钯镍合金纳米结构的制备及氢敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构的材料因其具有独特的光学、电学、催化特性及良好的生物相容性,近年来在电子设备和传感器等许多领域得到广泛研究与应用。随着研究的发展,纳米结构材料的制备方法越来越多,本文重点综述了模板法、自组装法、气相法和电沉积法制备纳米材料的进展。氢气传感器是纳米材料应用的一个重要领域,本文着重介绍了基于金属、合金、金属氧化物和半导体纳米结构的氢传感器。其中钯基纳米级传感器因其体积小、能在高压环境中使用和不受环境限制等优点成为氢传感材料中使用较广和研究较深入的传感器之一。而纯钯的缺陷,如在氢气中易于形变和相变,促使我们去研究钯基合金氢敏材料,如钯镍合金纳米结构。这种材料的耐久性、快速响应能力、不易形变和相变及抗H2S毒化能力使它成为制备高性能氢传感器的重要材料之一。
     成分和形貌可控的钯镍合金纳米线可通过电沉积法在高定向石墨模板上制备。为了便于组装氢传感器又在柔韧的聚丙烯腈碳纤维表面制备了钯镍合金纳米粒子和纳米膜,并采用交流电沉积法在金/微电极上制备出钯镍合金枝状纳米线。应用扫描电子显微镜、X-射线能谱仪和X-射线衍射仪等测试手段对沉积物的形貌、结构和合金成分进行表征,描述了三种制备方法的沉积过程。将所得的钯镍合金纳米结构组装成氢传感器,进行传感性能检测。应用电化学工作站在纳米结构的两端施加5mV的恒定电压来检测氢气对该传感器响应信号的影响,检测了各种纳米结构的钯镍合金氢传感性能。研究获得的结论如下:
     (1)在组分为70mmol·dm-3Pd(NH3)4Cl2+30mmol·dm-3NiSO4+0.2mol·dm-3NH4Cl, pH8.5的电解液中,采用电化学阶边精饰法在新鲜剥开的高定向石墨台阶边上成功制备了钯镍合金纳米线阵列。经XRD谱图分析,所得纳米线有合金程度高的面心立方结构的Pd-Ni合金组织,其主要的晶面类型为{111}晶面族。
     (2)调节形核及生长过程的电沉积参数可控制纳米线的直径、成分和形貌。形核过程对纳米线沉积速率的影响远大于生长过程对它的影响。当沉积电势范围在-0.35—-0.88VSCE之间,得到的沉积物中Ni的含量在8—15Wt%内。一般纳米线的生长电势控制在--0.35—--0.5VSCE的范围内,所得纳米线平滑连续。使用低浓度电解液(7mmol·dm-3Pd(NH3)4Cl2+3mmol·dm-3NiSO4+0.2mol·dm-3NH4Cl, pH8.5)可以得到直径小于100nm的更为精致的Pd-Ni合金纳米线。
     (3)聚丙烯腈碳纤维表面的最佳前处理工艺为:在400℃下去胶60min;除油液中超声清洗30min;40℃下粗化60min。经过去胶、除油、粗化处理后,碳纤维表面更适合作为电沉积基底。
     (4)在碳纤维上采用单脉冲法可得到钯镍合金纳米粒子,且纳米粒子的密度随着沉积电势的升高而增加。采用三脉冲法可合成钯镍合金纳米膜。沉积电势在-0.48--1.04VSCE之间得到的这两种纳米结构中的镍含量在8—15wt%之间。
     (5)当采用组分为3mmol·dm-3Pd(NH3)4Cl2+7mmol·dm-3NiSO4+0.2mol·dm-3NH4Cl,pH8.5的电解液,室温下,施加电压为13VPP先在300Hz下沉积5s,后在300kHz下沉积10mn,可以得到直径约为300nm、镍含量在8—15wt%范围内的钯镍合金枝状纳米线。
     (6)碳纤维上的纳米膜、纳米粒子和微电极上的枝状纳米线均可成功地组装成氢传感器。碳纤维上纳米膜传感器灵敏度在氢浓度为0—2.8%和3.6-6%之间随氢浓度升高而升高,但氢浓度在2.8—3.6%之间时,随氢浓度升高而降低。纳米粒子传感器的灵敏度在氢浓度范围为0-%时随浓度上升而持续上升。随氢浓度的升高,传感器的响应时间缩短,而恢复时间延长。交流电沉积自组装枝状纳米线组装的氢传感器灵敏度高,响应速度和恢复速度很快。纳米粒子传感器比纳米膜传感器的灵敏度高。当含有氧气的空气作载气时,传感器电流快速回复至基线值附近。
     (7)氢气与钯镍合金纳米结构作用的过程为表面化学吸附→表层渗透→体内扩散→脱附,且为吸附-溶解-扩散-重新结合为氢分子-逸出的作用机理。碳纤维上的钯镍合金纳米膜和纳米粒子传感器,对氢的响应电流与钯合金体积的膨胀、钯氢化合物的形成及合金/纤维界面能障的改变这三者的综合效应有关;交流电沉积自组装合金纳米线组装的氢传感器,对氢的响应电流只取决于纳米线体积的膨胀和钯氢化合物的形成两个因素。
Due to unique properties of optics, electricity, catalysis and good biocompatibility, recently, nanostructure material has been widely studied and applied in electronic equipment, sensor and so on. With the development of the research, fabrication methods of nanostructure material are increasing. This dissertation mainly gives an overview of the development of template method, self-assembly method, chemical vapor deposition and electrodeposition. Hydrogen gas sensor is an important application field of nanostructure material. Hydrogen sensors based on metal, alloy, metallic oxide and semiconductor nanostructure are