双丝间接电弧焊电弧特性及熔滴过渡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着焊接技术的发展,如何提高电弧焊的生产率、焊接质量以及拓展其应用领域成为研究者们关注的焦点。传统电弧焊工艺由于熔敷系数低,使其提高焊接生产效率受到了一定限制,合理分配电弧热在母材和焊丝的热能比成为近年来电弧焊的重要研究方向。双丝间接电弧气体保护焊是一种新的焊接工艺,属于熔化极气体保护焊,焊接过程电弧在工件与焊丝间燃烧,双丝间接电弧焊电弧形成于两焊丝端部;其接线方式不同于传统电弧焊,双焊丝分别与电源的正负极相接,双丝均为熔化极,电弧能量主要熔化焊丝,只有很少一部分电弧热量用于熔化母材,因此其熔敷速度高,电能利用率高;由于母材几乎没有电流通过,该方法还具有熔合比小、焊接应力和变形小的特点,是一种具有良好应用前景的高效焊接工艺。
     双丝间接电弧焊焊接设备异于传统电弧焊焊接设备。本文首先对双丝间接电弧焊设备的关键部件焊枪进行了优化设计。双丝间接电弧焊,电弧形态直接影响熔深和焊接接头质量。间接电弧的本质与传统电弧焊相同,其形态受诸多因素影响。本文围绕主要工艺参数及磁场对间接电弧形态影响规律开展研究,并对不同电弧形态下焊接熔深的变化规律进行了试验研究。研究借助的主要设备和仪器包括FASTCAMSuper-10KC高速摄像系统、Agilent54624A数字示波器、LZ-630数字特斯拉计、自行设计外部励磁设备及NBC-350型逆变式CO2气体保护焊电源等;采用的试验材料为Φ1.2mm的H08Mn2SiA焊丝,3mm厚的Q235试板,保护气体为Ar及与CO2的混合气体,试验方法为平板堆焊。
     在对焊枪的设计中,主要对焊枪部件结构、联结方式及保护罩气室结构进行优化设计和数值模拟。焊枪设计中综合考虑两焊丝的对中性、与导电嘴之间的相互绝缘、形状尺寸的灵活性、工艺可达性、送丝阻力及气体的保护效果等诸方面,以保证焊接过程稳定;利用有限元分析的方法对不同形状保护罩出口处及罩内区域的气体流动状态进行了模拟计算。研究结果表明,圆柱形内气室保护罩的保护气体流场可减小出口处气流紊乱程度,但出口处气体流速和气流压力都很低,保护效果受限;收缩形内气室保护罩的保护气体流场容易在保护罩出口处形成湍流,使空气混入而降低保护效果;变截面形状内气室的保护罩既有效地改善了出口处气流紊乱现象,又能增加气体流速和气流压力,是一种较理想的保护罩内气室设计。决定变截面保护罩内气室结构的主要参数是圆柱形柱面高度h及收缩处坡度θ,研究表明h、θ分别设计为20mm及45°为宜。
     对双丝间接电弧特性的研究试验发现,双丝间接电弧焊阴极焊丝熔化速度远大于阳极,二者与其焊丝送进速度相等是间接电弧稳定燃烧的前提,在送丝速度发生微小变化的情况下,由电弧的自调节作用,能使电弧恢复和保持稳定燃烧,但送丝速度与熔化速度相差较大时,电弧将不稳定甚至断弧。
     影响双丝间接电弧气体保护焊焊丝熔化及熔深的主要工艺参数包括焊丝伸出长度L、两焊丝夹角α、两焊丝交点到工件距离d、焊接电流I、电弧电压U、焊接速度v及选用的保护气体成分等。在其它焊接参数相同条件下,焊丝伸出长度越大,焊丝熔化速度越大,这主要是由于电阻热的原因,本文研究选用的焊丝伸出长度为10mm;随着两焊丝夹角变小,电磁收缩力增大,间接电弧形态变细变长,焊接熔深增加,同时夹角的变化还会对电弧静特性产生影响。试验研究表明夹角选为20°-40°为宜;两焊丝交点到工件的距离对焊接熔深大小有决定性影响,随着距离的减小对间接电弧机械压缩作用增大,熔深增加。试验表明,两焊丝交点到工件距离选择在6-8mm时,易于获得较大的焊接熔深;随焊接电流的增加,焊接熔深增加,但增加至一定值时,电弧出现分散现象而导致熔深减小随电弧电压的增加熔深变化不大,熔宽增加较明显;焊接速度为10mm/s-11mm/s时有利于获得较大的焊接熔深;保护气体中加入CO2可使电弧变收缩,电弧热量变集中,焊接熔深增加,但当CO2比例在50%以上时,飞溅量增加,焊接过程不稳定,75%Ar+25%CO2为较理想的保护气体组分。
     双丝间接电弧中带电离子的运动轨迹决定了电弧的形态,本文对双丝间接电弧焊焊接电流产生的自身磁场分布状态进行了研究,并对xoz面内各点的自磁场强度进行了计算和测量。利用外加磁场改变电弧内部离子运动的轨迹,以改变电弧形态进而改变熔深。研究指出对间接电弧施加横向磁场时,随正横向磁场磁感应强度增加,电弧变得细长,焊接熔深增加;施加纵向磁场时,电弧发生偏转,电弧绕轴线旋转,旋转半径与磁场大小有关。随外加纵向正磁场强度增加,焊接熔深略有减小;随外加纵向负磁场强度增加,焊接熔深也略有减小。
     双丝间接电弧焊的熔滴过渡形式包括大滴过渡、短路过渡、射滴过渡和射流过渡。由示波器记录不同过渡形式下电弧电压及焊接电流变化可知,射流过渡时焊接过程较稳定,可获得良好焊缝成形。双丝间接电弧焊其射流过渡的临界电流值决定于工艺参数,在一定参数下,两焊丝夹角的减小及保护气体成分中C02含量的增多使得射流过渡临界电流值降低,而焊丝长度的增加则使临界电流值升高。在一定的焊接工艺参数下施加横向磁场,随正向磁场强度增加熔滴直径变小,熔滴过渡频率增加;而随反向磁场强度增加,熔滴变大,过渡频率降低。施加纵向正、负磁场,熔滴脱离丝极其运动轨迹分别向阴阳极焊丝侧偏转,并随磁场强度增加,偏转程度增加,熔滴直径变大。
With the development of welding technology, it has become the research focus how to improve the welding efficiency and quality and broaden its application scope. Traditional welding methods are limited in the application because of low deposition coefficient, so it is necessary to find a new way to distribute the energy between wires and base metal more properly. Twin-wire indirect arc welding is a new fusion welding method. In the process of twin-wire indirect arc welding, the welding arc burns between the twin wires instead of between the wire and the base metal. So the arc is called indirect welding arc. In this method, the twin wires are connected with the negative pole and the positive pole of the DC power source respectively, and the base metal is an independent unit. Most of the energy is used to melt the wires while a little for base metal, so the deposition coefficient is higher. What's more, because there is almost no current passing the base metal, the penetration ratio, residual stress and welding deformation is lower in this new method. So twin-wire indirect arc welding is a high efficiency method of good prospect.
