汽车继电器用AgMeO电触头材料抗熔焊行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电触头是继电器的关键部件之一,其性能直接关系到继电器的工作寿命和可靠性。随着欧盟环保指令的实施,以及汽车供电系统由14V升高到42V的趋势,汽车继电器的服役条件对电触头材料提出了更加苛刻的要求。在触头的各种失效形式中,最为严重的是电弧放电导致的触头熔焊。对熔焊现象进行理论上的分析,能够为触头材料的设计和生产提供指导。
     为便于后续对触头材料进行电性能测试,本文设计了一个电接触模拟试验装置,可用于模拟继电器触点工作状态,测试触头材料的抗熔焊能力。采用电磁铁和弹簧配合作用控制触头的往复运动,触头材料装夹、电流和电压信号采集方便。
     本文在圆柱坐标系中建立了AgMeO复合触头材料在电弧作用下传热与熔池流动过程的数学模型,并采用有限体积法计算了触头材料的温度场、流速场和浓度场。详细分析了触头材料熔池形貌及其演化过程特点,讨论了基体材料及第二相金属氧化物性质对AgMeO触头材料抗熔焊能力的影响。
     温度场计算结果表明,电弧能量作用于触头材料后,触头材料经历了从室温至熔点、熔点至沸点、沸点至最高温度点,然后开始冷却至沸点、熔点,开始凝固直至冷却到室温五个不同的状态阶段。电弧作用是对触头材料“再加工”的物理化学冶金过程,因此极大改变了触头材料原有的成分、组织和性能。触头材料凝固过程具有易于形核、熔池温度梯度大(107K·m-1)、冷却速度极快(107 K·s-1)、易形成孔洞疏松结构,甚至会发生化学反应等五个突出的特点。
     对MeO体积分数一定的AgMeO触头材料,改变MeO的热导率、比热容、密度、分解温度和分解焓,对触头材料的抗熔焊能力影响不大。增大MeO的体积分数有助于提高触头材料的抗熔焊能力,但会增加触头材料的电阻率,为保证触头材料电性能,MeO体积分数宜控制在20%以内。
     不同电弧输入功率对触头材料熔焊力的影响巨大,输入功率加倍,其相应的熔池接触面积亦加倍,熔焊力加倍,因此对不同材料产生和分散电弧性能的研究是触头材料抗熔焊性能研究的重点。
     在小电流条件下,触头材料熔池中流体的流动主要受表面张力驱动,其次是电磁力作用,而浮力的影响不大。电弧作用下熔池中流体流动方向由表面张力温度系数所决定:具有负表面张力温度系数的流体将从熔池中心向熔池边缘流动,而具有正表面张力温度系数的流体将从熔池边缘向熔池中心流动。添加能增大液态银表面张力温度系数至零左右的合金元素,不仅可以减小触头材料喷溅概率,而且可减小触头材料熔池体积,从而有利于银基触头材料的均匀、稳定。
     最后,本文讨论了由于熔池流动造成MeO成分偏聚的现象。计算表明,熔池中流体流动会使触头表面的MeO平均含量升高。触头表面MeO的富集使熔化面积增加,但熔焊强度下降,熔焊力下降,因此有利于触头材料抗熔焊。MeO的密度对成分分布的影响较小,但在MeO的质量分数一定时,选择低密度的氧化物,能够使其体积分数增加,熔焊力下降。
     总之,提高AgMeO触头材料的抗熔焊能力,应优先考虑添加合金元素提高AgMeO触头材料分散和熄灭电弧的能力;其次,在质量分数一定的情况下,选择低密度的MeO虽然使熔池的面积增加,但是能够降低触头的熔焊力,从而提高触头材料抗熔焊能力。
Electrical contact materials are the key component of relays. Their performance has great effect on the duability and reliability of relays. With the implement of environment restriction from the European Union and the voltage of power supply increasing from 14V to 42V in automobile, the requirements for the electrical contact materials used in automobile relays become more and more rigorous. Arc welding of electrical contacts is the most fatal failure to the switch relays. The research on the behavior of arc welding of electrical contacts will serve the design and fabrication of them well.
     An apparatus which simulated the contact process was designed to test the arc welding resistance of electrical contact materials. The movement of the contacts was controlled by the electromagnet and springs. The contact force could be adjusted and the welding force could be measured. It was easy to clip the contact samples and to get the arc signales.
