铝合金激光-TIG双面焊接特性与能量作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决铝合金激光焊接存在的焊接过程稳定性差、能量利用率低、焊接缺陷多等关键问题,本文探索了一种新的铝合金焊接工艺—“激光-电弧双面焊”。一方面,通过电弧的加热作用,提高激光匙孔的稳定性,改善焊缝成形,减少焊接气孔;另一方面,通过激光匙孔的加热作用,提高电弧稳定性,改变电弧焊接特性,在双热源耦合加热作用下,提高激光和电弧的能量利用率、改善焊接质量、降低焊接成本,实现铝合金的稳定、高效、优质连接。
     本文主要以4mm厚5A06铝合金为试验材料,采用CO2激光和TIG电弧进行激光-TIG双面焊试验。从激光-TIG双面焊的焊接特性角度出发,对铝合金激光-TIG双面焊的工艺特性、焊缝成形、内部缺陷等进行研究,分析了典型激光与电弧能量匹配条件下,双面焊接头的组织及力学性能,提出了控制激光-TIG双面焊接头形状的主要方法,给出了工艺优化范围。同时,针对单激光焊接存在的焊接适应性差、装配条件要求高等问题,研究了激光-TIG双面焊工艺在对接间隙、对中偏移以及不等厚板的焊接适应性,并探讨了该工艺在厚板和薄板铝合金上的应用前景。
     为掌握激光-TIG双面焊过程中电弧与激光等离子体的物理特征及影响规律,借助于图像采集、电信号传感及图像处理手段,研究激光匙孔加热与等离子体穿透作用下的电弧形态及电弧电压、电流特性,着重分析了激光深熔焊特殊的匙孔传热方式对激光-TIG双面焊电弧特性的影响规律及作用机制,确定了激光匙孔加热在电弧作用区产生的“局部高温度梯度区”是导致电弧收缩、弧压下降、稳定性改善的内在原因,揭示了激光-TIG双面焊接过程中电弧能量效应发生转变的物理机制。同时,分析了电弧热作用下光致等离子体特性发生转变的规律及原因,为激光-TIG双面焊过程热传输机理研究提供试验依据。
     基于激光匙孔形成的临界能量密度与临界温度条件,建立匙孔穿透与匙孔未穿透两种焊接模式下的激光-TIG双面焊动态热源模型,采用有限元方法计算分析了激光-TIG双面焊接过程中热传输途径与影响作用、焊接熔池与匙孔的建立过程,对激光-TIG双面焊的热传输原理进行阐述。利用建立的动态热源模型预测不同焊接速度和板厚条件下激光-TIG双面焊的焊缝成形规律、熔池熔透与匙孔穿透的临界条件。
     最后,从理论分析、实验及数值分析等角度对铝合金激光-TIG双面焊的熔深增加、熔化效率提高的机理进行探讨,证明影响激光-TIG双面焊热效率提高的主要因素依次为:热集聚区效应、匙孔深度增大和电弧收缩效应。研究不同焊接条件下焊缝金属熔化效率的变化规律,提出激光-TIG双面焊热源最佳的能量匹配原则和位置条件。
Laser welding of aluminum alloys faces the problems of high reflectivity, high thermal conductivity and high thermal diffusivity, and heavy porosity formation in the weld metal. To solve these problems, a novel technology of laser-arc double-side welding was developed. On the one hand, it attempts to improve the characteristics of laser welding by the arc heating, such as the stability of keyhole, improvement of welding quality, decrease of porosity. On the other hand, it tries to reform the stability of the arc by the laser heating. Due to the combination heating of laser beam and TIG arc on the opposites of workpiece, the joining of high efficiency and good quality for aluminum alloy can be realized, such as the increase of energy utilizing efficiency for the laser and the arc, the improvement of welding quality and the decrease of cost.
     In the experiments, the plates of 4mm thick 5A06 aluminum alloy were used as the workpiece material. The experiments were carried out by combining a CO2 laser equipment and an inverter argon arc welding machine. The characteristics of laser-TIG double-side welding (LTDSW) for aluminum alloys were investigated, including welding technology, appearance of the welds and the decrease of defects. The microstructure and mechanical properties of the welds was analyzed under the typical energy matching of the laser and the arc. The control method of cross-sectional profile was put forward, and the welding parameters were optimized. At the same time, aiming at the adaptability of the LTDSW process, the experiments of aluminum alloy butt joint, dissimilar thickness butt joint were pursued, and the application foreground of this method was explored on the thick and thin plates for aluminum alloys.