     The equipment of indirect arc welding is different from conventional fusion welding equipment. In this study, the key component of the equipments-the welding torch was optimized firstly. On one hand, the welding arc shape in the indirect arc welding process affects the weld penetration and weld quality, on the other hand, the arc shape is affected by many factors. In this paper, the affecting laws of process parameters and magnetic field on the indirect arc shape were studied. Meanwhile, the penetration changes with different indirect arc shapes were discussed by experiments. The main devices in the experiments include FASTCAMSuper-10KC high-speed camera, Agilent54624A digital oscilloscope, LZ-630 teslameter, the self-designed external excitation equipment, twin-wire indirect arc welding equipment. The welding consumables include H08Mn2SiA wires ofΦ1.2, Q235 plate of 3 mm thick, shielding gases of pure Ar or compound of Ar and CO2. The welding experiments were carried out on plates by surfacing.
     While designing the welding torch, the torch structure, component connection and the boot cap shape were simulated and optimized. Many factors were considered, such as the centration of twin wire, insulativity of wire from the contacts, flexibility of the shape, the reliability and gases'protective effects. The new structure of twin severely bended contact matching insulated parts by vertical thread is replaced by twin slightly bended contacts matching insulated parts by horizontal thread, and the new structure is easy for operation and maintenance. The protective effects of three boot caps were contrasted by numerical method. And the varied cross-section boot cap was chosen finally for better protective effect, with its cylindrical surface length of 20mm and included angle of 45°.
     The experiments on indirect arc characteristics show that the melting rate of negative wire is highly faster than positive wire. It is the premise for arc burning stably that the wire melting rate is the same as the wire feeding rate for both poles. When the wire feeding rate is changed a little, the arc could be adjusted by itself and remain stable. However, the arc would burn unsteadily, even out if the wire feeding rate is severely higher or lower than the melting rate.
     In twin-wire indirect arc welding process, there are several parameters that could affect the appearance of the welds and the welding quality. The parameters include wire extension, included angles of twin wires, the distance from wires' crossing point to base metal, welding current, arc voltage, welding speed and percentage of CO2 in protective gas, called L,α, d, I, U, v, CO2%, respectively. Experiments show that the wires'melting rate increases with increasing of wire extension, which is mainly caused by increasing resistance heat, and the welding process would be unstable when the wire extension is too long. The proper value of L for good appearance of weld and welding quality is 10mm. The change of the included angle of twin wires would affect indirect arc shape and arc forces on base metal, and then the penetration depth of the joint. The arc shape turns thinner and longer and the arc forces on base metal turns bigger with decreasing of included angle, accordingly, the penetration depth increases. The distance of the two wires' crossing point to the base metal is a critical factor for penetration depth, when the distance becomes short, the indirect arc is compressed severely and the welding penetration would be increased. The proper value range of the distance is 6-8mm. The arc shape turns centralized and the penetration depth increases with the increasing of welding current. However, the arc shape turns dispersed and the penetration depth decreases when the current is too high. The arc shape turns large and bright and the weld width increases with the increasing of arc voltage while penetration depth changes little. The welding speed of 10mm/s-11mm/s is proper for higher penetration. Different composition of the protective gas affects the arc shape because of different physical and chemical properties, the arc turns thinner and the penetration depth increases with the increasing of CO2 percentage in Ar-CO2 mixed shielding gas. However, when CO2 percentage is higher than 50%, the amount of spatter increases, and weld appearance is bad. The proper composition of mixed shielding gas is 75%Ar+25%CO2.