introduced. Palladium based nanometer degree sensor because of small volume, applied in high pressure and without restriction by environmental, is one of the hydrogen sensors which are applied widely and researched deeply. However, the defects of pure palladium, such as easy deformation and phase transition, promote us to research palladium based alloy hydrogen sensitive materials, such as Pd-Ni alloy nanostructure. Owing to durability, quick response, difficulty of phase transition and deformation and H2S poison resistance of Pd-Ni alloy nanostructure, it is one of the important materials for high performance hydrogen sensor.
     Pd-Ni alloy nanowires with controllable composition and morphology are fabricated via electrodeposition on highly oriented pyrolytic graphite. In order to assemble a sensor easily, Pd-Ni alloy nanofilms and nanoparticles are synthesized on polyacrylonitrile carbon fibers and Pd-Ni alloy dendritic nanowires are synthesized on Au/Pt microelectrodes. Morphology, structure and composition of the alloy deposits were characterized by scanning electron microscope, energy dispersive X-ray and X-ray diffraction. The processes of three electrodepositions were described. The Pd-Ni alloy nanostructures can be assembled into hydrogen sensor and their hydrogen sensing properties were measured. Through applying5mV controlled in electrochemical workstation, the hydrogen sensitive property was detected. The hydrogen sensors based on nanofilm, nanoparticles and nanowires were researched, respectively. The main results were gained as following:
     (1) In the electrolyte composed of70mmol·dm-3Pd(NH3)4Cl2+30mmol·dm-3NiSO4+0.2mol·dm-3NH4C1, pH8.5, Pd-Ni alloy nanowire array were fabricated successfully on fresh high oriented pyrolytic graphite by electrochemical step edge decoration. XRD spectrum indicated that the Pd-Ni nanowires have the alloy structure of face-centerd-cubic with high alloying degree, which mainly displays crystal plane {111}.
     (2) Through adjusting the electrodeposition parameters in nucleation and growth, the diameter, composition and morphology of the nanowires can be controlled. Nucleation affects nanowire deposition rate more than growth. When the deposition potential was between-0.35--0.88VSCE, the Ni content in deposit was between8-15wt%. Generally, by controlling the growth potential between-0.35--0.5VSCE, nanowires obtained were parallel and smooth. Using low concentration electrolyte (7mmol·dm-3Pd(NH3)4Cl2+3mmol·dm-3NiSO4+0.2mol·dm-3NH4Cl, pH8.5), less than100nm elegant Pd-Ni alloy nanowires were obtained.