     To understand the physics property and interaction of the arc and the laser in the LTDSW process, the arc shapes and its current-voltage characteristics were investigated systemically by signal picking system and image processing technology. The influence of the specific heat transfer for laser keyhole welding on the characteristics of the arc was investigated, and its mechanism was analyzed in the LTDSW process. The local high temperature zone of laser keyhole heating was validated as the reason of arc constriction, the decrease in the voltage, the improvement of process stability. The transformation rule of arc energy effect was explored under various experimental conditions. The transformation rule and cause of laser-induced plasma behavior were analyzed. All the investigations can provide for the experimental data and theory base to analyse the heat transfer of the process.
     According to the conditions of threshold power density and temperature on the formation of laser keyhole, an adaptive numerical model for examining and simulating the heat transfer process is developed, including the mode of close keyhole penetration and the mode of open keyhole penetration. The temperature fields of the process were calculated with finite element method. The characteristics of heat transfer, the forming process of keyhole and molten pool were investigated by FEM analysis. Utilizing the adaptive heat source model, the transformation rule of the welding formation, the conditions of critical penetration and the open keyhole full penetration were calculated under different welding velocity and plate thickness.
     At last, from the theory, experiment and numerical simulation point of view, the mechanisms of enhancing penetration and increasing heat efficiency were explored in the LTDSW process. The main causes of increasing heat efficiency were proved as in turn: the formation of heat-congregated region, the increase of keyhole depth and the convergence of the arc. The transformation rules of the melting efficiency were investigated under different experimental conditions. The optimal energy matching and position conditions of the laser and the arc were put forward.
引文
1 S. Palanco, M. Klassen, J. Skupin, et al. Spectroscopic Diagnostics on CW-Laser Welding Plasmas of aluminum alloys. Spectrochimica Acta Part B 2001, (56): 651-65
    2 K. Chen, R. S. Xiao, T. C. Zuo, et al. Laser Welding of Al-Mg Alloy With the Thin Plate. Proceedings of SPIE. 2005, 5629: 155~160
    3洪蕾,吴钢,陈武柱.保护气流对CO2激光焊铝合金的影响.中国激光, 2005, 32(11):1571-1576
    4 P. F. Mendez, T. W. Eager. New Trends in Welding the Aeronautic Industry. 2nd Conference of New Manufacturing Trends, Bilboa, Spain, 2002,11:1~10
    5 http://www.emeradinsight.com/Insight. Audi Moves Forward with All-Aluminum Cars
    6左铁钏.高强铝合金的激光加工,北京:国防工业出版社, 2002
    7 P. W. Fuerschbach. Measurement and Prediction of Energy Transfer Efficiency in Laser Beam Welding. Welding Research Supplement. 1996,(1): 24~23
    8 N. G. Basov. Physics-technological Special Features of Laser Welding in Continuous and Pulsed-periodic Regimes. Welding Production. 1985,(8):36-41
    9 R. C. Crafer. Advances in Welding Processes. 4th international Conference“Advances in Welding Processes”. Harrogate, England, May, 1978: 46~48