     The change of magnetic field distribution around the twin wires would affect the motion of particles and the arc shape, and the arc force on the base metal and the penetration depth would alter too. By the self-designed external excitation equipment, external magnetic field including transverse magnetic field and longitudinal magnetic field was applied to change the magnetic field distribution around the twin wires in order to get ideal indirect arc shape. All the magnetic fields affect the arc shape and the process property. The arc shape turns thinner and the penetration depth increases with the increasing of forward direction transverse magnetic field intensity, inversely, the arc turns shorter and the penetration depth decreases. The penetration and the weld width affected by the longitudinal magnetic field were studied. The mechanism of the effect of applied magnetic fields on arc was discussed and the steady-state model of indirect arc was established, and indirect arc can be expressed by axial and radial component of current vector and external magnetic field vector.
     The modes of metal transfer in twin-wire indirect arc welding include globular transfer, short circuiting transfer, projected transfer and spray transfer. Usually, the transfer modes of twin wires are different because of different heat production of two poles, so there are totally seven different kinds of transfer mode considering different matching modes of two poles. The welding current and arc voltage recorded by the oscilloscope with different transfer modes show that the mode of spray transfer is the most stable mode, which is considered as the precondition for good weld appearance and stable welding process. The influence of the process parameters and the applied transverse magnetic field on the critical current value was investigated. The critical current value becomes lower with decreasing of included angle and increasing of CO2 percentage in the mixed shielding gas. Applied forward transverse magnetic field would refine the droplets and promote droplets transfer, and the reverse transverse magnetic field would hinder droplets transfer, inversely.
引文
1.林尚扬,关桥.我国制造业与焊接生产现状与发展战略研究[C].中国工程院咨询项目总结报告,2003.
    2.林尚扬.中国从焊接大国向世界焊接强国的迈进[J].航空制造技术,2002(11):7-9.
    3.赵家瑞.高效节能焊接技术的应用现状与发展趋势[J].焊接,1992,(4):38-41.
    4.王邵忠等.焊接技术的发展和展望[J].焊接技术,1991(6):37-38.
    5.冯雷, 殷树言, 卢振详等.高速焊接中“驼峰”焊道的产生与防止[C].中国机械工程学会焊接学会, 第九次全国焊接会议论文集(第一册).哈尔滨:黑龙江人民出版社,1999.
    6. Bingul Z, Cook G E, Stranss A M. Dynamic model for electrode melting rate in gas metal arc welding process [J]. Sci.& Tech. of Weld.& Join,2001,6(1): 41-50.
    7.曹梅青.双丝间接电弧气体保护焊研究[D].济南:山东大学博士学位论文.2006.
    8.曹梅青,邹增大,杜宝帅等.双丝间接电弧氩弧焊的熔滴过渡[J].焊接学报,2006,27(1):45-48.
    9.曹梅青,邹增大,杜宝帅等.双丝间接电弧焊的电弧形态[J].焊接学报,2006,27(12):49-52.
    10.曹梅青,邹增大,张顺善等.双丝电弧焊研究现状及进展[J].山东科技大学学报,2008,27(2):88-91.
    11. Matsui H, Suzuki H. Reduction of spatter in high-speed pulsed MAG welding [J]. Welding International,1998,12(3):180-185.
    12. Lytle A R, Frost E L. Submerged-melt welding with multiple electrodes in series [J]. Welding Journal,1951,30(2):103-110.
    13. Ashton T. Twin-arc submerged arc welding [J]. Welding Journal,1954,33(4): 350-355.
    14. Clapp E A, Schreiner N O. Characteristics of submerged arc welding with three-phase power [J]. Welding Journal,1952,31 (6):479-485.
    15.于显庆.高压加热器双丝窄间隙埋弧自动焊[J].焊接,1993(6):7-10.
    16.王元良, 屈金山, 胡久富等.高效节能的细丝自动焊设备的研究[J].焊接技术,2000,29(12):44-45.
    17.安藤弘平, 长谷川光雄.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985.
    18. Wang W, Liu S, Jones J E. Flux cored arc welding:Arc signals, processing and metal transfer characterization [J]. Welding Journal,1995,74(12): 369-377.
    19.邹增大, 李亚江, 孙俊生, 曲仕尧.焊接材料、工艺及设备手册[M].北京:化学工业出版社,2001.
    20. Sandford A. Electronics ease MMA operation [J]. Welding & Metal Fabrication, 2002,70(2):8-10.
    21. Fanara C, Richardson I M. A Langmuir multi-probe system for the characterization of atmospheric pressure arc plasmas [J]. J. Phys. D:Appl. Phys., 2001,34(18):2715-2725.
    22.柳刚,李俊岳.焊接电弧光谱的分布特征[J].机械工程学报,2000,36(5):58-61.
    23. Zhainakov A, Urusov R M. Three-dimensional mathematical model for the calculation of electric-arc plasma flows [J]. High Temperature,2002,40(1): 9-14.
    24. Wu C S, Ushio M, Tanaka M. Analysis of the TIG welding arc behavior [J]. Computational Materials Science,1997,7(3):308-314.
    25. Freton P, Gonzalez J J, Gleizes A. Comparison between a two-and a three-dimensional arc plasma configuration [J]. J. Phys. D:Appl. Phys.,2000, 33(19):2442-2452.
    26. Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes [J]. J. Phys. D:Appl. Phys.,1997,30(14):2033-2042.
    27. Kang M J, Rhee S. Arc stability estimation and fuzzy control for arc stabilization in short circuit transfer mode of CO2 arc welding [J]. Sci.& Tech. of Weld.& Join,2001,6(2):94-102.
    28.代大山,宋永伦,张慧等.等离子电弧力的研究[J].焊接学报,2002,23(2):51-54.
    29.郭连权,于凤鸣.均匀纵向磁场对电弧压力梯度的影响[J].沈阳工业大学学报,1991,21(2):172-174.