     The mathematical models for the heat conduction and the fluid flow in the molten pool of AgMeO electrical contact materials under arc were developed in the cylinder coordinates. The temperature, velocity and content distribution in the molten pool were calculated respectively by the Finite Volume Method. The geometrical profile of the molten pool and the characters in its evolution were analyzed. The effect of properties of MeO on the arc welding resistance of AgMeO was discussed in details.
     The numerical analysis showed that the electrical contact materials underwent five different stages, i.e. from the room temperature, heating to the melting point, the boiling point, and the highest temperature and then cooling to the boiling point, the melting point and finally solidification to room temperature during and after arc process. The arc process could be seen as a“re-fabrication”metallurgy process to the electrical contact materials and the properties of electrical contact materials changed greatly after the process. The solidification of the molten pool in the electrical contact materials were characterized by easily nucleating, high temperature gradient (107K·m-1), high cooling rate (107K·s-1), porous microstructure and a tendency to chemical reactions.
     When the volume fraction of MeO was a constant, the effects of density, heat conductivity, heat capacity, and decomposition temperature and decomposition enthalpy on the arc welding resistacne of the electrical contacts were very little. Increasing the volume fraction of MeO would be good to the arc welding resistance but would lead to a higher electrical resistivity of the electrical contacts. Therefore, it would be better to keep the volume fraction of MeO lower than 20%.To reduce the density of the arc input power as much as possible was crucial to the arc welding resistance of AgMeO. The density of arc input power had the greatest effect on the arc welding resistance of the electrical contacts.
     The surface tension of liquid metal was the main driving force to the fluid in the molten pool of the electrical contacts under arc comparing with the Lorentz force, Buoyancy force when the arc current was low. The fluid flow direction in the molten pool was controlled by the sign of the temperature coefficient of surface tension ( ?γ/ ?T ): the fluid with the negative temperature coefficient would make the molten metal spread outward while that with the positive temperature coefficient would make the molten metal penetrate downward. Increasing ?γ/ ?T of the fluid in the pool to zero would lead to not only the less possibility of materials sputtering in the pool but also the minimum volumetric erosion of electrical contact materials; therefore it would benefit the stability and uniformity of the electrical contact materials.
     Finally, the phenomenon that the MeO aggregating on the surface of electrical contact materials was discussed. The simulation results showed that the volume fraction of MeO on the surface of the electrical contacts increased due to the fluid flow in the molten pool. It would lead to a wider contact area while a lower welding strength for the more MeO aggregation on the surface, but the welding force would decrease. The welding force decreasing would benefit the arc welding resistance of the electrical contact materials.
     In summary, the research on decreasing the density of arc input power was the most important factor that would benefit the arc welding resistance of electrical contacts.When the mass faction of MeO was a constant, adding the MeO with low density would also benefit the arc welding resistance of electrical contacts.
引文
[1]凯尔, W. A.默尔, E.维纳里库.电接触和电接触材料.赵华人译.北京:机械工业出版社, 1993. 1~2
    [2]程礼椿.电接触理论及应用.北京:机械工业出版社, 1988. 1~2
