微细阵列电极阵列孔的组合电加工关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电加工技术因其非接触加工、材料适应性广、没有宏观作用力等优点,在微小零件的加工中具有独特的优势。微细电火花加工、微细电火花线切割加工、微细电解加工以及超声复合微细加工技术等的研究均已取得大量的研究成果,但其对微细阵列轴、孔的加工研究则处于起步阶段,尤其是各种加工方法之间缺乏有效的组合与集成。因此适时开展针对微细阵列结构的组合电加工技术研究,充分发挥各自的技术优势,形成高效快捷、可操作性强的微细阵列电极阵列孔的组合加工技术具有十分重要的理论与现实意义。
     本文首先研究了微细电火花加工的基本原理,分析了放电产生的条件,理论上解释了放电点不能及时转移而形成电弧放电,损害工件表面质量的原因。通过研究微细电火花加工的反拷原理,提出了微细阵列电极的电火花超声复合反拷加工方法,并规划了加工工艺过程。从理论上详细分析了电火花反拷加工分层去除不均匀性的产生因素。为适应大规模阵列电极的加工要求,研究了微细阵列电极的线切割工艺方法。基于电解加工中阴极无损耗的优点,研究了微细阵列孔的电解加工方法。进而提出了微细阵列电极阵列孔的电火花/电解组合加工工艺。
     从理论上分析了超声空化发生的条件,探讨了自由气泡由于壁面液体压力满足空化初生条件而发生爆炸性成长的过程,计算了空化泡破裂时产生的巨大作用力,说明了超声空化的冲蚀作用。系统地研究了超声振动在微细电火花超声复合加工中的作用机理,说明了在微细阵列电极、阵列孔的电火花加工中复合超声频振动有利于提高加工稳定性和加工效率以及改善加工表面质量的原因。
     研究了微细电火花加工用微能脉冲电源的设计与实现,分析了微能脉冲电源的实现途径,对高频窄脉宽脉冲电源的设计实现进行了较为深入的研究,设计了分频电路,实现了高品质纳秒级脉冲电源。同时在微细电化学加工中提出采用双路场效应管对脉冲电源进行改进,消除了脉间维持电压,使输出电流更能符合微细电化学加工的需要,改善了加工能力和表面质量。研究了超声波发生器的工作原理,设计了超声波放大器驱动电路,通过对换能器参数的设计计算,实现了超声换能器的串联调谐。针对微细电火花加工中单个脉冲放电能量小,放电状态复杂且变化快等特点,设计间隙电压与充电电流双参数检测法,通过电压信号和电流信号互补消除状态检测的不确定性,确定采样点的放电状态,提高了间隙状态的判断准确性。设计了放电状态检测卡,在硬件上实现了间隙电压与充电电流双参数检测法。
     研究了RC脉冲放电的特点,根据充电常数,划分了高中低三个档次的门槛电压和电流值,通过对间隙电压和充电电流值的双参数检测来判断极间放电状态,避免了仅凭间隙电压值判断的片面性,提高极间放电状态判断的准确性。根据微细电火花脉冲放电频率远高于运动机构响应频率的特点,以各种相对放电率的统计规律作为控制系统的输入,将模糊控制技术应用到微细电火花加工中,根据相对放电率与正常放电率的误差和误差变化,结合微细电火花人工操作控制经验设计了模糊控制规则,建立了模糊控制查询表,在控制系统中实现了模糊控制算法实验。结果证明,当处于低电压和小电流的微细电火花加工时,采用双参数检测模糊控制后,有效放电增多,脉冲利用率提高,从而提高了加工效率,同时减小了电极的相对损耗率。
     在电火花反拷加工中,采用正交试验方法分析了加工电压、回路电容、阵列电极间距和振动振幅等工艺参数对阵列电极制作的加工效率的影响规律。在理论分析和试验研究的基础上,加工出了5×5的直径约为Φ30μm的阵列电极,并用此阵列电极加工出了5×5直径约为Φ40μm阵列孔。通过对阵列电极加工阵列孔加工效率和单电极加工阵列孔的加工效率的比较,得出了用阵列电极加工比用单电极加工具有更高的加工效率的结论。对微细阵列电极阵列孔的电火花/电解组合加工工艺进行了分析和研究。用微细电火花线切割加工机床加工出10×10系列方形阵列电极,单电极边长在30μm以下,中心间距为70μm,长0.6mm,表面质量较好。通过微细阵列电极电解加工微细阵列孔,在加工过程中采用适度循环流动工作液方法很好的解决了排屑和加工区温度过高等等难题,获得了质量较好的、大小约为100μm的阵列孔。从而实现了大规模微细阵列电极阵列孔的电火花/电解组合加工,为大规模微细阵列电极阵列孔的加工开辟了高效可行的新工艺方法。
Micro electro machining gives it the ability to machine many difficult-to-cut materials. Its unique advantages of non-contact and less-cutting-force are useful in micro machining field. Micro electro-discharge machining (EDM), micro wire electro-discharge machining (WEDM), electrochemical micromachining (EMM) and ultrasonic vibration enhanced machining (UVEM) have got abundance research production, but research on microelectrode array and micro-hole array is on initial phase, especially combination and integration are lacked between these machining methods. Therefore, making study on micro-structure array by conbination micro electro machining methods has very important theoretical and realistic significance.
     Based on the mechanism of micro-EDM, micro-hole array discharges to fabricate microelectrode array by reverse copying and technology process is planned. Analyze inducing reasons of asymmetry in slicing remove of reverse copying micro-EDM. Made research on WEDM method of microelectrode array fabrication for satisfying large-scale machining require. Made research on EMM method of micro-hole array fabrication based on advantage of cathode without wear. Moreover put forward combined EDM and EMM technology of microelectrode array and micro-hole array fabrication.