    30.韩永全,吕耀辉,陈树君等.变极性等离子电弧形态对电弧力的影响[J].焊接学报,2005,26(5):49-52.
    31. Uttrachi G D, Messina J E. Three-wire submerged arc welding — arc welding of line pipe[J]. Welding Journal,1968,47(6):475-481.
    32. Ramsey R W, Even T M, Wepfer G R. Hot-overlap technique for three-electrode submerged arc welding of line pipe[J]. Welding Journal,1972, 51(10):695-701.
    33. Felmley C R. The inert-gas metal-arc overlay process [J]. Welding Journal, 1955,34(6):542-550.
    34. McConnell L. Lifting productivity using Tandem Wire welding [J]. Welding & Metal Fabrication,2000,68(2):16-18.
    35. Bohme D. MAG double wire welding — a process to reach high welding speed ⅡW-Doc, Ⅻ-1379-94,1994.
    36. Lucas B. FCAW, Multi-wires and gas selection — techniques to enhance MIG productivity [J]. Welding & Metal Fabrication,1997,65(5):10-12.
    37. Tsushima S, Kitamura M. Tandem electrode AC-MIG welding — Development of AC-MIG welding process (Report 4) [J]. Welding Research Abroad,1996, 42(2):26-32.
    38. Lassaline E. Narrow groove twin-wire GMAW of high-strength steel [J]. Welding Journal,1989,68(9):53-57.
    39.孙远芳.双焊丝悬臂送丝的C02气体保护焊新工艺[J].焊接技术,1992(6):6-7.
    40.王元良,周友龙,梁明等.药芯焊丝自动双丝焊工艺研究[J].焊管,2001,24(6):14-19.
    41. Knight D E. Multiple electrode welding by "Union melt" process [J]. Welding Journal,1954,33(4):303-312.
    42.温家伶, 陈明清等.高效碱性铁粉焊条的研制[J].武汉理工大学学报:交通科学与工程版,2002,26(3):354-356.
    43.殷树言等.熔化极气体保护焊发展中的问题及对策[J].电焊机,1997(6):1-4.
    44. Anon. Shield metal arc welding:The workhorse of welding processes [J]. Welding Journal,1998,77(5):45-47.
    45. Olsson R, Stemvers M, Stares I. High-speed welding gives a competitive edge [J]. Welding Review International,1995,14(80):128-131.
    46.王元良, 胡久富, 刘龙生.细双丝三弧焊接及堆焊的研究[J].焊管,1997,20(3):37-41.
    47.张秋平.活性焊剂氩弧焊技术及其应用[J].飞航导弹,2004, (6):57-60.
    48.葛小层.A-TIG焊接技术的研究与发展[J].新技术新工艺,2004,(2):38-40.
    49.张京海,鲁晓声,余魏等.钨极氩弧焊用焊剂的发展与应用[J].焊接技术,2000,29(5):21-23.
    50. Paskell T, Lundin C, Castner H. GTAW flux increases weld-joint penetration [J]. Welding Journal,1997,76(4):57-62.
    51. Huang H. Y, Shyu S. W, Tseng K. H. and CHOU C. P. Evaluation of TIG flux welding on the characteristics of stainless steel [J]. Science and Technology of Welding and Joining,2005, (10):566-570.
    52. Lucas W, Howse D. Activating flux-increasing the performance and productivity of the TIG and plasma process [J]. Welding and Metal Fabrication, 1996,64(1):11-17.
    53.左连发.双丝MAG焊工艺[J].电焊机,2002,32(7):38-39.
    54.魏占静.TANDEM高速、高效MIG/MAG双丝焊技术[J].机械工人(热加工),2002(5):22-37.
    55.王喜春,李颖.TANDEM双丝焊系统的特点及应用[J].焊接,2003(3):33-35.
    56.王元良,周友龙,胡久富.双丝单弧预热填丝焊研究[J].焊管,2001,24(4):23-27.
    57. Janez Tusek. Metal-powder twin-wire submerged-arc welding. Welding and metal Fabrication,1998(8):21-22,24.
    58. Snyder A W. Nested electrodes for metal-arc welding [J]. Welding Journal, 1951,30(11):557-564.
    59. Rogers P, Hall K. Gravity welding and high recovery electrodes [J]. Welding & Metal Fabrication,1987,55(1):11-12.
    60.潘希德,沈风刚,黄志河等.纤维束型全位置立向下焊高效焊条的研制[J].焊接,1997,(4):2-5.
    61.中国发明专利,公开号:CN1322605A.双芯焊条及单弧焊接工艺.发明专利 公报, 第17卷, 第47号:25-26.
    62.邹增大, 韩彬, 曲仕尧, 王新洪.双电极焊条单弧焊工艺[J].焊接学报,2004,25(2):15-18.
    63. T.A.Bunker. Multi-Electrodes in SAW with square wave AC Power [J]. Welding Journal,1982(7):36-40.
    64.中国机械工程学会焊接分会编.焊接词典[M].机械工业出版社,1998年第二版.
    65. Gillette R H, Breymeier R T. Some research techniques for study arcs in inert gases [J]. Welding Journal,1951,30(3):146-152.
    66. Haddad G N, Farmer A J. Temperature measurements in gas-tungsten arcs[J]. Welding Journal,1985,64(12):339-342.
    67. Tuesk J. Raising arc welding productivity [J]. Welding Review International, 1996,15(3):102-105.
    68.周振丰等.焊接冶金学[M].北京:机械工业出版社,1996.10.
