镁合金表面冷喷涂技术及涂层性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金易氧化、不耐磨等是其应用受到制约的主要原因之一。目前解决该问题的方法是在其表面形成保护层,例如:微弧氧化膜,各类化学镀层等,但这类方法均存在保护层薄、耐磨性差等问题。热喷涂技术也可以在镁合金表面形成保护层,有效地提高镁合金表面的耐磨性,也能提高耐腐蚀性。但是,热喷涂过程中存在的高温,易造成镁合金与涂层界面的氧化问题,涂层也缺乏致密性等,限制了热喷涂技术的应用。冷喷涂技术是在较低温度下形成涂层的一项新技术,可以避免喷涂过程中的镁合金氧化,且涂层产生的是压应力,涂层结合强度高,致密性强。因此,冷喷涂技术是解决镁合金表面易腐蚀、不耐磨问题的可选择技术。为此,本文针对镁合金表面的冷喷涂技术开展了研究工作,旨在开发该技术并为实际应用奠定技术基础。本文研究工作主要包括以下内容:
     首先,设计了Zn-Al和Al-Si-Fe两个用于冷喷涂的系列合金,目的是在镁合金表面建立防腐和耐磨涂层,同时,也在改善镁合金表面耐热性方面发挥作用。合金粉末采用超音速气体雾化技术制备。粉末特征和粒度分布分析表明,粉末形状多为球形或近球形,粒度分布比较集中,小于400目的粉末占80%以上,适合于冷喷涂工艺
     建立了冷喷涂过程中,喷嘴内气体和气固两相流流动的物理和数学模型,利用计算软件模拟了气体压力分布和气体、粉末在喷嘴内的流动速度。通过模拟结果分析发现,传统喷嘴结构存在进一步改进的可能性。为了提高喷涂效率,根据喷嘴内气体和粉末的流动机理,以及动力学原理,对喷嘴结构进行了进一步的优化设计。通过增加出口管面积和出口管锥角的方式,设计了新的喷嘴结构。通过模拟计算,新结构的喷嘴可以提高气体和粉末的加速效果,喷出速度得到一定程度的提高。定点喷涂试验结果表明,采用新结构的喷嘴,可以使喷涂粉末的利用率提高10%以上。
     系统地试验研究了Zn-Al和Al-Si-Fe合金粉末冷喷涂工艺,确定了适合两类合金粉末的冷喷涂工艺参数。分析了喷涂层组织特点和涂层合金元素扩散规律。发现镁合金表面冷喷涂Zn-Al和Al-Si-Fe合金粉末存在着适宜的工艺参数。Al-Si-Fe合金粉末合适的喷涂工艺参数为:喷涂气体压力为2.1MPa,喷涂气体温度为550℃,喷涂距离35mm;ZA20合金粉末喷涂气体压力2.15MPa,喷涂气体温度300℃,喷涂距离40mm;ZA27合金粉末喷涂气体压力2.1MPa,喷涂气体温度330℃,喷涂距离20mm。涂层组织保持快速凝固的组织特征,涂层内部组织致密,涂层与基体间是机械结合。经热处理后,涂层更加致密、均匀,涂层和基体中均发生合金元素的互扩散现象,基体向涂层方向的扩散量要大于涂层向基体方向的扩散量;随着温度的提高和时间的延长,基体和涂层之间的扩散程度提高,但是当温度提高到300℃,时间延长到3h后,其扩散层变化微小。经扩散处理后,涂层与基体的结合方式由机械结合变为冶金结合,结合强度得到提高。
     在中性盐雾腐蚀和电化学腐蚀中,Zn-Al和Al-Si-Fe合金冷喷涂层均表现出良好的耐腐蚀性能。ZA20合金涂层及ZA27合金涂层的耐蚀性能均好于AZ91D镁合金基体。ZA20合金的腐蚀失重量约为AZ91D镁合金的0.055倍,ZA27腐蚀失重量约为AZ91D镁合金的0.072倍。AZ91D镁合金的自腐蚀电位为-1.7V左右,ZA27合金冷喷涂涂层自腐蚀电位为—0.2V左右,Al-Si-Fe合金冷喷涂层的自腐蚀电位为—1V左右,远高于基体合金,且冷喷涂层的极化曲线中出现明显的钝化区间,因而它能很好地保护基体,提高基体的耐蚀性。冷喷涂层和AZ91D镁合金具有不同的腐蚀机制,ZA27合金冷喷涂层发生了轻微的均匀腐蚀,而AZ91D镁合金发生了严重的局部腐蚀,冷喷涂层的均匀腐蚀危险性要远小于AZ91D镁合金的局部腐蚀。Al-Si-Fe合金冷喷涂层也存在局部腐蚀,但腐蚀程度较轻。
     磨损试验表明,涂层的耐磨性远远高于镁合金的耐磨性。在润滑条件下AZ91D镁合金的磨损失重量约为ZA20合金的5.92倍,是ZA27合金涂层的11倍;AZ91D镁合金厚度磨损减少量约为ZA20合金涂层的1.88倍,是ZA27合金涂层的2.2倍。在干磨损条件下,当磨损时间为50min时,ZA27合金涂层的磨损失重仅是固态挤压AZ91D镁合金的16%。
The application of magnesium alloy is restrained by their easy oxidizing and wearing. A coating on the surface of magnesium alloy can solve these problems,such as minute arc oxidized film,all kind of plated film.But these films have some similar problems that the film is very thin and easy wearing.Hot spray technology can form a coat on the magnesium alloy surface that improves the oxidizing and