     Analyse ultrasonic cavitate generation condition in theory, calculate huge acting force when cavitating bubble breaking and explain erosion effect of ultrasonic cavitation. Made research on operation mechanism of ultrasonic vibration in micro-EDM systematically, explain reasons of ultrasonic enhanced technology to increase machining stability, work efficiency and surface quality.
     On the basis of analyzing the realization approaches of micro-energy pulse generator, a set of micro-energy pulse generator is designed. This generator includes RC generator and independent pulse generator. At the same time, put forwards to dual controling MOSFET electrocircuit to improve pulse generator, remove the maintaining voltage and reform working ability and surface quality. Driving electrocircuit of ultrasonic amplifier is designed, parameters are computed in transducer and series tuning is realized. Double parameters detection mode of clearance voltage and charge current is designed due to micro discharge energy, complex discharge state and fast change. Discharge state detection card is designed and realized in hardware.
     Based on characters of RC pulse discharge, three threshold voltage and current value of high, medium, low is devided according to charge constant. For discharge energy and clearance is very small, discharge state is much complex and changes very fast, traditional detection of average voltage can’t judge discharge state in real time. So detection of clearance voltage and charge current is put forward, value of clearance voltage and charge current are classified by fuzzy theory, then control movement of servo mechanism. According to manual operation control experiencs of micro-EDM, fuzzy control rules is designed and fuzzy query tabulation is set up. When micro-EDM is in condition of low working voltage and small current, fuzzy control system with double parameters detection is proved to improve utilization ratio of pulse, so as to increase utilization ratio, increase working speed and reduce wear ratio of electrode.
     In the process of machining, influence regularity of four parameters to work efficiency, such as working voltage, working capacity, ultrasonic amplitude and holes spacing, are study by orthogonal experimental technique. 5×5Φ30μm arrays of microelectrode are got and 5×5Φ40μm arrays of micro-hole fabricated by these microelectrode arrays are got. Working efficiency of using microelectrode array and single electrode to machine micro-hole array by Micro-EDM is compared, the former has higher efficiency. Made research on conbination method of WEDM and EMM for microelectrode array and microhole array fabrication. 10×10 arrays of square microelectrode are got by WEDM, length of side is 35μm. 10×10Φ100μm arrays of micro-hole are got by EMM, phenomena of bubble accumulation and high temperature are reduced much more and better quality is got. New technology of large scale microelectrode array and micro-hole array fabricated by combined WEDM and EMM is proved to be feasible and high efficient.