    69.中国机械工程学会焊接学会.焊工手册(埋弧焊·气体保护焊·电渣焊·等离子弧焊)[M].北京:机械工业出版社,1998.5.
    70.中国机械工程学会焊接学会.焊接手册[M].北京:机械工业出版社,2001.
    71.王震澂,郝延玺.气体保护焊工艺和设备[M].西安:西北工业大学出版社,1991.6.
    72.高洪明, 吴林.提高焊接生产率的途径[J].焊接,2000(2):6-10.
    73.王军,冯吉才,何鹏等.TIG-MIG间接电弧焊工艺[J].焊接学报,2009,30(2):145-148.
    74. Anon. Shielded metal arc welding:the workhorse of welding processes [J]. Welding Journal,1998,77(5):45-47.
    75. Malin V. Development of mold solidification welding for depositing nor-ferrous alloys onto steel [J]. Welding Journal,1992,71(5):35-36.
    76.宋永伦,Oliveria J F.不锈钢表面超薄铜层的激光熔敷[J].焊接学报,1998,19(2):88-92.
    77.王克鸿,徐越兰,余进.无熔深熔敷铜工艺[J].焊接学报,2001,22(6):69-72.
    78.王克鸿,徐越兰,王建平.弹带熔敷扩散焊接技术研究[J].兵器材料科学与工程,2002,25(3):34-36.
    79.王克鸿,徐越兰,余进.无熔深堆焊铜技术研究[J].机械设计与制造工程, 2002,31(1):58-59.
    80.李立英.双芯单弧电弧焊工艺研究[D].济南:山东大学硕士学位论文,2002.
    81.韩彬.双电极焊条单弧焊电弧特性及熔滴过渡研究[D].济南:山东大学博士学位论文,2004.
    82.邹增大,韩彬,曲仕尧等.双电极焊条单弧焊的电弧特性[J].焊接学报,2004,25(1):5-7.
    83.韩彬,邹增大,曲仕尧等.双电极钛钙型碳钢焊条电弧形态研究[J].中国机械工程,2004,15(3):1198-1201.
    84.邹增大,韩彬,曲仕尧等.双电极焊条熔滴过渡的特点及形式[J].中国机械工程,2004,15(23):2154-2158.
    85. Cherngush P V. Electromagnetic Stirring of weld Pool in GTA Welding [J]. Welding Journal,1982,49(4):93-96.
    86.阿勃拉洛夫M.A.电磁作用焊接技术[M].北京:科学出版社,1986,12.
    87. Church J G, Imaizumi H. TIME process. [C]IIW/IISDoc.ⅩⅡ-1190-90.
    88. Jenez Tusek D Sc. Melting efficiency in various arc welding process[C]. IIWDoc.212-915-97.
    89. Kuznetsov V D. Behavior of the arc and transfer of electrode metal during welding in a longitudinal magnetic-field [J]. Welding Production,1972,19(4): 1-4.
    90.贾昌申,肖克民.用电磁搅拌提高20g钢埋弧自动焊焊缝质量[J].电焊机,1987,17(4):14-17.
    91. Selyanenkov V N. Formation of the weld in a longitudinal magnetic field in argon-arc welding [J]. Welding Production,1975,22(11):50-53.
    92. Choong-Myeong Kim, Jung-Kyu Kim. The effect of electromagnetic forces on the penetrator formation during high-frequency electric resistance welding. Journal of Materials Processing Technology,2009,29(2):838-846.
    93. H.C. Tse, H.C. Man, T.M. Yue. Effect of magnetic field on plasma control during CO2 laser welding [J]. Optics & Laser Technology,1999,31:363-368.
    94. Yin Shuyan, Chen shujun, Wang jun, etal. Mathematical model and magnrtic-control mechanism of the stability of rotating spray transfer [J]. China Welding,2003,12(1):57-61.
    95. Hicken G K, Jackson C E. The effects of applied magnetic fields on welding arcs [J]. Welding Journal,1966, (11):515-525.
    96.罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊缝成形机理[J].焊接学报,2001,22(3):17-20.
    97. Tasi M C, Kou S. Electromagnetic-force-induced convection in weld pools with a free surface [J]. Welding Journal,1990,69(6):241-246.
    98.常云龙,陈善德,肖纪云.磁控等离子弧的基本特性[J].焊接设备与材料,2001,30(4):29-30.
    99. Oreper G M, Szekely J. Heating and fluid-flow phenomenon in weld pools [J]. J Fluid Mech,1984,147(8):53-59.
    100.Kou S, Le Y. Improve weld quality by low frequency arc oscillation [J]. Welding Journal,1985,64(3):51-55.
    101.贾昌申,罗键.外加间歇交变纵向磁场对GTAW焊缝中气孔的抑制[J].航空工艺技术,1999,3:26-28.
    102.罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊缝成形机理Ⅰ[J].金属学报,2001,37(2):212-216.
    103.李海刚,殷咸青,罗键.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究[J].西安交通大学学报,1998,32(5):91-95.
    104.罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接机理Ⅱ[J].金属学报,2001,37(2):217-219.
    105.罗键,贾昌申,王雅生等.外加纵向磁场GTAW焊接熔池流动机理[J].机械工程学报,2001,37(4):29-32.
    106.李海刚,殷咸青,罗键,等.用电磁搅拌提高LD10CS铝合金焊接接头的质量[J].焊接学报,1998,19(12):100-104.