    10 R. C. Crafer. Welding with the 2kW CO2 Laser. Welding Institute Research Bulletin, 1976, 17(2): 29~33
    11 BH Billing, HPR. Frederikse, et al. American Instifufe of Phsics Handbook. 3rd Edition, McGraw-Hill, N.Y., 1972
    12 L. Cretteur, S. Marya. Flux Development to Improve CO2 Laser Welding of Aluminium Applcation to Alloy 6061. Welding in the World, 2000,44: 41~48
    13张志勇,田志凌,彭云.铝合金先进焊接工艺.焊接. 2003, (7):5~9
    14陈彦宾,曹丽杰.铝合金激光焊接研究现状.焊接. 2001, (3):9~12
    15左铁钏.高强铝合金的激光加工.国防工业出版社, 2002:66~67
    16 M. Kutsuna, Q. Yan. Study on Porosity Formation in Laser Welds in Aluminum Alloys (report 1): Effects of Hydrogen and Alloying Elements. Welding International. 1998, 12(12):20~32
    17杜汉斌,胡伦骥,胡席远.激光填丝焊技术.航空制造技术. 2002, 11: 60~63
    18 Z. Sun, M. Kuo. Bridging the Joint Gap Wire Feed Laser Welding. Journal of Materials Processing Technology, 1999, 187: 213~222
    19 R. H. Philips. Laser Beam Welding of HY80 and HY100 Steels Using Hot Welding Wire Addition. Welding Journal, 1992(7): 201~208
    20 Z. Sun. Laser Beam Welding of Austenitic/Ferrite Dissimilar Steel Joints Using Nickel Based Filler Wire. Materials Science and Technology, 1993,19:603~608
    21 D. J. Crement. Narrow Groove Welding of Titanium Using the Hot Wire Gas Tungsten Arc Process. Welding Journal, 1993, 72(3):71~76
    22 A. S. Salminen et al.. Effect of Welding Parameters on the Efficiency and Energy Distribution during Laser Welding with Filler Wire. Proceedings of ICALEO2001, Florida, USA. 2001, 90:409~418
    23 A. S. Salminen. The Effects of Filler Wire Feed on the Efficiency of Laser Welding. Proceedings of SPIE2002, Osaka, Japan. 2003, 4831:263~268
    24 A. S. Salminen, V. P. Kujanpaa. Effect of Wire Feed Position on Laser Welding with Filler Wire. Journal of Laser Applications. 2003, 15(1):2~10
    25 Rongshi Xiao, Kai Chen, Tiechuan Zuo, et al. Influence of the Wire Addition Direction in CO2 Laser Welding of Aluminum. Proceedings of SPIE2002, Shanghai, China. 2002, 4915:128~137
    26 P. W. Fuerschbach, D. L. Duck, L. E. Bertram, et al. Laser Assisted Micro Wire GMAX and Droplet Welding. Sandia Report, SAND2002-0701, 2002.
    27 H. Schwede, R. Kramer, K. Hansel et al. Multi Spot Laser Beam Processing Fundamentals-Applications-Diagnostics-Quality Assessment. Proceedings of ICALEO2001, Florida, USA. 2001, 90:106~115
    28 J, Xie. Dual-beam laser welding. Welding Journal. 2002, 81(9):223~230.
    29 A. Haboudou, P. Peyre, A. B. Vannes. Reduction of Porosity Content Generated during Nd:YAG Laser Welding of A356 and AA5083 Aluminum Alloys. Materials Science and Engineering A. 2003, 363:40~52
    30 A. Haboudou, P. Peyre, A. B. Vannes. Influence of Surface Preparation and Process Parameters on the Porosity Generation in Aluminum Alloys. Journal of laser Applications. 2004, 16:20~24
    31 A. Haboudou, P. Peyre, A. B. Vannes. Study of Keyhole and Melt Pool Oscillations in Dual Beam Welding of Aluminium Alloys: Effect on Porosity Formation. Proceedings of SPIE, 2003, 4831: 295~300
    32 T. Iwase, H. Sakamoto. Dual Focus Technique for High-power Nd:YAG Laser Welding of Aluminum Alloys. Proceedings of SPIE, 2000, 3888:348~358