引文
1 Li Chunbao, Jia Zhenyuan. Development of EDM and Iits Influence on the Die and Mould Industry. Mechatronics. 1998, (3): 17~19
    2 A.B. Puri, B. Bhattacharyya. An Analysis and Optimisation of the Geometrical Inaccuracy due to Wire Lag Phenomenon in WEDM. International Journal of Machine Tools & Manufacture. 2003,43(2): 151~159
    3増沢隆久.放電加工技術の最近进步.精密工學會特集誌.1998, 64(12): 1713~1746
    4齊藤長男.放電加工技術發展の回顧と將來の展望.電氣加工學會誌.1999, 33(73): 1~9
    5徐小兵,毛利尚武.日本电火花加工技术的发展动态.电加工与模具. 2003, (1): 1~3
    6 C. Diver, J. Atkinson, H.J. Helml, L. Li. Micro-EDM Drilling of Tapered Holes for Industrial Applications. Journal of Materials Processing Technology. 2004, 149: 296~303
    7 Chia-Lung Kuo, Jing-Dae Huang. Fabrication of Series-pattern Micro-disk Electrode and Its Application in Machining Micro-slit of Less Than 10μm. International Journal of Machine Tool & Manufacture. 2004, 44: 545~553
    8 Feng-Tsai Weng, R.F. Shyu, Chen-siang Hsu. Fabrication of Micro-Electrodes by Multi-EDM Grinding Process. Journal of Materials Processing Technology. 2003, 140: 332~334
    9 Junfeng Bao, Zhonghui Cao, Ye Yuan, et al. A Non-silicon Micro-machining Based Scalable Fiber Optic Switch. Sensors and Actuators. 2004, A116: 209~214
    10 H.S. Lim, Y.S. Wong, M. Rahman, et al. A study on the Machining of High Aspect Ratio Micro-structures Using Micro-EDM. Journal of Materials Processing Technology. 2003, 140: 318~325
    11 Shuvra Dasa, Mathias Klotz. EDM Simulation: Finite Element-Based Calculation of Deformation, Microstructure and Residual Stresses. Journal of Materials Processing Technology. 2003, 142: 434~451
    12 Daryl D. Dibitonto, Philip T. Eubank, Mukund R. Patel. Theoretical Modelsof the Electrical Discharge Machining Process. I. A Simple Cathode Erosion Model. J. Appl. Phys. 1989, 66(9): 4096~4103
    13 Mukund R. Patel, Maria A. Barrufet, Philip T. Eubank. Theoretical Models of the Electrical Discharge Machining Process. II. The Anode Erosion Model. J. Appl. Phys. 1989, 66(9):4104~4111
    14 Wataru Natsu, Masanori Kunieda. Temperature Distribution Measurement in EDM Arc Plasma Using Spectroscopy. JSME International Journal. 2004, 17(1): 384~390
    15 A Descoeudres, Ch Hollenstein. Optical Emission Spectroscopy of Electrical Discharge Machining Plasma. Journal of Physics D: Applied Physics. 2004, 37: 875~882
    16 Antoine Descoeudres, Christoph Hollenstein. Optical Emission Spectroscopy of Electrical Discharge Machining Plasma. Journal of Materials Processing Technology. 2004, 149: 184~190