    107.Kern M, Berger P, Hugel H. Magneto-fluid dynamic control of seam quality in CO2 laser beam welding [J]. Welding Journal,2000,79(3):72-78.
    108.Zong Q S, Shen L J, Jun F, etal. Axial magnetic field contacts with no uniform distributed axial magnetic fields [J]. IEEE Trans on Plasma Science, 2003,31(2):289-294.
    109.Jayarajan T N, Jackson C E. Magnetic control of gas tungsten-arc welding process [J]. Welding Journal,1972,377-385.
    110.Shen L J, Zong Q S, Li J W, etal. Experimental investigation of vacuum arc in a non-uniform axial magnetic field [J]. IEEE Trans on Plasma Science,2004, 32(5):2113-2117.
    111.S.D. Kore, P.P. Date, S.V. Kulkarni. Electromagnetic impact welding of aluminum to stainless steel sheets [J]. Journal of Materials Processing Technology,2008,208(1-3):486-193.
    112.S.D. Kore, P.P. Date, S.V. Kulkarni. Effect of parameters on electromagnetic impact welding of aluminum sheets [J]. International Journal of Impact Engineering,2007,34(8):1327-1341.
    113.康 健, 吴永泰.真空磁压缩等离子弧焊接方法的研究[J].焊接学报,1987, (1):17-22.
    114.Jun Zhou, Hai-Lung Tsai. Effects of electromagnetic force on melt flow and porosity prevention in pulsed keyhole laser welding [J]. International Journal of Heat and Mass Transfer,2001,50(11-12):2217-2235.
    115.Ando, Nishikawa, Yamanouchi. Effects of magnetic field on bead formation in TIG arc welding [J]. Journal of Japan Welding Society,1968, (3):43-48.
    116.殷树言.气体保护焊技术问答[M].北京:机械工业出版社,2004.
    117.贾昌申, 肖克民, 刘海侠等.直流TIG电弧的电流密度研究[J].西安交通大学学报,1994,28(4):33-38.
    118.Wienecke R, Naturforsch Z. The characters of arc in a longitudinal magnetic field [J]. Applied Physics,1963, (3):1151-1154.
    119.Boldyrev A M, BirzhevV A. Effect of the longitudinal magnetic field on penetration capacity of the straight polarity welding arc [J]. Welding Production, 1982, (4):8-12.
    120.Tseng Chao-Fang, Warren, Savage F. The effect of arc oscillation [J]. Welding Journal,1971, (12):777-786.
    121.徐鲁宁.磁控高熔敷率MAG焊机理研究[D].北京:北京工业大学博士学位论文,2000.
    122.江淑园,陈焕明,刘志凌.磁控技术在焊接中的应用及进展[J].中国机械工程,2002,13(21):1876-1879.
    123.祁贵云.旋转磁场作用下电弧特性和电弧行为的研究[D].北京:北京工业大学硕士学位论文,2004.
    124.陈树君,王学震,华爱兵等.磁控电弧旋转磁场发生装置的设计[J].电焊机,2006(5):47-50.
    125.赵彭生, 祝树燕, 赵国华.双尖角磁场再压缩等离子弧的物理特性及焊接工艺性能[J].焊接学报,1986, (1):7-14.
    126.殷树言, 张九海.气体保护焊工艺[M].哈尔滨:哈尔滨工业大学出版社,1989.
    127.张九海,王其隆,韦伟平.小电流TIG焊电弧磁控特性的研究[J].焊接学报,1990, (1):40-48.
    128.过增元, 赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    129.春范, 赵润娴.回顾与瞻望—21世纪中国焊接材料(下)[J].焊接,2001(2):5-8.
    130.Budnik N M, Kynarik A H. Application of longitudinal magnetic field on arc welding [J]. Automatic Welding,1979, (3):59-60.
    131.Lancaster J F. The physics of welding (First edition)[M]. Oxford:Pergamon Press,1984.
    132.王军,陈树君,卢振洋等.磁场控制横向MAG焊接焊缝成型工艺的研究[J].北京工业大学学报,2003,29(2):147-150.
    133.刘忠保,华爱兵,殷树言等.磁致旋转射流过渡MAG焊接工艺分析[J].焊接学报,2008,29(9):71-74.
    134.华爱兵,陈树君,殷树言等.横向旋转磁场对TIG焊焊缝成形的影响[J].焊接学报,2008,29(1):5-8.
    135.Kim Y S, Eager T W. Analysis of metal transfer in gas metal arc welding [J]. Welding Journal.1993,72(6):269-278.
    136.Danut Iordachescu, Luisa Quintino. Steps toward a new classification of metal transfer in gas metal arc welding [J]. Journal of materials processing technology. 2008,202,391-397.
    137.Lucas W. Arc Physics and Weld Pool Behavior, an international conference, London,1979:135-146.
    138.包晔峰,周昀,吴毅雄等.熔化极气体保护焊熔滴过渡研究[J].电焊机,2006,36(3):55-58.
    139.Heald P R, Madigan R B, Siewert T A, Liu S. Mapping the droplet transfer modes for an ER100S-1 GMAW electrode [J]. Welding Journal,1994,73(2): 38-44.
    140.Baune E, Bonnet C, Liu S. Assessing metal transfer stability and spatter severity in flux cored arc welding [J]. Sci.& Tech. of Weld.& Join,2001,6(3): 139-148.
    141.Classification of metal transfer (flux and gas shielded electric welding processes) ⅡW Doc. ⅩⅡ-F-173-76, ⅩⅡ-636-76.