wear resistance of magnesium alloy.But the high temperature during spray process will cause oxidizing in the interface between magnesium alloy and coat,the coat is a low compactness too.Cold spray technology is a new technique that can set up a coat under low temperature and can avoid magnesium alloy oxidized.During spray process,compressive stress exerts in the cold spray coat,which can produce high strength and compactness in coat.Therefore,cold spray technology can solve the problems of magnesium alloy surface oxidizing and wearing.In this paper,we have systematically studied the technology of a coat on the magnesium alloy surface by cold spray technology,in order to set up a technique basis for its application.The paper major research works include the following contents.
     First,Zn-Al and Al-Si-Fe series alloy chemical compositions have been designed for cold spray,the aim is raising the corrosion resistance and the wear-resistance and improving heat-resistance of magnesium alloy surface.The alloy powders are prepared with the supersonic gas atomization equipments.The results show that alloy powder has globular or near globular shape,narrow distribution of grain size and powder amount less than 400 meshes reaching 80%,which can completely meet the requirement for cold spray.
     The physical and mathematical model for describing gas and gas-particle two-phases flowing in nozzle has been set up during cold spray process;gas pressure distribution and gas-powder two-phase flowing velocity in nozzle have been simulated with the software. The results show that the traditional nozzle structure has some possibility for further improvement.In order to improve the spray effect,the supersonic nozzle has been designed on the basis of fluid mechanics and aerodynamics.With the consideration of the nozzle design theory and viscosity boundary layer theory,the nozzle structure has been optimized.New nozzle structure increases the area and cone angle of pipe outlet.The calculating simulations results show that new structure nozzle can raise acceleration effec! of gas and powder,powder spraying velocity from nozzle increased.The utilization ratio of spray powder can be increased more than 10%under fixed site spray test.