    17 Kojima A, Natsu W, Kunieda M. Observation of arc plasma expansion and delayed growth of discharge crater in EDM. Proceedings of the 15th International Symposium on Electromachining. Pittsburgh, USA. 2007: 1~4
    18 Yunn-Shiuan Liao, Shun-Tong Chen, Chang-Sheng Lin. Development of a High Precision Tabletop Versatile CNC Wire-EDM for Making Intricate Micro Parts. Journal of Micromechanics and Microengineering. 2005, (15): 245~253
    19 J. Wang, B. Ravami. Computer Aided Contouring Operation for Traveling Wire Electric Discharge Machining (EDM). Computer-Aided Design. 2003, 35: 925~934
    20 F. Klocke, D. Lung, D. Thomaidis, et al. Using Ultra Thin Electrodes to Produce Micro-parts with Wire-EDM. Journal of Materials Processing Technology. 2004, 149: 579~584
    21 Mu-Tian Yan, Pin-Hsum Huang. Accuracy Improvement of Wire-EDM by Real-time Wire Tension Control. International Journal of Machine Tools & Manufacture. 2004, 44: 807~814
    22 Mu-Tian Yan, Chen-Wei Huang, Chi-Cheng Fang, et al. Development of a Prototype Micro-Wire-EDM Machine. Journal of Materials Processing Technology. 2004, 149: 99~105
    23 AN Lu-ling, WANG Wei, ZHOU Lai-shui, et al. Four-axis Wire-EDM Simulation of Complicated Models. Transactions of Nanjing University of Aeronautics & Astronautics. 2005, 22(4): 322~328
    24黄瑞宁.微细电火花线切割加工装置及相关技术研究.哈尔滨工业大学博士学位论文. 2006: 99~101
    25 Yu ZY, Masuzawa T, Fujino M. Micro-EDM for Three-dimensional Cavities Development of Uniform Wear Method. Annals of the CIRP. 1998, 47(1): 169~172
    26 Yu Zuyuan. Three Dimensional Micro-EDM Using Simple Electrodes. Disseration of the University of Tokyo. 1997, 352: 149~155
    27赵万生,王振龙,郭东明.国外特种加工技术的最新进展.电加工. 1999, (5): 12~19
    28 Zuyuan Yu,Takahisa Masuzawa,Masatoshi Fujino.3D Micro-EDM with Simply Shaped Electrode.Annals of the CIRP.1997, 46(1): 1~8
    29 G. Thornell and S. Johansson. Microprocessing at the Fingertips. Journal of Micromechanics and microengineering. 1998, (8): 251~262
    30 K. Takahata, S. Aoki. Fine Surface Finishing Method for 3-Dimensional Micro Structures. MEMS’96. 1996: 73~78
    31 R. Dominiek, M. Wim, V. B. Hendrik. Production of Seismic Mass Suspensions in Silicon by Electro-Discharge Machining. Journal of Micromechanics and Microengineering. 1999, (9): 206~210
    32 R. Dominiek, V. B. Hendrik, M. Wim. A Review on Micro Electro-Discharge Machining of Metal and Silicon. Proceedings of 1st EUPEN Conference, Bremen.1999: 24~31
    33 X. Song, R. Dominiek, M. Wim, B. Hendrik. Investigation of Micro-EDM for Silicon Microstructure Fabrication. Society of Photo-Optical Instrumentation Engineers. 1999, 3680(3): 792~799