    [3] ASM International Handbook Committee. ASM Handbook Volume 2 Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Ohio: The Materials Information Company, 1990. 2372
    [4]木子.汽车继电器:开启市场新商机.中小企业科技, 2005,(6):17
    [5]邵文柱,崔玉胜,杨德庄.电接触材料的发展与现状.电工合金, 1999, (1): 11~35
    [6]吴春萍,陈敬超,周晓龙等.银基电接触材料.云南冶金, 2005, (12): 46~51
    [7]谢永忠,陈京生.欧盟二指令对我国电触头材料发展及出口影响分析.电工材料, 2004, (2): 38~41
    [8]杜作娟,杨天足,古映莹等. AgSnO2电触点材料制备方法进展.材料导报,2005, 19(2): 39~42
    [9]徐勇. 42V汽车继电器.机电元件, 2004,2(6): 54~56
    [10]堵永国,张为军,胡君遂.电接触与电接触材料(一).电工材料, 2005, (2): 44~46
    [11]谢忠光,熊经先.我国银氧化锡电触头材料质量分析.电工材料, 2005, (1): 9~16
    [12] Paul G. Slade, Erik D. Taylor. Electrical Breakdown in Atmospheric Air Between Closely Spaced (0.2μm~40μm) Electrical Contacts. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3) : 390~396
    [13] N. Ben Jemaa, Laurent Doublet, Laurent Morin, D. Jeannot. Break Arc Study for the New Electrical Level of 42 V in Automotive Applications. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 420~426
    [14] L. H. Germer. Physical Process in contact erosion. J. Appl. Phys.,1958, 29(7): 1067~1082
    [15] W.B. IttnerⅢ. Bridge and short arc erosion of copper, silver, and palladium on break. J. Appl. Phys., 1956, 27(4): 382~388
    [16] H. Toya, Y. Hayashi, Y. Murai. Anode discharge mode and cathodic plasma state in high-current vacuum arcs. J. Appl. Phys., 1986, 60(12): 4127~4132
    [17] Zhuanke Chen,Koichiro Sawa. Effect of Arc Behavior on Material Transfer:A Review. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1998, 21, (2):310~322
    [18] P. J. Boddy, D. L. Nash. Spectroscopic Studies of Arcs. IEEE Transactions on Parts, Materials and Packaging, 1969, 5(4): 179~185
    [19] Kiyoshi Yoshida, Atsuo Takahashi. Spectroscopic measurement of Ag break arc. Proceedings of the 46th IEEE Holm Conference on Electrical Contacts, 2000.176 ~182
    [20] Zhuanke Chen, Hiroaki Mizukoshi, Koichiro Sawa. Contact Erosion Patterns of Pd Material in DC Breaking Arcs. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 1994,17(1):61~69
    [21] S.N. Kharin, H. Nouri, T. Davies. Influence of Inductance on the Arc Evolution in AgMeO Electrical Contacts. Proceedings of the 48th IEEE Holm Conference on Electrical Contacts, 2002. 108~119
    [22] M. Lindmayer, M. Springstubbe. Three-Dimensional-Simulation of Arc Motion between Arc Runners Including the Influence of Ferromagnetic Material. IEEE Transactions on Components and Packaging Technologies, 2002, 25(3): 409~414
    [23]堵永国,杨广,张家春等. AgMeO触点材料电弧侵蚀的物理冶金过程分析.电工合金, 1997,4:1~8
    [24] J. Swingler, J.W. McBride. A Comparison of the Erosion and Arc Characteristics of Ag /CdO and Ag/SnO2 Contact Materials under DC Break Conditions. Proceedings of the 41st IEEE Holm Conference on Electrical Contacts, 1995. 381~392
    [25] W. Weise, P. Braumann. Thermodynamic analysis of erosion effect of silver-based metal oxide contact materials. Proceedings of the 42nd IEEE Holm Conference onElectrical Contacts Joint with the Eighteenth International Conference on Electrical Contacts, 1996. 98~104
    [26] J. Ambier, C. Bourda, D. Jeannot, et al. Modification in the microstructure of materials with air-break switching at high currents. IEEE Transaction on components, hybrids, and manufacturing technology, 1991, 14(1): 153~161
    [27] S. Kang, C. Brecher. Cracking Mechanisms in Ag-Sn02 Contact Materials and their Role in the Erosion Process. Proceedings of the 34th IEEE Holm Conference on Electrical Contacts, 1988. 37~46
    [28] Zhuanke Chen, Koichiro Sawa. Particle sputtering and deposition mechanism for material transfer in breaking arcs. J. Appl. Phys. 1994, 76(6): 3326~3331
    [29] A.L. Tslaf. A thernophysical criterion for the weldability of electrical contact material in a steady-state regime. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1982, CHMT-5(1):147~152
    [30]李震彪,张冠生,秦庆生.电触头材料抗静熔焊能力的研究.中国电机工程学报, 1994, 14(1):35~39.