    33 Andreas RuB, Wolfgang Gref, Markus Leimser, et al. Double Focus Technique -Influence of Focal Distance on the Welding Process. Proceedings of SPIE2002, Moscow, Russia. 2003, 5121: 362~368
    34 W. M. Steen. Methods and Apparatus for Cutting and Welding. U. S. Patent, 1979, No. 4167662
    35 W. M. Steen, M. Eboo. Arc Augmented Laser Welding. Metal Construction, 1979, 11(7): 332~335
    36 W. M. Steen. Arc Augmented Laser Processing of Materials. J.Appl.Phys., 1980,51(11):5636~5641
    37 U. Dilthey, A. Wieschemann. Prospects by Combining and Coupling Laser Beam and Arc Welding Process. Welding in the World, 2000, 44(3): 37~46
    38 Lu Dengping, Zhang Shaobin, Hu Shengsun, et al. Study on Mechanism of Mutual Effect Between Laser and Arc & Its Effect on Weld penetration, China Welding, 1993, 2(2):104~108
    39张赵林,程兆谷,雒江涛等.激光焊接铝合金的研究[J].中国激光, 1998, 25(5): 477~480
    40 S. Wiesner, M. Rethmeier, H. Wohfahrt. MIG and Laser Beam Welding of Aluminum Castings with Wrought Aluminum Profiles. Welding in the World. 2001, 45(s): 143~149
    41 D. Petring, S. Kaierle, M. Kasimir. Extended Range of Applications for Laser Beam Welding by Laser-MIG Hybrid Technique. Laser Opto, 2001, 33(1): 50~56
    42 T. P. Diebold, C. E. Albright.“Laser-GTA”Welding of Aluminum Alloy 5052. Welding Journal, 1984, 63(6): 18-24
    43 S. Fujinaga, O. Ryoji, K. Seiji, et al. Improvements of Welding Characteristics of Aluminum Alloys with YAG laser and TIG Arc Hybrid System. Proceeding of SPIE. 2003, 4831:301-306
    44 J. H. Devletian. Arc-augmented Laser Welding of Aluminium. Welding Research Council, 1987, New-York
    45 T. Shida, M. Hirokawa, N. Fujikura, et al. Welding of Aluminum Alloys by Using High Power CO2 Laser in Combination with MIG Arc. 6th International Conference on Welding and Melting by Electron and Laser Beam, Toulon, France, June, 1998: 339~406
    46 T. Shida, M. Hirokawa, S. Sato. CO2 Laser Welding of Aluminum Alloys-Welding of Aluminum Alloys Using CO2 Laser Beam in Combination with MIG Arc.溶接学会论文集. 1997, 15(1):18~23
    47 B. Irving. Automotive Engineers Plunge into Tomorrow’s Joining Problems. Welding journal. 1994, 73(11): 47-50
    48 Matt White. Research Lab to Develop Advanced Joining Technology. EWI Insight-Materials Joining Newsletter, 2003, 16(2):5~6
    49 http://www.twi.co.uk/j32k/unprotected/band_1/laser_hybrid.html. Hybrid Nd: YAG Laser-MIG Welding of an Aluminum Rear Axle Component
    50 S. katayama, S. Uchiumi, J. Wang, M. Mizutani, et al. Penetration and Porosity Prevention Mechanism in YAG Laser-MIG Hybrid Welding of Aluminum Alloy. The Japan Light Metal Welding and Construction Association, the 35th Research Symposium, 2005, 35:17~22
    51 S. Uchiumi, J. B. Wang, M. Mizutani, et al. Penetration and Phenomena in YAG Laser-MIG Hybrid Welding of Aluminum Alloy. Proc. Of the 62nd Laser Processing Conference, Japan Laser Processing Society (JLPS), Osaka, December, 2004:10~18
    52 M. Kreimeyer, F. Wagner, F. Vollertsen. Properties of Laser Joined Aluminum/Steel Sheet. Proc. Lasers in Manufacturing 2003, AT-Fachverlag, Stuttgart, Germany, 2003: 235~239
    53 G. Sepold, C. Thomy, T. Seefeld, et al. CO2 Laser-GTA Hybrid Welding—Aspects of Research and Industrial Application. Proc. Lasers in Manufacturing 2003, AT-Fachverlag, Stuttgart, Germany, 2003:149~156