     Through studying the cold spray process on the magnesium alloy surface with rapidly solidified Zn-Al and Al-Si-Fe alloy powder,the suitable technology parameters have been determined.The characteristic of coat microstructure and diffusion law of alloying elements has been analyzed.The appropriate parameters of cold spray Al-Si-Fe alloy powders on magnesium alloy surface are that:the pressure of spray gas to alloy powder is 2.1MPa,the temperature of spray gas is 550℃and the spray distance is 35mm.ZA20 alloy powder appropriate parameters are pressure of spray gas 2.15MPa,spray gas temperature 300℃,spray distance 40mm.ZA27alloy powder appropriate parameters are pressure of spray gas 2.1MPa,spray gas temperature 330℃,spray distance 20mm.The coat has the characteristics of rapidly solidified and compacted microstructure.The bonding way between coat and substrate alloy is mechanical joint.The diffusion treatment has been conducted on the coated samples with different heat treatment process.The results show that coat microstructure becomes more compact and homogeneous after heat treatment,accompanied with the diffusion between coating and substrate alloy.Moreover, the diffusion quantities diffused into coating from substrate alloy are more than that of diffused into substrate alloy from coating.As temperature is rising and time increasing,the diffusion degree between coat and substrate alloy improves.However,the diffusion layer varies little when the temperature rises to 300℃and the time increases to 3h.The bonding way changes from mechanical joint to metallurgical joint;the bonding strength gets raised after diffusion treatment.
     The corrosion behavior of the coats has been studied.The Zn-Al and Al-Si-Fe alloy coat performs better corrosion resistance than that of the substrate magnesium alloy in both salt mist corrosion and electrochemical corrosion.The corrosion weight loss of ZA20 and ZA27 alloy coat is 0.055 and 0.072 times respectively than that of AZ91D magnesium alloy.The self-corrosion potential of AZglD magnesium alloy,ZA27 and Al-Si-Fe alloy coat are about -1.7V,-0.2V and -1V respectively,moreover,polarization curves of ZA27 and Al-Si-Fe alloy coat have a clear passivation region,which can protect the substrate from being corroded.AZ91D magnesium alloy and cold spray coats have different corrosion mechanism,which the cold spray coat of ZA27 alloy takes slight homogeneous corrosion and AZ91D magnesium alloy is heavy local corrosion.The danger of homogeneous corrosion for cold spray coat is far inferior to the local corrosion for AZ91D magnesium alloy.Al-Si-Fe alloy coat takes local corrosion also,but the degree of corrosion is very light.