    [31]李震彪,张冠生,戚颖.电触头材料及其不同配对时抗动熔焊能力的研究.电工合金,1994,1:1~5,27
    [32]刘向军,费鸿俊.新型触头动熔焊数学模型的研究.电工技术学报, 2002, (2): 81~84
    [33] G.B.Olson.Computational Design of Hierarchically Structured Materials. Science, 1997, 277(29):1237~1242
    [34] G. B. Olson. Designing a New Material World. Science, 2000,288:993~998
    [35] P. Sirisalee, M. F. Ashby, Geoffrey, et al. Multi—Criteria Material Selection in Engineering Design. Advanced Engineering Materials, 2004, 6(1-2):84~92
    [36]陈京生,王学林,谢忠光. AgSnO2电触头材料检测技术现状分析.电工材料, 2005, (2): 38~43
    [37]李恒,候月宾.继电器用触头材料电性能模拟试验研究.电工材料,2006,(7):42~44
    [38]邵文柱,崔玉胜.电接触领域的ASTM标准.电工材料,2007, (2): 40~46, 50
    [39] Leung C, Streicher E, Fitzgerald D, et al. Contact erosion of AgSnO2In2O3 made by internal oxidation and powder metallurgy. Proceedings of the 61st IEEE Holm Conference on Electrical Contacts, 2005. 22~27
    [40] Streicher E, Chi Leung, Bevington R, et al. Press-sinter-repress Ag-SnO2 contacts with lithium and copper sintering additives for contactor applications. Proceedings of the 57th IEEE Holm Conference on Electrical Contacts, 2001. 27~34
    [41] Allen S E, Streicher E.The effect of microstructure on the electrical performance of Ag-WC-C contact materials. Proceedings of the 44th IEEE Holm Conference on Electrical Contacts, 1998. 276~285
    [42] Sekikawa J, Kitajima T, Endo T, et al. Observation of arc-emitted light between slowly opening electrical contacts using a high-speed camera. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004. 47~52
    [43] Jemas N.B, Doublet L, Jeannot D, et al. Make arc parameters and subsequent erosion under 42 VDC in automotive area. Proceedings of the 48th IEEE Holm Conference on Electrical Contacts, 2002. 128~132
    [44] Doublet L, Jemaa N. B, Hauner F, et al. Make arc erosion and welding tendency under 42 VDC in automotive area. Proceedings of the 49th IEEE Holm Conference on Electrical Contacts, 2003. 158~162
    [45] Morin L, Ben Jemaa N, Jeannot D, et al. Make arc erosion and welding in the automotive area. Proceedings of the 45th IEEE Holm Conference Electrical Contacts,1999. 9~16
    [46] R T Lee, H H Chung, Y C Chiou. Arc erosion behaviors of silver electric contacts in a single arc discharge across a static gap. IEEE Proceedings of Science Measurement. Technology, 2001, 148(1): 8~14
    [47] Chen Z K, Witter G. The effect of silver composition and additives on switchingcharacteristics of silver tin oxide type contacts for automotive inductive loads. Proceedings of the 51st IEEE Holm Conference on Electrical Contacts, 2005. 35~41
    [48] Witter G., Chen Z K. A comparison of silver tin indium oxide contact materials using a new model switch that simulates operation of an automotive relay. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004. 382~387
    [49] E Hetzmannseder, W F Rieder. Make and break erosion of Ag/MeO contact materials. IEEE transactions on Components, Packaging and Manufacturing Technology-Part A ,1996, 19(3): 397~403
    [50]刘定新,李艳培,荣命哲等.触点电接触性能测试装置的研制.贵金属, 2005, 26(4): 44~48
    [51]荣命哲,李艳培,刘定新等.新型触点电接触性能测试系统的研制.电工材料, 2005, (1): 17~21