     (3) The pre-treatment of carbon fibers is:to degum at400℃for60min, to clean in degreaser with ultrasonic washer for30min and to coarsen at40℃for60min. After degumming, degreasing and coarsening, carbon fiber surface is appropriate as substratum for electrodeposition.
     (4) Pd-Ni alloy nanoparicles on carbon fibers were fabricated with single pulse method, the nanoparticle density increased with deposition overpotential going up. Pd-Ni alloy nanofilms were fabricated via three pulse method. The tow nanostructrues with8-15wt%Ni content was obtained at the potential between-0.48--1.04VSCE.
     (5) In the electrolyte composed of3mmol·dm-3Pd(NH3)4Cl2+7mmol·dm-3NiSO4+0.2mol·dm-3NH4Cl, pH8.5, firstly deposited for5s applying13VPP,300Hz AC field then self-assembled for10min under13Vpp,300kHz,300nm dendritic nanowires with8-15wt%Ni content were synthesized at room temperature.
     (6) The three nanostructures of nanofilm, nanopaticles and dendritic nanowire can be successfully assembled into a hydrogen sensor, respectively. In0-2.8%and3.6-6%H2circumstance, the sensitivity of nanofilm sensor increases with hydrogen concentration rising, but in2.8-3.6%H2, it decreases with hydrogen concentration increasing. Sensitivity of nanopaticle sensor increases with hydrogen concentration rising between0-6%range. Response time decreases and recovery time lengthens with the increase of hydrogen concentration. Hydrogen sensor assembled by dendritic nanowires shows high sensitivity, quick response and recovery. The nanoparticles sensor is more sensitive than nanofilm sensor. When oxygen in air exists, the sensor is first recovered to baseline state.
     (7) The action process of hydrogen with Pd-Ni alloy nanostructure is surface chemical adsorption→surface infiltration→interior diffusion→desorption, and the mechanism is adsorption-solution-diffusion-formation into H2-desorption. Response current of the Pd-Ni alloy nanofilm sensor and nanoparticle sensor based on carbon fibers is related to the synthesis of Pd alloy volume expansion, formation of PdHx and change of energy barrier at the alloy/carbon fiber interface; for the sensor assembled by dendritic nanowires, response current depends on Pd alloy volume expansion and formation of PdHx.
引文
[1]Xia Y N, Yang P D, Sun Y G, et al. One-demensional nanostructures: characterization and paaplications. Advanced Materials,2003,15(5):353-389
    [2]Stoll H, Puzic A, van Waeyenberge B, et al. High-resolution inaging of fast magnetization dynamics in magnetic nanostructures. Applied Physics Letters, 2004,84(17):3328-3330
    [3]Kamat P V. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. Journal of Physical Chemistry B,2002,106(12):7729-7744
    [4]Terrones M, Hsu W K, Schilder A, et al. Novel nanotrbes and encapsulated nanowires. Applied Physics A,1998, A66(3):307-317
    [5]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523):1897-1899
    [6]Choi H J, Johnson J C, Lee R, et al. Self-organized GaN quantum wire UV lasers. Journal of Physical Chemistry B,2003,107(34):8721-8725
    [7]Duan X F, Huang Y, Agarwal R, Liebe C M. Single-nanowire electrically driven lasers. Nature,2003,421(6920):241-245
    [8]Marsen B, Sattler K. Fullerene-structured nanowires of silicon. Physical Review B:Condens Matter,1999,60(16):11593-11600