    34张勇.微细电火花加工系统及其工艺技术的研究.哈尔滨工业大学博士学位论文. 2004: 20-77, 37-38, 39~44
    35 K.P. Rajurkar, Z.Y. Wang, A. Kuppattan. Micro Removal of Ceramic Material (Al2O3) in the Precision Ultrasonic Machining. Precision Engineering. 1999, (23): 73~78
    36 Deng Jianxin, Lee Taichiu. Ultrasonic Machining of Alumina-based Ceramic Composites. Journal of the European Ceramic Society. 2002, (22): 1235~1241
    37 K. Egashira, K. Mizutani and T. Nagao. Ultrasonic Vibration Drilling of Microholes in Glass. Annals of the CIRP. 2002, 51(1): 339~342
    38 X. Q. Sun, T. masuzawa, M. Fujino. Micro. Ultrasonic and Self-Aligned Multilayer Machining/Assembly Technologies for 3Dmicromachines. IEEE. 1996, 124: 312~317
    39 K. Egashira, T. Masuzawa. Microultrasonic Machining by the Application of Workpiece Vibration. Annals of the CIRP 1999, 48(1): 131~134
    40 Z.Y. Yu, K.P. Rajurkar, A. Tandon. Study of 3D Micro-ultrasonic Machining. Journal of Manufacturing Science and Engineering. 2004, 126: 727~732
    41贾宝贤,边文凤,赵万生,王振龙.微细孔超声加工关键技术.机械工程学报. 2007, 43(11): 212~216
    42 N. Mohd Abbas, D. G. Solomon, M. Fuad Bahari. A Review on Current Research Trends in Electrical Discharge Machining(EDM). Int. J. Mach. Tools Manuf. 2007, 47(7-8): 1214~1228
    43 G. L. Chern, Y. J. E. Wu, S. F. Liu. Development of a Micro-punching Machine and Study on the Influence of Vibration Machining in Micro-EDM. J. Mater. Process. Technol. 2006, 180(1-3): 102~109
    44 W. Zhao, Z. Wang, S. Di, G. Chi, H. Wei. Ultrasonic and Electric Discharge Machining to Deep and Small Hole on Titanium Alloy. J. Mater. Process. Technol. 2002,120(1-3): 101~106
    45杜松岩,刘晋春.方波脉冲电源超声电火花复合加工实验研究.电加工. 1983, (6): 10~17
    46于滨,赵万生,狄士春,王振龙.异形孔的微细超声电火花加工技术研究.微细加工技术. 2003, (1): 44~50
    47王振龙,迟关心,狄士春,赵万生.钛合金深小孔的微细超声电火花加工技术.兵工学报. 2000, 21(4): 346~349
    48王振龙,栾英艳,韦红雨,李文卓,赵万生.钛合金深小孔超声电火花加工工艺与实验研究.制造技术与机床. 2000, (7): 41~43
    49贾宝贤.多功能微细特种加工系统及加工技术的研究.哈尔滨工业大学博士学位论文. 2005: 81~82
    50 C. Gao, Z. Liu. A Study of Ultrasonically Aided Micro-electrical-discharge Machining by the Application of Workpiece Vibration. J. Mater. Process. Technol. 2003, 139(1-3): 226~228
    51钱军,刘正埙.电致伸缩器件在电火花微细孔加工中的应用.新技术新工艺. 1997, (6): 16~17
    52钱军,高长水,刘正埙.激波电火花复合微细孔加工试验研究.电加工. 1997, (5): 19~22
    53 Olivier L. Guise, Joachim W. Ahner, Moon-Chul Jung, Peter C. Goughnour, and John T. Yates, Jr., Reproducible Electrochemical Etching of Tungsten Probe Tips. NANO LETTERS 2002, 2(3): 191~193