     Wear test shows that the wear-resistance of cold spray coat is far better than that of AZ91D alloy.AZ91D magnesium alloy weight loss under lubricating wear condition is 5.92 and 11 times respectively than that of ZA20 and ZA27 alloy coat.The wear thickness of AZ91D magnesium alloy is 1.88 and 2.2 times respectively than that of ZA20 and ZA27 alloy coat.Under dry wearing condition,the wear weight loss of ZA27 alloy coat is 16% than that of AZ91D magnesium alloy.
引文
[1]刘正.镁基轻质合金理论基础及应用[M].北京:机械工业出版社,2002:30-35
    [2]关绍康,王迎新.Al5TiB、RE对Mg-8Zn-4Al-0.3Mn合金显微组织和时效过程的影响[A].2002年材料科学与工程新进展[C].北京:冶金工业出版社,2003:679-685
    [3]张静,潘复生,郭正晓,等.含铝和含锰镁合金系中的合金相[A].2002年材料科学与工程新进展[C].北京:冶金工业出版社,2003:759-765
    [4]王渠东.镁合金在电子器材壳体中的应用.材料导报,2002,14(6):22-24
    [5]李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用[J].特种铸造及有色合金,1999,19(1):12-22
    [6]刘正,王中光,王越,等.压铸镁合金在汽车工业中的应用和发展趋势[J].特种铸造及有色合金,1999,19(5):55-58
    [7]李卫平,朱立群.镁及其合金表面防护性涂层国外研究进展[J].材料保护,2005,38(2):41-46
    [8]王梅,刘建睿,沈淑娟,等.镁合金表面处理技术的发展现状[J].铸造技术,2006,27(3):295-298
    [9]赵明,吴树森,罗吉荣,等.镁合金无铬表面处理现状和前景.铸造,2003,52(7):462-466
    [10]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术[J].轻合金加工技术,2003,31(8):35-38
    [11]孙雅茹,吴狄,刘正.铸造镁合金AZ91表面化学氧化膜的研究[J].表面技术,2004,33(3):43-44
    [12]蔡启舟,王立世,魏伯康.镁合金防蚀处理的研究现状及动向[J].特种铸造及有色合金,2003,23(3):33-36
    [13]周婉秋,单大勇,曾荣昌,等.镁合金的腐蚀行为与表面防护方法[J].材料保护,2002,35(7):1-3
    [14]张永君,严川伟,楼翰一,等.Mg及其合金的阳极氧化技术进展[J].腐蚀科学与防护技术,2001,13(4):214-217
    [15]薛文斌,邓忠威,来永春,等.ZM5镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998,19(3):42-45
    [16]张燕,孙伯勒.压铸镁合金的表面处理技术[J].特种铸造及有色合金,2000,20(S1):22-23
    [17]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程,2006,29(2):73-77
    [18]薛文斌,米永春,邓志威.镁合金微等离子体氧化膜的特性.材料科学与工艺.1997,5(2):89-92
    [19]王卫锋,蒋百灵,时惠英.镁合金微弧氧化深色陶瓷膜制备及耐蚀性研究.腐蚀与防护,2007,27(1):51-53
    [20]Umehare H.Structure and corrosion behavior of conversion coating on magnesium alloys.Materials Science Forum.2000(385-394):273-282
    [21]Van T B,Brown S D,Kriven W M.Ceramic.Coatings by anodic spark deposition[J].Am Ceram Soc Bull,1997,56(6):563-566
    [22]Tran B V,Brun S D,Write G P.Anodil Spark reation products in aluminate,tungstate and silicate.Am Ceram Soc Bull,1997,56(6):566-568.
    [23]Dittrick K H,Leoazd L G.Microarc oxidation of aluminium components[J].Cryst Res Technol,1984,19(1):93-96
    [25]Van T B,Brown S D,Wirz G P.Mechanism of Anodic spark Deposition[J],Am,Ceram.Soc Bull,1997,6(1):87-115
    [26]Kurze P.Magnesium legicrurngen clcktrochemisch beschichten[J].Metaliober Fluche,1994,48(2):04-105
    [27]Fumihiro S,Yoshihiko A,Takenori N.Corrosion behavior of magnesium alloys with differrent surface treatments[J].Journal of Japan Institute of Light Metals,1992,42(12):752-758
    [28]Shigematsu I,Nakamura M,Siatou N,et al.Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating[J].J Mater Sci Lett,2000(19):473-475
    [29]Zhang M X,Kelly P M.Surface alloying of AZ91D by diffusion coating[J].J Mater Res,2002,17(10):2477-2479