    [9]李晓杰,曲艳东,李瑞勇等.爆轰法合成铝酸锶铕长余辉发光材料的研究.功能材料,2006,37(2):182-184
    [10]Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials,2002,12(5):323-331
    [11]魏智强,朱林,乔宏霞等.直流碳弧等离子体法制备碳包覆铁纳米粒子研究.真空科学与技术学报,2008,28(5):454-457
    [12]相炳坤,左敦稳,李多生等.直流电弧等离子体喷射法告诉制备高质量纳米金刚石膜研究.超硬材料工程,2008,20(5):1-4
    [13]Cui Y, Liever C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science,2001,293(5533): 1289-1292
    [14]Pang Y T, Meng G W, Zhang L D, et al. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers, Advanced Functional Materials,2002,12(10):719-722
    [15]Pang Y T, Meng G W, Fang Q, et al. Silver nanowire array infrared polarizers, Nanotechnology,2003,14(1):20-24
    [16]Pang Y T, Meng G W, Zhang Y, et al. Copper nanowire arrays for infrared polarizer, Applied Physics A,2003,76(4):533-536
    [17]Pang Y T, Meng G W, Shan W J, et al. Micropolarizer of ordered Ni nanowire arrays embedded in porous anodic alumina membrane, Chinese Physics Letters, 2003,20(1):144-147
    [18]Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science,1999, 283(5401):512-514
    [19]Lee N S, Chung D S, Han I T, et al. Application of carbon nanotubes to field emission displays,2001,10(2):265-270
    [20]Beeli C. Electro holography of ferromagnetic nanowires, NanoStructured Materials,1999,11(6):697-707
    [21]Kato S, Shinagawa H, Okada H, et al. Application of ferromagnetic nanowires in porous alumina arrays for mangnetic force generator, Science and Technology of Advanced Materials,2005,6(3-4):341-343
    [22]Muraoka H, Nakamura Y. Overview of read/write scheme for perpendicular magnetic recording utilizing single-pole and double layer media, Journal of Magnetism and Magnetic Materials,2001,235(1-3):10-19
    [23]Huang Y, Duan X F, Wei Qing Q, et al. Directed assembly of one-dimentional nanostructures into functional network, Science,2001,291(5504):630-633
    [24]Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks, Science,2001,294(5545):1313-1316
    [25]Skucha K, Fan Z, Jeon K, et al. Palladium/silicon nanowire schottky barrier-based hydrogen sensors, Sensors and Actuators B,2010,145(1): 232-238
    [26]McAlpine M C, Ahmad H, Wang D, et al. Highly orderd nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors, Nature Materials, 2007,6:379-384
    [27]Massood Z A, Srikaanth S. Room temperature gas sensor based on metallic nanowires, Sensors and Actuators B,2005,111-112:13-21
    [28]Cheng H B, Cheng J P, Zhang Y J, et al. Large-scale fabrication of ZnO micro-and nano-structrues by microwave thermal evaporation deposition. Journal of Crystal Growth,2007,299(1):34-40
    [29]Zheng H J, Wang X D, Gu Z H. Preparation and characterization of highly ordered WO3 nanorod arrays. Acta Physico-Chimica Sinica,2009,25(8): 1650-1654
    [30]Yang Z, Huang Y, Dong B, et al. Template induced sol-gel synthesis of highly ordered LaNiO3 nanowires. Journal of Solid State Chemistry,2005,178(4): 1157-1164
    [31]Yu Y Y, Chang S S, Lee C L, et al. Gold nanorods:electrochemical synthesis and optical properties. Journal of Physical Chemistry B,1997,101(134): 6661-6664
    [32]Yu S, Han Z, Yang J, et al. Synthesis and formation mechanism of La2O2S via a novel solvothermal pressure-relief process. Chemistry of Materials,1999, 11(2):192-194
    [33]Wang Z L. Nanowires and Nanobelts-Materials, properties, and devices.清华大学出版社,北京,2004,6-17