    [52]梁慧敏,林景波,翟国富.触点分离初速度与电弧能量关系的研究.哈尔滨工业大学学报, 2006, 38(3): 374~378
    [53]魏梅芳.继电器电弧特性对触点熔焊及寿命的影响:[硕士学位论文]。武汉:华中科技大学图书馆, 2006
    [54] Yukio Nakagawa, Yoshio Yoshioka. Theoretical calculation of the process of contact arc erosion using a one-dimensional contact model. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1978, CHMT-1(1):99~102
    [55] Wang Kejian, Wang Qiping. Erosion of silver-based material contacts by breaking arcs. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1991, 14(2): 293~297
    [56]王可健.电触头材料的分断电弧侵蚀研究:[博士学位论文]。西安:西安交通大学图书馆, 1987
    [57] J.P Chabreie, J.Devautour, P.Teste. A numerical model for thermal processes in an electrode submitted to an arc and its experimental verification. Proceedings of the 38thIEEE Holm Conference on Electrical Contacts, 1992. 65~70
    [58]荣命哲,王其平.电触头电弧侵蚀热传播过程的显热容模型.电工技术学报,1993,(1): 54~58
    [59] T.S.Davies, H.Nouri, M.Fairhurst. Experimental and theoretical study of heat transfer in switches. Proceeding of the 42th IEEE Holm Conference on Electrical Contacts, 1996. 45~49
    [60] Sun Ming, Wang Qiping, M. Lindmayer. The model of interaction between arc and AgMeO contact material. IEEE Transactions on Components, Packaging, Manufacture Technology, 1994, 17(3) :490~494
    [61]孙明.触头材料的电弧侵蚀特性及其数学模型研究:[博士学位论文]。西安:西安交通大学图书馆,1992
    [62] J. Swingler, J. W. McBride. Modeling of energy transport in arcing electrical contacts to determine mass loss. IEEE Transaction on Components, Packaging and Manufacturing Technology-part A, 1998, 21(1): 54~60
    [63] X.Zhou, J.Heberlein, E.Pfender. Model predictions of arc cathode erosion rate dependence on plasma gas and on cathode material. Proceedings of the 39th IEEE Holm Conference on Electrical Contacts, 1993. 229~235
    [64] X. Zhou, J.Helerlein, E.pfender. Theoretical study of factors influencing arc erosion of cathode. IEEE Transaction on Components, Packaging and Manufacturing Technology-part A, 1994,17(1):107~112
    [65] S.N.Kharin, H.Nouri, T.Davies. Influence of Inductance on the arc evolution in AgMeO electrical contacts. Proceedings of the 48th IEEE Holm Conference on Electrical Contacts, 2002. 108~119
    [66]荣命哲.电器触点静态电接触热过程的数值分析.电工技术学报, 1994, (8): 34~38
    [67]荣命哲,蔡德灿,杨武.电器触点电接触热过程数学模拟.低压电器, 1999, (5): 8~12
    [68]刘春,李震彪,程礼椿.开关触头的熔池尺寸.低压电器, 2000, (5): 3~6
    [69]吴细秀,狄美华,李震彪.电流电弧作用下触头表面热过程的数值计算.华中科技大学学报(自然科学版), 2003, 31(2): 93~96
    [70]熊惟皓,傅江华,徐坚,等.电弧作用下银基触头温度场的有限体积法分析.华中科技大学学报(自然科学版), 2008,36(4):80~83
    [71] Doublet L, Ben Jemaa N, Hauner F, et al. Make arc erosion and welding tendency under 42 VDC in automotive area. Proceedings of the 49th IEEE Holm Conference on Electrical Contacts, 2003. 158~162
    [72] Chihung Leung, P.C. Wingert. Microstructure effects on dynamic welding of AgW contacts. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1988,11(1):64~67
    [73] Chi Leung, Eric Streicher, Dennis Fitzgerald et al. Microstructure Effect on Reignition and Welding Properties of Copper-Tungsten Electric Contact. Proceedings of the 49th IEEE Holm Conference on Electrical Contacts, 2003.132~138.
    [74]周尧和,胡壮麟,介万奇.凝固技术.北京:机械工业出版社,1998.
    [75]石德珂.材料科学基础.北京:机械工业出版社,2003.