    142.Liu S, Siewert T A. Metal transfer in gas metal arc welding [J]. Welding Journal,1989,68(2):52-58.
    143.Liu S, Siewert T A, Lan H G. Metal transfer mode in gas metal arc welding. Recent Trends in Welding Science and Technology, ASM,1989:475-480.
    144.A.A.叶罗欣.熔焊原理[M].北京:机械工业出版社,1981.
    145.唐慕尧.焊接测试技术[M].北京:机械工业出版社,1988.
    146.孙咸, 白英彬, 刘明亮等.不锈钢焊条熔滴过渡及其影响因素研究[J].焊接学报,2000,21(1):25-29.
    147.张龙.脉冲MIG(MAG)焊熔滴过渡的弧光传感及其实时控制[D].哈尔滨:哈尔滨工业大学博士学位论文,1992.
    148.陆文雄,王宝.焊条金属熔滴过渡形态及工艺特性分析[J].太原工学院学报.1982,13(3):19-30.
    149.Pistorius P G H, Liu S. Changes in metal transfer behavior during shielded metal arc welding [J]. Welding Journal,1997,76(8):305-315.
    150.李俊岳, 宋永伦.焊接电弧光谱信息的基本理论和基本方法[J].焊接学报,2002,23(6):5-8.
    151.柳刚,李俊岳.以电弧光谱信号传感MIG/MAG焊熔滴过渡的工艺适应性[J].机械工程学报.2000,36(10):53-56.
    152.Li P T, Zhang Y M. Analysis of an arc light mechanism and its application in sensing of the GTAW process [J]. Welding Journal,2000,79(9):252-260.
    153.Johnson J A, Carlson N M, Smartt H B et al. Process control of GMAW: sensing of metal transfer mode [J]. Welding Journal,1991,70(4):91-98.
    154:Ishizaki K. Oishi A, Kumagai R. A method of evaluating metal transfer characteristics of welding electrodes. Pro. On Physics of the Welding Arc, London, U.K.1966.
    155.Street J A. Practical measurement of voltage and current in arc welding [J]. Metal Construction,1987,19(11):646-648.
    156.李桓, 李国华, 李俊岳等,熔化极电弧焊熔滴过渡过程的高速摄影[J].中 国机械工程,2002,13(9):796-798.
    157.陈剑虹,樊丁,罗永春.手工焊熔滴过渡X射线高速摄影方法的研究[J].甘肃工业大学学报,1985,11(1):8-14.
    158.Brandi S, Taniguchi C, Liu S. Analysis of metal transfer in shielded metal arc welding [J]. Welding Journal,1991,70(10):261-270.
    159.Essers W G, Jelmorini G and Tichelaer G W. Metal transfer from coated electrode [J]. Metal Construction and British Welding Journal,1971,3(4): 151-154.
    160.杨世彦, 刘井权, 张继红等.MIG/MAG射滴过渡的能量模型[J].哈尔滨工业大学学报,2000,32(1):41-44.
    161.Choi J H, Lee J and Yoo C D. Dynamic force balance model for metal transfer analysis in arc welding [J]. J. Phys. D:Appl. Phys.,2001,34(17):2658-2664.
    162.Mckelliget J, Szekely J. Heat transfer and fluid flow in the welding arc [J]. Metallurgical transactions A,1986,17A (3):1139-1148.
    163.武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
    164.陈茂爱,武传松.GMAW焊接熔滴过渡动态过程的数值分析[J].金属学报,2004,40(11):1227-1232.
    165.武传松,陈茂爱,李士凯.GMAW焊接熔滴长大和脱落动态过程的数学分析[J].机械工程学报,2006,42(2):76-81.
    166. Wu C S, Chen M A, Li S K. Analysis of droplet oscillation and detachment in active control of metal transfer [J]. Computer material science,2004,31: 147-154.
    167.Gonzalez J J, Gleizes A. Mathematical modeling of a free-burning arc in the presence of metal vapor [J]. Journal of Applied Physics,1993,74(5): 3065-3070.
    168.李武波,吴毅雄,罗建等.高速MAG焊焊枪的设计优化[J].电焊机,.2001,31(12):19-20.
    169.徐鲁宁, 殷树言等.T.I.M.E.焊工艺特点及其发展应用[J].焊接,1998(9):2-7.
    170.马晓丽,华月明,吴毅雄.高效焊接技术研究现状及进展[J].焊接,2007,7:27-31.
    171.胡志坤.高速电弧焊工艺的研究现状[J].电焊机,2008,38(7):32-35.
    172.孔海旺,刘兰平.细丝半自动C02气体保护焊焊枪的改进[J].山西机械,2001,3:17-19.
    173.杨起亮.对Ⅻ型(进口)焊枪的改进[J].焊接技术,1992,3:40-42.
    174.郑兵,琪隆,陈默.HTI-PAW-400T新型等离子弧焊枪[J].焊接,1993,10:2-5.
    175.李萍,仇涤凡,赵英杰等.基于ANSYS/FLOTRAN的喷头流道压力损失的有限元分析[J].辽宁石油化工大学学报,2007,27(4):48-50.
    176.袭曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003.
    177.列别捷夫B M.喷灌机械理论和构造[M].北京:中国农业机械出版社,1981.
    178.脱云飞,杨路华,郭涛等.圆锥形喷嘴水头损失的计算公式及试验研究[J].节水灌溉,2005,18(4):14-15.
    179.Rochester E W, Flood C A Jr, Hackwell S G. Pressure losses from hose coiling on hard-hose travelers [J]. Transactions of the ASAE,1990,33 (3):834-838.