    [34]Wang J, Gao L. Hydrothermal synthesis and photoluminescence properties of ZnO nanowires. Solid State Communications,2004,132(3-4):269-271
    [35]王学华,马连娇,曹宏等.高孔密度阳极氧化铝模板的制备及结构表征.武汉工程大学学报,2008,30(1):48-51
    [36]Thompson G E. Properties of porous anodic alumina:fabrication, characterization and application. Thin Solid Films,1997,297(1-2):192-201
    [37]Parkhutik V P, Shershulsky V I. Theoretical modelling of porous oxide growth on aluminum. Journal of Physics D:Applied Physics,1992,25(8):1258-1263
    [38]AlMawlawi D, Coombs N, Moskovits M. Magnetic properties of Fe deposited into anodic aluminum oxide pores as function of particle size. Journal of Applied Physics,1991,70(8):4421-4425
    [39]孙景临,薛宽宏,邵颖等.镍纳米线电极对乙醇的电催化氧化动力学参数的测定.物理化学学报,2002,18(3):268-271
    [40]Peng Y, Qin D H, Zhou R J, et al. Bismuth quantum-wires arrays fabricated by electrodeposition in nanoporous anodic aluminum oxide and its structural properties. Materials Science and Engineering B,2000,77(3):246-249
    [41]Yang S G, Zhu H, Yu D L, et al. Preparation and magnetic property of Fe nanowire array. Journal of Magnetical Materials,2000,222(1-2):97-100
    [42]Shen C M, Zhang X G, Li H L. DC electrochemical deposition of CdSe nanorods array using porous anodic aluminum oxide template. Material Science and Engineering A,2001,303(1/2):19-23
    [43]Wang Z, Su Y K, Li H L. AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template. Applied Physics A,2002,74(4): 563-565
    [44]Taberna P L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials,2006,5(7):567-573
    [45]Li H, Xu C L, Zhao G Y, et al. Fabrication and magnetic properties of amorphous Co0.71Pt0.29 nanowire arrays. Solid State Communications,2004, 132(6):399-403
    [46]Qin D H, Peng Y, Cao L, et al. A study of magnetic properties:FexCo1-x alloy nanowire arrays. Chemical Physics Letters,2003,374(5-6):661-666
    [47]Zong R L, Zhou J, Li Q, et al. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. Journal of Physical Chemistry B,2004,108(43):16713-16716
    [48]Nielsch K, Wehrspohn R B, Barthel J, et al. Hexagonally ordered 100 nm period nickel nanowire arrays. Applied Physics Letters,2001,79(9): 1360-1362
    [49]Konishi Y, Motoyama M, Matsushima H, et al. Electrodeposition of Cu nanowire arrays with a template. Journal of Electroanalytical Chemistry,2003, 559:149-153
    [50]Fodor P S, Tsoi G M, Wenger L E. Fabrication and characterization of Co1-xFex alloy nanowires. Journal of Applied Physics,2002,91(10):8186-8188
    [51]Goring P, Pippel E, Hofmeister H, et al. Gold/carbon composite tubes and gold nanowires by impregnating templates with hydrogen tetrachloroaurate/acetone solutions. Nano Letters,2004,4(6):1121-1125
    [52]Johansson A, Lu J, Carlssona J O, et al. Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition. Journal of Applied Physics,2004,96(9):5189-5194
    [53]Park S, Lim J H, Chung S W, et al. Self-assembly of mesoscopic metal-polymer amphiphiles. Science,2004,303(5656):348-351
    [54]Sui Y C, Gonzalez-Leon, Bermudez A, et al. Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon,2001, 39(11):1709-1715
    [55]孔令斌,李梦轲,陆海等.模板法制备枝状Pt纳米线.高等学校化学学报,2003,24(3):513-515
    [56]姚会军,刘杰,段敬来等.重离子径迹模板法合成银纳米线.物理化学学报,2007,23(4):489-492
    [57]姚会军,刘杰,段敬来等.离子径迹模板辅助法制备InSb纳米线.原子能科学技术,2008,42(Suppl.):295-299