    [30]Chiu L H,Lin H A,Chen C C.Effect of aluminum coatings on corrosion properties of AZ31magnesium alloy[J].Material Science Forum,2003(419-422):909-914
    [31]张津,孙智富.AZ91D镁合金表面热喷铝涂层研究[J].中国机械工程,2002,23(13):2057-2058
    [32]胡文彬,向阳辉,刘新宽,等.镁合金化学镀镍预处理过程表面状况的研究[J].中国腐蚀与防护学报,2001,21(6):340-344
    [33]韦春贝,张春霞,田修波,等.镁合金表面耐蚀改性技术[J].轻合金加工技术,2004,32(6):6-11
    [34]余刚,刘跃龙,李瑛,等.Mg合金的腐蚀与防护[J].中国有色金属学报,2002,12(6):1087-1098
    [35]王维青,潘复生,左汝林.镁合金腐蚀及防护研究新进展[J].兵器材料科学与工程,2006,29(2):73-77
    [36]罗守福,胡文彬.铝、镁合金的化学镀镍.轻合金加工技术,1997,5(2):28-30
    [37]赵明,吴树森,罗吉荣,等.镁合金无铬表面处理现状和前景.铸造,2003,52(7):462-466
    [38]Dube D,Fiset M,Couture A.Characterization and performance of laser melted AZ91D and AM60B[J].Materials Science and Engineering,2001,A299:38-41
    [39]Galun R,Wdisheit A.Mordike Processings of the Third International Magnesium Conference[C].London:Institute of Mater,1997:576-581
    [40]Kutschera U,Galun R.Wear behavior of laser surface treated magnesium alloys[M].Verlag Wiley:The Minerals,Metals and Materials Society,2000:330-335
    [41]Hiraga H,Inoue T,Kojima Y,etal.Surface modification by dispersion of hard particles on magnesium alloy with laser[J].Materials Science Forum,2000(350):253-258
    [42]杨海钢.Al离子注入AZ31镁合金的电化学腐蚀研究(硕士学位论文).大连:大连交通大学,2005
    [43]全宏声.冷喷涂技术的特点和应用[J].材料工程,2001(12):48
    [44]梁秀兵,徐滨士.先进的冷喷涂技术[J].中国设备工程,2001(12):19-20
    [45]张秋平.冷喷涂技术[J].飞航导弹,2003(9):56-57
    [46]Zhao Z B,Gillispie B A,Smith J R.Coating deposition by the kinetic spray process[J].Surface and Coating Technology,2005(6):1-9
    [47]田欣利,王志健.超音速火焰喷枪设计理论与数值模拟的研究进展[J].焊接学报,2002,23(1):93-97
    [48]李长久.超音速火焰喷涂及涂层性能简介[J].表面工程,1996(4):23-29
    [49]王汉功,查柏林.KY-HVO/AF多功能超音速火焰喷涂技术研究[J].云南大学学报,2002,24(1A):193-196
    [50]张平,王海军,朱胜,等.高效能超音速等离子喷涂系统的研制[J].中国表面工程,2003,61(3):12-16
    [51]神和彦.根据数据模拟探讨喷嘴形状对超音速火焰喷涂工艺的影响[J].热喷涂技术,1998(3):55-57
    [52]王佳杰,魏尊杰,霍树斌,等.超音速冷气动力喷涂Cu涂层的结合机理[J].焊接,2005(9):36-39
    [53]杨晖,王汉功.超音速电弧喷涂粒子速度的测定[J].中国表面工程,1999,43(2):8-11
    [54]吴杰,金花子,吴敏杰,等.冷气动力喷涂技术研究进展[J].材料导报,2003,17(1):59-62
    [55]王志健,田欣利,胡仲翔.空气超音速火焰喷枪设计理论与数学模型的建立[J].材料科学与工程,2002(1):54-57
    [56]杨辉.超音速火焰喷涂的火焰速度特性[J].中国表面工程,1998,42(2):37-41
    [57]Daniel W P,Gerald L K.HVOF movies into the industrial mainstream[J].Advanced Materials &Processes,1994(7):31-35
    [58]朱有利.对用于涡轮机械上的优化涂层的HVOF 工艺条件的评论[J].表面工程,1996(3):46-49
    [59]M.Grujicic,C.L.Zhao,C.Tong,et al.Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process[J].Materials Science and Engineering,2004,A368:222-230
    [60]王志健,田欣利,胡仲翔,等.超音速火焰喷涂理论与技术的研究进展[J].兵器材料科学与工程,2002,25(3):63-66.
    [61]樊自拴,孙冬柏,俞宏英,等.超音速火焰喷涂技术研究进展[J].材料保护,2004,37(9):33-35
    [62]张阁,周香林.水轮机过流部件用高耐磨耐蚀涂层制备技术[J].表面技术,2004,33(1):4-7
    [63]靳春光,吕震,杨德良,等.电弧超音速喷涂技术在锅炉水冷壁防护上的应用.山东冶金,2006,28(4):83-84
    [64]王志中,陈焕良.超音速喷涂在金属密封球阀上的应用[J].阀门,2004(3):10-12
    [65]俞韶华,钱强,汤常英,等.超音速火焰喷涂加工工艺在化工行业动密封环上的应用[J].焊接,2002(05):31-33.