    180.高兴军,赵恒华.大型通用有限元软件ANSYS简介[J].辽宁石油化工大学学报,2004,24(3):94-98.
    181.林清宇,冯庆革.用ANSYS预测内置叶轮机的换热管内流动场[J].广西机械,2003,3:33-36.
    182.郑治余, 鲁钟期.流体力学[M].北京:机械工业出版社,1979.
    183.Hsu K C, Etemadi K and Pfender E. Study of the free burning high-intensity argon arc [J]. Journal of Applied Physics,1983,54(3):1293-1301.
    184.Schmidt H-P, Speckhofer G. Experimental and theoretical investigation of high-pressure arcs. I. The cylindrical arc column [J]. Plasma Science, IEEE Transactions on,1996,24(4):1229-1238.
    185.宋永伦,李俊岳.焊接电弧等离子体的平衡性质[J].焊接学报,1994,15(2):138-145.
    186.Allum C J. Power dissipation in the column of a TIG welding arc [J]. J. Phys. D: Appl. Phys.,1983,16(11):2149-2165.
    187.Kelkar M, Heberlein J. Physics of an arc in cross flow [J]. J. Phys. D:Appl. Phys.,2000,33(17):2172-2182.
    188.Benenson D M, Baker A J, Cenkner A A Jr. Diagnostics on steady-state cross-flow arcs [J]. IEEE Transactions on Power Apparatus & Systems,1969, PAS-88(5):513-521.
    189.王树保,张海宽,冷雪松等.双钨极氩弧焊工艺及焊缝成形机理分析[J].焊 接学报,2007,28(2):21-24.
    190.冷雪松,张广军,吴林.双钨极氩弧焊耦合电弧压力分析[J].焊接学报,2006,27(9):13-16.
    191.Glickstein S S. Temperature measurements in a free burning arc [J]. Welding Journal,1976,55(8):222-229.
    192.周省三.电磁场基本教程[M].北京:高等教育出版社,1996.
    193.H.G布克.电磁场中的能量[M].北京:高等教育出版社,1988.
    194.孙俊生,武传松.电磁力及其对MIG焊接熔池流场的影响[J].物理学报,2001,50(2):219-216.
    195.孙俊生,武传松.电弧压力对MIG焊接熔池几何形状的影响[J].金属学报,2001,37(4):434-438.
    196.王宝, 陆文雄.焊条熔滴过渡形态分析[J].焊接学报1991,12(1):1-6.
    197.Waszink J W and Graat L H J. Experimental investigation of the forces acting on a drop of weld metal [J]. Welding Journal,1983,62(4):108-116.
    198.Essers W G, Jelmorini G and Tichelaer G W. Metal transfer from coated electrode [J]. Metal Construction and British Welding Journal,1971,3(4): 151-154.
    199.Becken D, Metal transfer from welding electrodes. IIIW Doc 212-179-69.
    200.韩彬,邹增大,曲仕尧等.双电极钛钙型焊条熔滴过渡及其影响因素[J].焊接学报,2004,25(5):63-66.
    201.Choi S K, Ko S H, Yoo C D, et al. Dynamic simulation of metal transfer in GMAW:Part 1, Part 2 [J]. Welding Journal,1998,77(1):38-44,45-51.
    202.Fan H G, Kovacevic R. Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding [J]. Metallurgical and Materials Transactions B,1999,30B(4):791-800.
    203.Rhee S, Kannatey-Asibu Jr E. Observation of metal transfer during gas metal arc welding [J]. Welding Journal,1992,71(10):381-386.
    204.Kim Y-S, Eagar T W. Analysis of metal transfer in gas metal arc welding [J]. Welding Journal,1993,72(6):269-278.
    205.陈树君,王军,王会霞等.纵向磁场作用下的旋转射流过渡的机理[J].焊接学报,2005,26(3):45-49.
    206.Soderstrom E J, Mendez P F. Metal Transfer during GMAW with Thin Electrodes and Ar-CO2 Shielding Gas Mixtures [J]. Welding Journal,2008,87 (5):124-133.
    207.Lesnewich, A. Control of melting rate and metal transfer in gas-shielded metal arc welding:Part I-Control of electrode melting rate [J]. Welding Journal, 1958,37(8):343-353.
    208.Lesnewich, A. Control of melting rate and metal transfer in gas-shielded metal arc welding:Part Ⅱ-Control of metal transfer. Welding Journal,1958,37(9): 418-425.
    209.周建军.MAG焊气体混合比对熔滴过渡类型的影响[J].中国水运,2008,8(7):124-126.
    210.周建军.MAG焊气体混合比对熔敷特性的影响[J].中国水运,2008,8(6):142-44.
    211.Maecker H. Plasmatromungen in Lichtbogen infolge eigenmagnetischer Kompression[J].Z.Phys,1955,141:198-216.
    212.Green W J. An analysis of transfer in gas-shielded welding arcs [J]. Trans.AIEE Part Ⅱ.1960,79:194-203.
    213.Amson J C. Lorentz force in the molten tip of an arc electrode [J]. Br. J. Appl. Phys.1965,16:1169-1179.
    214. Jones L A, Eagar T W and Lang J H. A dynamic model of drops detaching from a gas metal arc welding electrode [J]. Br. J. Appl. Phys.1998,31:107-123.
    215.Jones L A, Eagar T W and Lang J H. Magnetic force acting on molten drops in gas metal arc welding [J]. Br. J. Appl. Phys.1998,31:93-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700