    [76] V.I.Dimitrov. About the kinetics of normal crystal growth. Applied physics A: Materials Science and Processing, 2003, 77: 835~837
    [77] D. Turnbull. Formation of Crystal Nuclei in Liquid Metals. Journal of Applied physics, 1950, 21:1022~1028
    [78]杨春,陈民,过增元.液态银的比热和玻璃态转变温度的分子动力学模拟.科学通报,2001,46(5):384~386
    [79] Yue Qi, Tahir Cagin, Yoshitaka Kimura, et al. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni. Physical Review B, 1999-I, 59(51): 3527~3533
    [80] Toukushi kizuka, Hideki Ichinose, Yoichi Ishida. Structure and hardness of nanocrystalline silver. Journal of Materials Science, 1997, 32:1501~1507
    [81] J. Chen, L. Lu, K. Lu. Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Materialia, 2006, 54: 1913~1918
    [82] U. Erb. Electrodeposied nanocrystals: Synthesis, properties and industrial application. NanoStructured Materials, 1995, 6: 533~538
    [83] C.A. Schuh, T.G. Nieh, T. Yamasaki. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel .Scripta Materialia, 2002, 46(10): 735~740
    [84] Chi Leung, Eric Streicher, Dennis Fitzgerald, et al. Microstructure effect on reignition and welding properties of copper-tungsten electric contact. Proceedings of the 49th IEEE Holm Conference on Electrical Contacts, 2003. 132 ~138
    [85]张尧卿,郑冀. AgSnO2电接触材料研究概述.材料导报,2006, 20(4):53~57
    [86]王宝珠,王胜恩,白惠珍,等.新型银-金属氧化物触头材料成分设计与制粉.河北工业大学学报. 2001,30(3):77~81
    [87] K. Mori, T. Aoki, K. Kojima, et al. Influence of electrical load conditions on sticking characteristics in silver-oxide contacts. IEICE Trans. Electron. 2000,E83-C(9):1414~1421
    [88] W. Weise, P. Braumann. Thermodynamic analysis of erosion effect of silver-based metal oxide contact materials. Proceedings of the 42nd IEEE Holm Conference on Electrical Contacts Joint with the 18th International Conference on Electrical Contacts, 1996. 98~104
    [89] Didier Jennot, Jacques Pinard, Pierre Ramoni, et al. Physical and Chemical Properties of Metal Oxide Additions to Ag-SnO2 Contact Material and Predictions Electrical Performance. IEEE Trans on CPMT, Part A, 1994, 17(1):17~23
    [90]堵永国,杨广,张家春,等. AgMeO触点材料电弧侵蚀的物理冶金过程分析.电工合金,1997,4:1~8
    [91] Maha Ahmad, Andre Bontemps, Hebert Sallee, et al. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy and Buildings,2006,38:673~681
    [92]陶文铨.数值传热学(第二版).西安:西安交通大学出版社, 2001, 5
    [93] H.K.Versteeg, W. Malalasekera. An introduction to computational fluid dynamics the finite volume method.北京:世界图书出版公司, 2000
    [94]沃丁柱主编.复合材料大全.北京:化学工业出版社,2000,1.
    [95]赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟.博士学位论文.北京:北京工业大学,2004
    [96] J.G. Andrews, R.E. Craine. Fluid flow in a hemisphere induced by a distributed source of current. Journal of Fluid Mechanical, 1978, 84(1): 281~290
    [97] M. Tanaka, J. J. Lowke. Predictions of weld pool profiles using plasma physics. J.Phys. D: Appl. Phys, 2007, 40, R1
    [98] T.Debroy, S.A.David. Physical processes in fusion welding. Reviews of Modern Physics, 1995,67(1):85~112
    [99] T Zacharia, J M Vitek, J A Goldak, et al. Modeling of fundamental phenomena in welds. Modeling Simulation of Material Science and Engineering, 1995, (3):265~288
    [100]武传松,陈定华,吴林. TIG焊接熔池中的流体流动及传热过程的数值模拟.焊接学报, 1988, 9(4): 263~267
    [101]武传松,曹振宁,吴林.熔透情况下三维TIG焊接熔池流场与热场的数值分析.金属学报, 1992, 28(10): 427~431
    [102]武传松,吴林,曹振宁. MIG点焊射流过渡时的熔池传热模型.焊接学报, 1991, 12(3): 189~194
    [103]曹振宁,武传松. TIG焊接熔池表面变形对流场与热场的影响.金属科学与工艺, 1992, (11): 108~113
    [104]曹振宁,武传松. TIG焊接熔透熔池的数学模型.焊接学报, 1996, 17(1): 62~69
    [105]雷永平,顾向华,史耀武等. GTA焊接电弧与熔池系统的双向耦合数值模拟.金属学报, 2001, (5): 537~542
    [106] L.S.Kim, A.Basu. A mathematical model of heat transfer and fluid flow in the gas metal arc welding process. Journal of Materials Processing Technology, 1998, (77):17~24
    [107] Y.Wang, H.L.Tsai. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding. Metallurgical and Materials Transactions B, 2001, 32(6): 501~515