    [66]Huang J H.Nanostructured coatings[J].Materials Science and Engineering,2002,A336:274-319
    [67]Tellkamp V L,Lau M L,Fabel A.Thermal spraying of nanocrystalline Incone1718[J].Nanostructured Materials,1997,9(7-8):489-492
    [68]Shukla V,Elliott G S,Kear B H.Hyperkinetic deposition of nanopowders by supersonic rectangular jet impingement[J].Scripta Mater,2001,44(8-9):2179-2182
    [69]Alkhimov A P,Papyrin A N,Dosarev V F,Nestorovich N I,Shuspanov M M.Gas dynamic spraying method for applying a coating,US Patent 5,302,414,12,April 1994
    [70]Kim H J,Lee C H,Hwang S Y.Superhard nano WC-12%Co coating by cold spray deposition[J].Materials Science and Engineering,2005,A391:243-248
    [71]Karthikeyan J,Kay A,Lindeman J.in:Berndt C C Ed),Thermal Spray:Surface Engineering via Applied Research,Material Park:ASM International,2000:255-263
    [72]Kreye H,Stoltenhoff T.in:Berndt C C(Ed),Thermal Spray:Surface Engineering via Applied Research,Material Park:ASM International,2000:419-422
    [73]McCune R C,Donjon W T,Popoola O O,et al.Characterization of copper layers produced by cold gas dynamic spraying[J].Thermal Spray Techno,2000,9(1):73-78
    [74]Vicek J,Huber H,Voggenreiter H,et al,in:Berndt C C,Khor K A,Lugscheider E F(Eds),Thermal Spray2001:New Surfaces for a New Millennium,Material Park:ASM International,2001:433
    [75]赵卫民,王勇,韩涛,董立先.NiCrBSi超音速火焰喷涂层在水溶液中的腐蚀行为[J].中国腐蚀与防护学报,2004,27(1):37-40.
    [76]孙裕昌,王庆,张东文等.冷喷涂工艺在电站水冷壁管抗高温腐蚀中的应用[J].河北电力技术,1997,16(2):15-16
    [77]张云乾.纳米结构WC-12Co超音速火焰喷涂层制备工艺及抗汽蚀性能研究(博士学位论文).武汉:武汉理工大学,2006
    [78]刘宗德,安江英,陆辛.电热爆炸法制备超细品、纳米晶涂层[A].全球化、信息化、绿色化提升中国制造业--2003年中国机械工程学会年会论文集(微纳制造技术应用专题)[C],2003.
    [79]徐滨士.再制造工程与纳米表面工程[A].第一届维修工程国际学术会议论文集[C],2006.
    [80]杨向明译.俄国的冷喷涂工艺.美国机械化,2001(4):36
    [81]熊天英.国内外冷喷涂领域的最新进展[J].热点追踪,2003(9):10-12
    [82]孙涛.材料表面改性粉末超音速冷喷涂试验研究(硕士研究生论文).大连:大连理工大学2002
    [83]张瑞静,杨柯,熊天英.高活性中孔型纳米二氧化硅粉末制备新工艺的探索[J].材料导报,2003,17(3):78-80
    [84]李文亚,李长久.冷喷涂特性[J].中国表面工程,2002(1):12-16
    [85]Jodoin B,Raletz F,Vardelle M.Cold spray modeling and validation using an optical diagnostic method[J].Surface and Coatings Technology,2005(25):9-17
    [86]Shukla V,Elliott G S,Kear B H.Nanopowder deposition by supersonic rectangular Jjet impingement[J].Journal of Thermal Spray Technology,2000,9(3):394-398
    [87]赵民;陈卓君.高速冷喷涂技术及发展[J].机械工程师,2006(12):19-20
    [88]张瑞丰,沈宁福.快速凝固高导铜合金的研究现状及展望[J].材料科学与工程,2000,19(1):10-11
    [89]梅雪珍,王磊,马江虹,等.冷喷涂技术的应用现状及展望[J].有色金属(冶炼部分),2006,S1:77-79
    [90]吴杰,刘志文,金花子,等.用冷喷涂法制备PTC陶瓷的Al电极[J].表面技术,2002,31(5):4-7