    54 Young-Mo Lim, Soo Hyun Kim. An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micropin. International Journal of Machine Tools & Manufacture, 2001, 41: 2287~2296
    55 Young-Mo Lim, Hyung-Jun Lim, Jang Ryol Liu, Soo Hyun Kim. Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control. Journal of Materials Processing Technology, 2003, 141: 251~255
    56 Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi, Chong Nam Chu. Electro- Chemical Micro Drilling Using Ultra Short Pulses. Precision Engineering, 2004, 28: 129~134
    57 M. Kock, V. Kirchner, R. Schuster. Electrochemical Micromachining with Ultrashort Voltage Pulses- a Versatile Method with Lithographical Precision. Electrochimica Acta, 2003, 48: 3213~3219
    58 R. Schuster, V. Kirchner, P. Allongue, G. Ertl. Electrochemical Micromachining. Science, 2000, 289: 98~101
    59 V. Kirchner, L. Cagnon, R. Schuster, G. Ertl. Electrochemical Machining of Stainless Steel Microelements with Ultrashort Voltage Pulses. Appl. Phys. Lett. 2001, 79: 1721~1727
    60 T. Suter, H. Bohni. A New Microelectrochemical Method To Study Pit initiation on Stainless Steels. Electrochimica Acta, 1997, 42(20-22): 3275~3280
    61朱荻,王明环,明平美,张朝阳.微细电化学加工技术.纳米技术与精密工程,2005, 3(2): 151~155
    62 D Zhu, K Wang, J M Yang. Design of Electrode Profile in Electrochemical Manufacturing Process. CIRP Annals 2003, 52(1): 169~172
    63 Y.J Xue, D. Zhu, F. Zhao. Electrodeposition and mechanical properties of Ni-La2O3 nanocomposites. Journal of Materials Science, 2004, 39: 4063~4066
    64徐惠宇,朱荻,史先传.电化学微细加工监控系统的研究.传感器技术,2005, 24(7): 7~9
    65徐惠宇,朱荻,史先传.微细电解加工系统设计及实验研究.航空精密制造技术,2005, 41(4): 26~29
    66徐惠宇,朱荻.微细群缝的精密电解加工研究.中国机械工程,2004, 15(21): 1912~1915
    67史先传,朱荻,徐惠宇.电解加工的间隙监测与控制.机械科学与技术,2005, 24(5): 536~539
    68谢晓芬,朱荻,曲宁松,张朝阳.纳秒级脉冲电流电解加工定域性的试验研究.电加工与模具,2006, (2): 23~26
    69张朝阳,朱荻.微细电解加工的精度及定域性研究.机械科学与技术,2006, 25(2): 242~245
    70王明环,朱荻,徐惠宇.提高微细电解加工精度的研究.电加工与模具,2005, (3): 30~32
    71王明环,朱荻,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用.机械科学与技术,2006, 25(3): 348~351
    72李小海,王振龙,赵万生.基于多功能加工平台的微细电解加工工艺.上海交通大学学报,2006, 40(6): 909~913
    73 LI Xiaohai, ZHAO Wansheng, WANG Zhen-long , LI Zhi-yong, ZHANG Yong. Electrochemical Micromachining Based on Multifunction Machine Tool. Nanotechnology and Precision Engineering, 2005, 3(1): 29~35
    74 A. W. Behrens, J. Ginzel, F.L. Bruhns. Threshold Technology and its Application for Gap Status Detection. J. Mater. Process Technol. 2004, 149(1-3): 310~315
    75胡建华,汪炜.电火花成型机数控系统控制策略的研究与实现.机械设计与制造. 2006, (2): 81~83
    76赵万生,董衍善,何广敏.专家系统及其在电加工计算机辅助编程中的应用.电加工. 1997, (6): 7~10
    77崔红,庞中华,刘军.电火花加工控制系统技术综述.电加工与模具. 2005, (增刊): 32~36