    [58]Bhattacarrya S, Saha S K, Chakravrty D. Nanowire formation in a polymeric film. Applied Physics Letters,2000,76(26):3896-3898
    [59]Badri B, Hermann A M. Metal hydride batteries:Pd nanotube incorporation into the negative electrode. International Journal of Hydrogen Energy,2000, 25(3):249-253
    [60]Mbindyo JKN, Mallouk TE, Mattzela JB, et al. Template synthesis of metal nanowires containing monolayer molecular-junctions. Journal of the American Chemical Society,2002,124(15):4020-4026
    [61]Possin G E. A method for forming very small diameter wires. Review of Scientific Instruments,1970,41(5):772-774
    [62]Williams W D, Giordano N. Fabrication of 80 A metal wires. Review of Scientific Instruments,1984,55(3):410-412
    [63]Sun L, Chien C L, Searson P C. Fabrication of nanoporous single crystal mica templates for electrochemical deposition of nanowire arrays. Journal of Materials Science,2000,35(5):1097-1103
    [64]莫丹,刘杰,姚会军等.利用重离子径迹云母模板制备Au纳米线.原子能科学技术,2008,42(Suppl.):300-302
    [65]Apel P. Swift ion effects in polymers:industrial applications. Nuclear Instruments and Methods in Physics Research Section B,2003,208:11-20
    [66]Apel P Y, Blonskaya I V, Orelovitch O L, et al. Effect of nanosized surfactant molecules on the etching of ion tracks:New degrees of freedom in design of pore shape. Nuclear Instruments and Methods in Physics Research Section B, 2003,209:329-334
    [67]Pra L D D, Ferain E, Legras R, et al. Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nano-structures. Nuclear Instruments and Methods in Physics Research B, 2002,196(1-2):81-88
    [68]Tostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites:a review. Journal of Computer Science and Technology,2001,61(13):1899-1912
    [69]Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual nanotubes. Nature,1996,381:678-680
    [70]沈翔,龚荣洲,邱静,雷中兴.碳纳米管的化学镀铁钴和电磁参数研究.华中科技大学学报(自然科学版),2007,35(6):99-101
    [71]Zhang Y, Dai H J. Formation of metal nanowires on suspended single-walled carbon nanotubes. Applied Physics Letters,2000,77(19):3015-3017
    [72]Fullam S, Cottell D, Rensmo H, et al. Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Advanced Materials, 2000,12(19):1430-1432
    [73]Feng Y, Dong S. Preparation of quasi-one-dimensional gold nanowires by self-assembling. Rare Metal Materials and Engineering,2008,37(7): 1261-1263
    [74]Braun E, Eichen Y, Siven U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature,1998,391:775-784
    [75]Seidel R, Mertig M, Pompe W. Scanning force microscopy of DNA metallization. Surface Interface Analysis,2002,33(2):151-154
    [76]Rither J, Mertig M, Pompe W, et al. Construction of highly conductive nanowires on a DNA template. Applied Physics Letters,2001,78(4):536-538
    [77]Storhoff J J, Mirkin C A. Programmed Material Synthesis with DNA. Chemical Reviews,1999,99(7):1849-1862
    [78]Fritzsche W, Bohm K J, Unger E, et al. Metallic nanowires created by biopolymer masking. Applied Physic Letters,1999,75(18):2854-2856
    [79]Takahashi R, Ishiwatari T. Preparation of helical gold nanowires on surfactant tubules. Chemical Communication,2004, (12):1406-1407
    [80]Knez M, Bittner A M, Boes F, et al. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Letters,2003,3(8):1079-1082
    [81]Morin S, Lachenwitzer A, Magnussen O M, et al. Potential controlled step flow to 3D step decoration transition:Ni electrodeposition on Ag (111). Physics Review Letters,1999,83(24):5066-5069