    54 http://www.plantautomation-technology.com. Laser/MIG Hybrid WeldingProcess: A World Premiere in Vehicle Construction with Aluminum
    55 J. A. Clarke. High Energy Density Beam Welding of Aluminum. FABTECH International, Chicago, Illinois, USA, 2003:1~11
    56 U. Dilthey, A Brandenburg, J. F. Reich. Investigation of Strength an Quality of Aluminum Laser-MIG Hybrid Welded Joints. Proceedings of“The Derek Russell Workshop”—Exploiting the High Efficiency of the Laser-Arc Hybrid Welding Processes, Comm. XII– Arc Welding Processes and Production Systems, IIW, Prague, 2005
    57 Chang Ho Jung, Tae Yong Kwon. Laser welding Application for Side Panel in Car Body Manufacturing. ICALEO’2002-Section A, Scottsdale, Arizona, USA, October, 2002
    58 Johnny K Larsson. Laser Welding-A Mature Process Technology with Various Application Fields. Svetsaren, 1999, 54(1): 43~50
    59 Moriaki Ono, Yukio Shinbo, Akihide Yoshitake, et al. Development of Laser-Arc Hybrid Welding. Nippon Kokan Technical Report, 2002, (176):70~74
    60陈彦宾.激光-TIG复合热源焊接物理特性研究.哈尔滨工业大学博士学位论文, 2003
    61雷正龙. CO2激光-MIG复合热源焊接铝合金的熔滴过渡行为研究.哈尔滨工业大学博士学位论文, 2006
    62吴圣川.铝合金激光-电弧复合焊研究及其温度场的数值模拟.华中科技大学硕士学位论文, 2005
    63张旭东,陈武柱,双元卿等. CO2激光-MIG同轴复合焊接方法及铝合金焊接的研究.应用激光, 2004, 25(1): 1~3
    64朱轶峰,董春林.激光电弧复合焊接技术.航空制造技术, 2002,(11):32~34
    65王威,王旭友,李俐群等.激光与电弧复合焊接技术.焊接, 2004, (3): 6~9
    66叶树棠,徐志峰,陈跃风等.铝及铝合金双面氩弧立焊.焊接, 1980: 35~37
    67徐禾水.双人同步TIG立焊新技术.焊接技术. 1997, (1): 29-30
    68朱明智.铝料仓上熔化极内外侧同步焊的应用.焊接. 1998(5): 26-27
    69房茂义.双人双面同步钨极氩弧焊在铝制空分设备中的应用.化工施工技术. 2000, 22(1): 42-43
    70周大中等.绳索取芯钻杆的等离子弧焊-钨极氩弧焊.焊接. 1996(3): 5-9
    71 Y. M. Zhang, S. B. Zhang. Double-sided Arc Welding Increases Weld Joint Penetration. Welding Journal. 1998, 77(6): 57-61
    72 Y. M. Zhang and S. B. Zhang. Method of Arc Welding Using Dual Serial Opposed Torches. U. S. Patent, 1999, No. 5,990,446
    73 Y. M. Zhang and S. B. Zhang. Welding Aluminum Alloy 6061 with the Opposing Dual-Torch GTAW process. Welding Journal, 1999,78(7):202-206.
    74 Y. M. Zhang, C. Pan, A. T. Male. Improved Microstructure and Properties of 6061 Aluminum Alloy Weldments Using a Double-Sided Arc Welding Process. Metall. and Mater. Trans.. 2000, 31A: 2537-2543
    75 Y. M. Zhang, S. B. Zhang, M. Jiang. Keyhole Double-Sided Arc Welding Process. Welding Journal. 2002, 81(11): 249s-255s
    76 Y. M. Zhang, S. B. Zhang, M. Jiang. Sensing and Control of Double-Sided Arc Welding Process. Journal of Manufacturing Science and Engineering. August 2002, 124 (3): 695-701
    77高洪明,吴林,戴明. MIG+TIG双面电弧焊接实验系统的研制.机器人, 1999, 21(s): 43~46
    78高洪明,吴林,黄海等.铝合金双面GTAW工艺的研究.哈尔滨工业大学学报。2000, 32(s): 78~80
    79高洪明.双面电弧焊接熔池温度场与流场数值模拟及其机理探讨.哈尔滨工业大学博士学位论文, 2001
    80董红刚. PA-GTA双面电弧焊接熔池温度场与流场数值模拟及其机理探讨.哈尔滨工业大学博士学位论文, 2002
    81潘春旭.双面电弧焊的凝固组织特征.金属学报. 2002, 38(4): 427-432
    82 Hongming Gao, Lin Wu, Honggang Dong. Numerical Simulation for Temperature Field and Fluid Flow Field in Double-Sided GTAW Process. Seventh International Welding Symposium. November 20-22, 2001, Kobe, Japan, Vol.1: 169-174
    83 Gao Hongming, Dong Honggang, Wu Lin. Numerical Simulation for Transient Behavior of Temperature Field in Double-Sided GTAW Process.