    78周明,贾振元,赵福令.电火花微孔加工自适应灰色控制.电加工与模具. 2001, (3): 23~26
    79余永权,曾碧.单片机模糊逻辑控制.北京:北京航空航天大学出版社. 1991: 101~156
    80 G. V. Saiu, Jun Zhou. Adaptive Hierarchical Fuzzy Controller. IEEE Tans SMC. 1993, 23(4): 973~980
    81 J. Buckley. Univeral Fuzzy Controllers. Automatical. 1994, 30(7): 1185~1195
    82 K. Tanaka, M. Sugeno. Stability Analysis and Design of Fuzzy Control Systems. Fuzzy Sets and Systems. 1992, 45: 135~156
    83 Yawchen Yung, Chin Tsao Tsu. A Description of the Dynamical Behavior of Fuzzy Systems. IEEE Trans SMC. 1989, 19(4): 745~754
    84王金章,杨辉.模糊调节器参数在线自整定.控制与决策. 1995, (4): 40~45
    85郑红,宋博岩,刘晋春.模糊控制技术在电火花加工中的应用现状与展望.电加工. 1996, (2): 2~7
    86郑红.电火花加工模糊控制及放电特征的研究.哈尔滨工业大学博士学位论文. 1997: 25~49
    87曹光宇.电火花加工多参数自校正模糊控制系统的研究.哈尔滨工业大学博士学位论文. 1999: 27~51
    88杨新胜,贝季瑶,奚绍申.电火花加工中的模糊控制初探.电加工. 1988, (2): 7-9
    89倪益华,郑良桂,周继烈. EDM伺服系统灰色预测控制器的研制.电加工. 1994, (6): 19-21
    90 M. Boccadoro, D. F. Sauw. About the Application of Fuzzy Controllers in High-Performance Die-Sinking EDM Machinines. Annals of CIRP. 1995, 44(1): 147~150
    91 Marco Boccadorc. About the Application of Fuzzy Controller in High Performance Die-Sinking EDM Machines. ISEM-Ⅺ, 1995: 356~361
    92杨新胜,贝季瑶,奚绍申.电火花加工中的模糊控制初探.电加工. 1988, (2): 7~9
    93曹光宇,狄士春,赵万生.电火花加工过程模糊控制系统的参数选取与算法设计.电加工. 1998, (3): 13~17
    94狄士春,曹光宇,赵万生,邢文忠.数控电火花加工模糊控制系统中加工规准调节与伺服进给控制的研究.电加工. 1997, (5): 31~35
    95曹光宇,赵万生,王涛.控制规则可自寻优的电火花加工模糊控制系统的研究.机器人. 1999, (9): 15~18
    96杨晓冬.基于智能技术的电火花加工条件优化.电加工. 1998, (5): 5~9
    97肖文芳.电火花线切割过程的人工神经网络模型.电加工. 1998, (5): 3~8
    98章伟.神经网络在线切割加工中的应用.机械工业自动化. 1994, (12): 12~15
    99张云.电火花加工自适应控制器的研制.机械工业自动化. 1997, (3): 5~10
    100 Zhang Yun, Ying ji, Chen Zichen, Chen Wenyuan. The Research on the Self Adaptive Fuzzy Control System for Electric Discharge Machining.《IEEE ICIPS’97》, 1997, 10: 470~475
    101胡建华,汪炜,高长水,刘正埙.模糊控制技术在电火花成型加工中的应用.电加工与模具. 2000, (1): 20~23
    102张云.电火花加工过程智能控制策略的研究.浙江大学博士学位论文. 1996, 6: 23~35
    103裴景玉,高长水,刘正埙.多传感数据融合技术在微细电火花加工放电状态检测中的应用.电加工与模具. 2000, (3): 6~9
    104罗元丰.电火花加工过程智能控制系统的研究.哈尔滨工业大学博士学位论文.2001: 15~29
    105谷安,刘正埙.电火花成型机数控系统的研究.南京航空航天大学学报. 2002, 34(4): 346~349
    106裴景玉,胡德金,高长水,刘正埙.智能模糊控制技术在微细电火花加工中的应用.上海交通大学学报. 2001, 35(12): 1830~1833
    107 M. A. L. Nicolelis,“Actions from thoughts,”Nature, 2001, 409: 403~407
    108 J. P. Donoghue,“Connecting cortex to machines: Recent advances in brain interfaces,”Nature Neur. Rev., 2002, 5: 1085~1088
    109 J. K. Chapin and K. A. Moxon, Eds., Neural Prostheses for Restoration of Sensory and Motor Function. Boca Raton, FL: CRC Press, 2001.