    [91]Grujicic M,Saylor J R,Beasley D E,De Rosset W S,et al.Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process[J].Applied Surface Science,2003(3):1-16
    [92]Papytin A.N and Alkhimove A.P,etc.Experimental study of interaction of supersonic gas jet with a substrate under cold spray process[J].Thermal Spray,2001(3):423-431
    [93]王晓放,赵爱娃,李芳.冷喷涂制备功能涂层工艺中两相射流数值模拟研究.大连理工大学学报,2006,46(2):190-193
    [94]Vicek J,Huber H,Voggenreiter H,et al.in:Berndt C C,Khor K A,Lugscheider E F(Eds),Thermal Spray2001:New Surfaces for a New Millennium,Material Park:ASM International,2001:433
    [96]丁丽,王晓放,孙涛,等.冷喷涂材料改性技术中粒子与基板结合过科的研究[J].机械工程材料,2004,28(10):26-29
    [96]Dykhuizen R C,Smith M F,Gilmore D L,et al.Characterization of copper and steel coatings made by the cold-gas-dynamic spray method[J].Thermal Spray Techno,1999,8:559-615
    [97]Assadi H,Gartner F,Stoltenhoff T,et al.Bonding mechanism in cold gas spraying[J].Acta Materialia,2003,51:4379-4394
    [98]Papyrin A N,Kosarev V F,Klinkov S V,et al.International Thermal Spray Conference,2002:380-384
    [99]李文亚,李长久.冷喷涂Cu粒子参量对其碰撞变形行为的影响[J].金属学报,2005,41(3):282-286
    [100]王以飞,王晓放.冷喷涂材料改性研究中超音速冲击射流流场数值分析[J].大连理工大学学报,2004,44(3):398-401
    [101]王晓放,黄钟岳,王德真.冷喷涂材料改性气粉射流流动计算与分析[J].大连理工大学学报,2000,40(5):562-565
    [102]Versteeg H.An introduction to computational fluid dynamics[M].北京:世界图书出版公司北京公司,2000:243-267
    [103]傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993:123-145
    [104]吴子健,吴朝军,曾克里,等.热喷涂技术与应用[M].北京:机械工业出版社,2005:92-93
    [105]Morsi S A,Alexander H D.An investigation of particle trajectories in two-phase flow systems[J].Fluid Mech,1972,55(2):193-208
    [106]Rhie R M,Chow W L.Numerical study of the turbulent flow past an airfoil with trailing edge separation[J].AIAA,1983,21(11):1525-1532
    [107]Stokes B A.Particle lagrangian simulation in turbulent flow[J].Multiphase Flow,1990(6):19-34
    [108]Li A,Ahmadi G.Dispersion and deposition of spherical particles from point sources in a turbulent channel flow[J].Aerosol Science and Technology,1992(16):209-226
    [109]候平均,李会强,倪锋.改善高铝锌合金性能的研究发展[J].材料开发与应用,2001,2(16):31-34
    [110]李素萍,毛协民,梁红玉等.快速凝固雾化工艺对铝合金粉末形貌和粒度分布的影响,铸造技术,2006,26(4):264-267
    [111]甘卫平,陈招科,杨伏良.粉末粒度对高硅铝合金显微组织及性能的影响[J].中国有色金属学报,2005,15(5):721-726
    [112]Belov I A.Interaction of the non-uniform flows with the obstacles.Mashinostroenie,1983(4):153-157
    [113]陈金城主编.铸造手册(特种铸造)第六卷.北京:机械工业出版社,1990:602-605
    [114] Yuan X G, Ren L Q, Cui C S, et al. Microstructure and properties of spray deposited 2024-20Si-5Fe alloy[J]. Journal of Materials Science and Technology, 1998, 14 (5): 402-407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700