    [108] P C Zhao, C S Wu, Y M Zhang. Modeling the transient behaviors of a fully penetrated gas-tungsten arc weld pool with surface deformation. Proceedings of the Institution of Mechanical Engineers, 2005, (1): 99~110
    [109]王福军.算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [110] H.G. Fan, R. Kovacevic. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J.Phys.D: Appl. Phys, 2004,37:2531~2544
    [111] C.B.Alcock, V. P. Itkin, M.K. Horrigan. Vapor Pressure of the metallic elements. Canadian Metallurgical Quarterly, 1984, 23: 309~313
    [112] X. He, T. Debroy, P. W. Fuerschbach. Alloying element vaporization during laser spot welding of stainless steel. J.Phys. D: Appl. Phys., 2003, 37:3079~3088
    [113] V.R.Voller, C. Prakash. A Fixed-Grid Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. Int. J. Heat Mass Transfer., 1987, 30(8): 1709~1720
    [114] J.J.Xie, S.D.Gironcoli, S. Baroni, et al. First-principles calculation of the thermal properties of silver. Phys. Rev. B. ,1999, 59(2) :965~969
    [115] K. C. Mills, B. J. Monaghan, B. J. Keene. Thermal conductivities of molten metal.1.pure metals. International Materials Reviews, 1996, 41(6): 209~242
    [116] J. Monaghan. A four-probe dc method for measuring the electrical resistivities of molten metals. International Journal of Thermophysics, 1999, 20(2):677~ 690
    [117] I. Yokoyama. A relationship between structural, thermodynamic, transport and surface properties of liquid metals: a hard-sphere description. Physica B. , 2000, 291(1-2):145~151
    [118] N. Eustathopoulos, B. Drevet, E. Ricci. Temperature coefficient of surface tension for pure liquid metals. Journal of Crystal Growth, 1998,191:268~274
    [119]徐爱斌,王亚平,丁秉钧.新型AgSnO2触头材料的制备和电弧侵蚀特性.材料研究学报, 2003,17(2):156~161
    [120] L.Doublet, N. Ben Jemaa, F. Hauner, et al. Electrical arc phenomena and its interaction on contact material at 42 Volts DC foe automotive adpplications. Processings of the 50th IEEE Holm conference on electrical contacts and the 22nd international conferenece on electrical contacts, 2004. 8~14
    [121] K. Takahashi, O. Sakaguchi, T. Yamamoto, et al. Investigation of contact materials in 42VDC automotive relay. Processings of the 50th IEEE Holm conference on electrical contacts and the 22nd international conferenece on electrical contacts, 2004. 22~27
    [122] Jeannot, J. Pinard, P. Ramoni, et al. Physical and chemical properties of metal oxide additions to AgSnO2contact materials and predictions of electrical performance. IEEE Transactions on Components, Packaging and Manufacturing Technology—Part A, 1994, 17(1):17~23
    [123] Shouyi Chang, Chifang Chen, Sujien Lin, et al. Electrical resistivity of metal matrix composites. Acta Materialia, 2003,51(20):6291~6302
    [124]崔俊奎.离心凝固SiCp/Al基复合材料颗粒分布模型与数值模拟研究.[硕士学位论文].辽宁工程技术大学.2004.
    [125] G. Kaptay. Interfacial criterion of spontaneous and forced engulfment of reinforcing particles by an advancing solid/liquid interface. Metallurgical and Materials Transactions A, 2001,32A(4):993~1005
    [126] S. Sen, W.F. Kaukler, P. Curreri, et al. Dynamics of solid/liquid interface shape evolution near an insoluble particle—An X-ray transmission microscopy investigation. Metallurgical and Materials Transactions A, 1997,28A(10):2129~2135
    [127] V. Catalina, S. Mukherjee, D. M. Stefanescu. A dynamic model for the interactionbetween a solid paricle and an advancing solid/liquid interface. Metallurgical and Materials Transactions A, 2000,31A(10):2559~2568
    [128] S. Mukherjee, M.A.R. Sharif, D.M. Stefanescu. Liquid convection effects on the pushing-engulfment transition of interface: Part II. Numerical calculation of drag and lift forces on a particle in parabolic shear flow. Metallurgical and Materials Transactions A, 2004,35A(2):623~629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700