    110 M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue,“Instant neural control of a movement signal,”Nature, 2002, 416: 141~142
    111 S. Martel, N. Hatsopoulos, I. Hunter, J. Donoghue, J. Burgert, J. Malá?sek, C. Wiseman, and R. Dyer,“Development of a wireless brain implant: The telemetric electrode array system (TEAS) project,”in Proc. 23rd Int. Conf. IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, Oct. 25–28, 2001: 3594~3597
    112 K. D. Wise,“Wireless implantable microsystems: Coming breakthroughs in health care,”in Symp. VLSI Circuits Digest of Technical Papers, 2002: 106~109
    113 Timothy A. Fofonoff, Sylvain M. Martel, Nicholas G. Hatsopoulos, John P. Donoghue,“Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51(6): 86~90
    114 Takahata K, Gianchandani Y B. BATCH MODE MICRO-EDM FOR HIGH-DENSITY AND HIGH-THROUGHPUT MICROMACHINING, Proceeding of MEMS’01 IEEE, Interlaken, Switzerland: IEEE, 2001: 72-75
    115牧野正志,丹野益男.松下流モノづくりとそれを支える微細加工技術.精密工学会誌.2004, 71(5): 533
    116 T. Fofonoff, Brain Microelectrode Array Systems. Cambridge, MA: Mechanical Engineering, Massachusetts Inst. Technol., Feb. 2003
    117 T. Fofonoff, S. Martel, C.Wiseman, R. Dyer, I. Hunter, N. Hatsopoulos, and J. Donoghue,“A highly flexible manufacturing technique for microelectrode array fabrication,”in Proc. 2nd Joint EMBS/BMES Conf., Houston, TX, Oct. 2002: 2107~2108
    118 Poco, 2000, EDM Technoloy Manual, Poco Graphite Inc.
    119 Carron J., Rappaz M., Revaz B., Flükiger R., Modeling of the EDM Process– Thermal and Stress Analysis, in preparation
    120 Das S., Klotz M., Klocke F., EDM Simulation: Finite Element-based Calculation of Deformation, Microstructure and Residual Stresses, Journal of Materials Processing Technology, 2003, 142: 434~451
    121 Shankar P., Jain V.-K., Sundarajan T., 1997, Analysis of Spark Profiles during EDM Process, Mach. Sc. Tech., 1 /2: 195~217
    122 Jilani S.-T., Pandey P.-C., 1982, Analysis and Modeling of EDM Parameters, Precision Engineering, 4 /4: 215~221
    123 http://www.yonsei.com.kr/sme/Homepage2.htm
    124何国庚,罗军,黄素逸.空化初生的热力学影响研究.华中理工大学学报. 1999, 27(1): 66~68
    125王萍辉,方湄.超声空化清洗机理的研究.水利水电科技进展. 2004, 24(1): 32~35
    126 Hammitt F G. Cavitation and multiphase flow phenomena. New York: McGraw Hill, 1980
    127王振龙.微细电火花加工关键技术研究.哈尔滨工业大学博士学位论文. 2000: 46~49
    128李文卓.微细电火花加工系统及其相关技术的研究.哈尔滨工业大学博士论文. 2002: 68~72
    129王志良.电力电子新器件及其应用技术.电子工业出版社. 1995: 25~50
    130王恩济,常培斗,高黎明.对火花放电时电磁辐射的探讨.电加工. 1983(2): 45~52
    131 R. Snoey, D. Dauw, M. Jennes. Survey of EDM Adaptive Control and Detection Systems. Annals of the CIRP. 1982, 31(2): 483~489
    132 K. P. Rajurkar, W. M. Wang. Real-time Stochastic Model and Control of EDM. Annals of CIRP. 1990, 39(1): 187~190
    133 K. K. Hon, E. S. Razavi. A Contribution to the Monitoring and Control of EDM Based on High Frequency Methods. Proceedings of 15th NAMRC. 1987: 413~417
    134裴景玉,高长水,刘正埙.在微细电火花加工极间放电状态高速采集系统中的DMA技术.数据采集与处理, 2000, (6): 191~194
    135张成军,纪朝辉,董广强.试验设计与数据处理及其应用.哈尔滨工程大学出版.2000: 1~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700