    [82]Zach M P, Hemminger J C, Penner R M, et al. Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration. Chemistry Meterials,2002,14(7):3206-3216
    [83]Walter E C, Zach M P, Favier F, et al. Metal nanowire arrays by electrodeposition. ChemPhysChem,2003,4(2):131-138
    [84]Zach M P, Penner R M. Nanocrystalline nickel nanoparticles. Advanced Materials,2000,12(12):878-883
    [85]Walter E C, Murray B J, Favier F, et al. Noble and coinage metal nanowires by electrochemical step edge decoration. Journal of Physical Chemistry B,2002, 106(44):11407-11411
    [86]Francis G M, Kuipers L, Cleaver J R A, et al. Diffusion controlled growth of metallic nanoclusters at selected surface sites. Journal of Applied Physics, 1996,79(6):2942-2947
    [87]Massood Z A, Deep B, Srikanth S, et al. Deposition of parallel arrays of palladium nanowires and electrical characterization using microelectrode contacts. Nanotechnology,2004,15(3):374-378
    [88]侯士敏,陶成钢,刘虹雯等.高定向石墨表面一维金纳米粒子链.中国科学(E辑),2001,31(3):213-216
    [89]侯士敏,陶成钢,刘虹雯等.高定向石墨表面金纳米粒子和金纳米线的研究.物理学报,2001,50(2):223-226
    [90]肖旭贤,黄可龙,卢凌彬.微乳液法制备纳米CoFe2O4.中南大学学报,2005,36(1):65-68
    [91]张冬柏,齐利民,程虎民等.液晶模板法制备Au纳米线.高等学校化学学报,2003,24(12):2143-2146
    [92]Huang L M, Wang H T, Wang Z B, et al. Nanowire arrays electrodeposited from liquid crystalline phases. Advanced Materials,2002,14(1):61-64
    [93]Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Letters,2002,2(2):165-168
    [94]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B,2001, 105(19):4065-4067
    [95]Jiang X, Xie Y, Lu J, et al. Oleate vesicle template route to silver nanowires. Journal of Materials Chemistry,2001,11(7),1775-1777
    [96]Hoffman P D, Sarangapani P S, Zhu Y. Dielectrophoresis and AC-induced assembly in binary colloidal suspensions. Langmuir,2008,24(21): 12164-12171
    [97]Arnold W M, Zimmermann U. Electrotation development of a technique for dielectric measurements on individual cells and particles. Journal of Electrostatics.1988,21(2-3):151-191
    [98]Hughes M P. AC electrokinetics:applications for nanotechnology. Nanotechnology,2000,11(2):124-132
    [99]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature,2000,404:56-59
    [100]Chandrasekharan N, Kamat P V. Nanostructrued films using an electrophoretic approach. Nano Letters,2001,1(2):67-70
    [101]Bhatt K H, Velev O D. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir,2004,20(2):467-476
    [102]Hermanson K D, Lumsdon S O, Williams J P, et al. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science, 2001,294(5544):1082-1086
    [103]Yuan Y J, Andrews M K, Marlow B K. Chaining and dendrite formation of gold particles. Applied Physics Letters,2004,85(1):130-132
    [104]Yin A J, Li J, Jian W, et al. Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Applied Physics Letters,2001,79(7):1039-1041
    [105]Ramos A, Morgan H, Green N G, et al. AC electrokinetics:a review of forces in microelectrode strctures. Journal of Physics D,1998,31(18):2338-2353
    [106]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science,1998,279(5348):208-211
    [107]Cheng C, Gonela R K, Gu Q, et al. Self-assembly of metallic nanowires from aqueous solution. Nano Letters,2005,5(1):175-178