    17th International Conference Computer Aided Production Engineering (CAPE’2001): 317-320
    84 C. S. Wu, J. S. Sun, Y. M. Zhang. Numerical simulation of dynamic development of keyhole in double-sided arc welding. Modelling Simul. Mater. Sci. Eng. 2004, 12: 423~442
    85孙俊生,武传松,董博玲. PAW+TIG电弧双面焊接小孔形成过程的数值模拟.金属学报, 2003, 39(1): 79~84
    86孙俊生,武传松, Y.M.Zhang.双面电弧焊接的传热模型.物理学报. 2002, 51(2): 286-290
    87孙俊生,武传松.等离子与钨极双面电弧焊接热过程的数值模拟.金属学报, 2003, 39(5): 499~504
    88 Dong Honggang, Gao Hongming, Wu Lin. Numerical Simulation of Heat Transfer and Fluid Flow in Double-Sided GTAW Process. Journal of Engineering Manufacture. Proceedings of the Institute of Mechanical Engineers Part B, Vol.217, 2003: 87-97
    89董红刚,高洪明,吴林.固定电弧等离子弧焊接热传导的数值计算.焊接学报. 2002,23(4):24~26
    90 Dong Honggang, Gao Hongming, Wu Lin. Numerical Simulation of Fluid Flow and Temperature Field in Keyhole Double-Sided arc Welding Process on Stainless Steel. Int. J. Numer. Meth. Engng 2006, 65: 1673~1687
    91陈彦宾,李俐群,吴林.电弧对激光吸收与散焦的定量测量.焊接学报, 2003, 24(3):56-58.
    92 B. Hu, I. M. Richardson. Absorption of Laser Energy by a Welding Arc[C]//22st International Congress on Application of laser & Electro-Optics, ICALEO. Florida, USA, 2003: 147-153.
    93 Chen Yanbin, Lei Zhenglong, Li Liqun, et al. Experimental Study on Welding Characteristics of CO2 Laser TIG Hybrid Welding Process. Science and Technology of Welding and Joining, 2006, 11(4): 403-411.
    94 H. Baker. Properties an Selection: Nonferrous Alloys and Pure Metals. American: American Society of Metals, Metals Handbook, vol.2. 1979:327-327
    95 Liu Cheng, Northwood D, Bhole S. Tensile fracture behavior in CO2 laser beam welds of 7075-T6 aluminum alloy[J]. Material and Densign, 2004, 25: 573-577
    96陈彦宾.现代激光焊接技术.北京:科学出版社, 2005
    97薛家祥,张丽玲,刘晓. TIG焊视觉图像的二值形态学分析.焊接学报, 2005, 26(6): 25~27
    98 J. F. Coudert, M. P. Planche, P. Fauchais, et al. Velocity measurement of DC plasma jets based on arc root fluctuation. Plasma Chem and Plasma Process, 1995, 18(1): 47~70
    99 M. Steenbeck. Z. Phys.33, 809(1932.)
    100 Chen, F. Francis. Introduction to Plasma Physics [R]. New York: Plenum Press, 1974
    101孙承伟.激光辐照效应.北京:国防工业出版社, 2002
    102邹德宁,雷永平,黄延禄,孙俊义.移动热源下熔池内流体流动和传热问题的数值研究.金属学报. 2000, 36(4): 387~390
    103 C. Limmaneevichit, S. Kou. Visualization of Marangoni Convection in Simulated Weld Pools. Welding Research Supplement. 2000, (3): 126~135
    104 V. V. Semak. Numerical Simulation of Weld Pool Geometry in Laser Beam Welding. Phys. D: Appl. Phys. 2000, 33(3): 662~671
    105郭绍庆,李晓红. Ti合金电子束焊接三维温度场计算.金属学报, 2001, 37(3): 301~306
    106 S. Rabier, M. Medale, R. Fabbro. 3-D Numerical Modeling of Laser Welding.
    20th International Congress on Applications of Lasers & Electro-Optics, 2001
    107陈火红. Marc有限元实例分析教程.机械工业出版社, 2002: 341~366
    108中国第一汽车集团公司编写组.机械工程材料手册(金属材料).北京:机械工业出版社, 1998
    109王祝堂,田荣璋主编.铝合金及其加工手册.长沙:中南工业大学出版社, 2000
    110 M. Davis, P. Kapadia, J. Dowden. Modeling the Fluid Flow in Laser Beam Welding. Welding Journal. 1986, 65(7): 167s~174s
    111 B. Hu, G. den Ouden. Synergetic Effects of Hybrid Laser/Arc Welding. Science and Technology of Welding and Joining, 2005, 10(4): 427~431
    112 D.拉达伊著,熊第京等译.焊接热效应.北京:机械工业出版社, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700