff, J. Margot, M. Chaker, et al. Temporal characterization of femtosecond laser pulses induced plasma for spectrochemical analysis of aluminum alloys [J]. Spectrochimica Acta Part B,2001,56:987-1002.
    [126]H Schittenhelm, G Callies, A Straub, et al. Measurements of wavelength-dependent transmission in excimer laser-induced plasma plumes and their interpretation [J]. Journal of Physics D:Applied Physics,1998,31:418-427.
    [127]Robert Rozman, Igor Grabec, Edvard Govekar. Influence of absorption mechanisms on laser-induced plasma plume [J]. Applied Surface Science,2008,254:3295-3305.
    [128]D. Breitling, H.Schittenhelm, P.Berger, et al. Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths [J]. Applied Physics A.1999,69 (Suppl.):S505-S508.
    [129]B. S. Yilbas, Z. Yilbas, N. Akcakoyun. Investigation into absorption of the incident laser beam during Nd:YAG laser processing of metals [J]. Optics & Laser Technology, 1996,28:503-511.
    [130]Ya. B.Zel dovich, Yu. P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena [M]. New York:Academic Press,1966.
    [131]T. Sibillano, A. Ancona, V. Berardi, et al. Optical detection of conduction/keyhole mode transition in laser welding [J]. Journal of Materials Processing Technology. 2007,191:364-367.
    [132]J.R.Roth(著),吴坚强(译).工业等离子体工程,第1卷,基本原理[M].北京:科学出版社,1998.
    [133]卢鹤绂.受控热核反应:理论基础及探索成就[M].上海:科学技术出版社,1962,
    [134]刘金合,杨德才,陆开静.激光焊接的等离子体负透镜效应[J].激光与光电子学进展(增刊),1999,9:138-141.
    [135]Ishide T. Fundamental study of laser plasma reduction method in high power CO2 laser welding. Proc of Laser Advanced Mater Procees'1987 [C]. Osaka, High Temperature Society of Japan,1987:15-17.
    [136]Fabbra R, Chouf K. Keyhole modeling during laser welding [J]. Journal of Applied Physics,2000,87(9):4075-4083.
    [137]A. Poueyo-Verwaerde, R. Fabbro, G. Deshors, Experimental study of laser-induced plasma in welding conditions with contiuous CO2 laser [J]. Journal of Applied Physics, 1993,74:5773-5780.
    [138]Sun Z, Salminen AS, Moisio TJI. Quality improvement of laser beam welds by plasma control [J]. Journal of Materials Science Letters.1993,12:1131-1133.
    [139]H. C. Tse, H. C. Man, T. M. Yue. Effect of electric and magnetic fields on plasma control during CO2 laser welding [J]. Optics and Lasers in Engineering,1999,32:55-63.
    [140]安藤弘平,长谷川光雄著,施雨湘译.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700