    [108]Lu Y, Ji H F. Electric field-directed assembly of gold and platinum nanowires from an electrolysis process. Electrochemistry Communications,2008,10(2): 222-224
    [109]Masuda H, Yasui K, Nishio K. Fabrication of ordered arrays of multiple nanodots using anodic porous alumina as evaporation mask. Advanced Materials,2000,12(14):1031-1033
    [110]Tasaltm N, Ozturk S, Kilmc N, et al. Temperature dependence of a nanoporous Pd film hydrogen sensor based on an AAO template on Si. Applied Physics A, 2009,97(4):745-750
    [111]章娴君,郑慧雯,王显祥.钼钨纳米合金膜的制备及其微结构研究.西南师范大学学报(自然科学版),2003,28(5):762-765
    [112]Derriek C M. Chemical vapor deposition of Cr, Mo and W thin films induced by synchrotron radiation. Materials Tansaction TIM,1996,37(3):283-288
    [113]章娴君,吕弋.羰基金属气相沉积工艺条件及膜结构研究.西南师范大学学报(自然科学版),1999,24(4):432-437
    [114]Cermakova K S, Vlkova B. Structural characteristics of Ag colloid-adsorbated films determined from transmission electron microscopic images:fractal dimensions, particle size and spacing distribution, and their relationship to formation and optical responses of the films. Journal of Physical Chemistry, 1996,100(12):4954-4960
    [115]Lee M H, Dobson P J, Cantor B. Optical properties of evaporated small silver particles. Thin Solid Films,1992,219(1-2):199-205
    [116]Wasielewski R. Surface characterization of TiO2 thin films obtained by high-energy reactive magnetron sputtering. Aplied Surface Science,2008, 10(14):1016-1017
    [117]吴浩,熊玉卿,孙岩等.磁控溅射沉积纳米结构银薄膜及其表征.真空电子技术,1999,4:43-47
    [118]白彬,严东旭,梁红伟等.高能离子束辅助沉积制备钛纳米膜.机械工程材料,2005,29(11):67-70
    [119]安茂忠,栾野梅,乐士儒等.银纳米膜的电化学制备方法及性能表征.应用光学,2006,27(1):35-39
    [120]赵瑾,董大为,张卫国等.铜/钴纳米多层膜的电化学制备及表征.电镀与涂饰,2002,21(5):1-4
    [121]Yang P, Kim F. Langmuir-Blodgett assembly of one-dimensional nanostructures. ChemPhysChem,2002,3(6):503-506
    [122]Chen X, Lenhert S, Hirtz M, et al. Langmuir-Blodgett patterning:a bottom-up way to build mesostructures over large areas. Accounts of Chemical Research, 2007,40(6):393-401
    [123]郭立俊,刑前,刘秀莲等.银纳米粒子自组装复合LB膜的结构与性质.光谱学与光谱分析,2005,25(5):726-729
    [124]闾锦,陈裕斌,潘力佳等.非挥发浮栅存储器用PtAu纳米粒子单层膜的制备.纳米技术与精密工程,2008,6(2):81-84
    [125]王梁,程先华.稀土纳米膜的制备及摩擦学性能.上海交通大学学报,2006,40(2):231-234
    [126]葛少英,朱孟钦,周晓龙等.La纳米自组装膜的制备及摩擦学性能研究.润滑与密封,2008,33(1):89-93
    [127]郭薇,魏莉,张听彤等.云母表面金纳米粒子单层膜的制备.高等学校化学学报,2001,22(12):1988-1990
    [128]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Physical Science,1973,241,20-22
    [129]江鹏,解思深,姚建年等.金纳米粒子有序膜结构的原子力纤维研究.电子显微学报,2001,20(5):589-593
    [130]莫黎听,李路海,李亚玲等.纳米银导电膜的制备及其光谱学分析.光谱学与光谱分析,2007,27(12):2502-2505
    [131]Pan Q Y, Xu J Q, Dong X W. Gas sensitive properties of nanometer sized SnO2. Sensors and Actuators B,2000,66(1-3):237-239
    [132]Hyodo T, Baba Y, Wada K, et al. Hydrogen sensing properties of SnO2 varistors loaded with SnO2 by surface chemical modification with diethoxydimethylsilane. Sensors and Actuators B,2000,64(1-3):175-181
    [133]Lin F C, Takao Y, Shimizu Y. Preparation and H2 sensing properties of ZnO varistor gas sensors. Denki Kagaku,1993,61:1021-1022
    [134]Arbab A, Spetz A L, Lundstrom I. Gas sensor for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sensors and Actuators B,1993,15(1-3):19-23
    [135]Chen H-I, Chou Y I, Chu C-Y. A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating. Sensors and Actuators B,2002,85(1-2): 10-18
    [136]Choi Y, Tajima K, Shin W, et al. Combustor of Ceramic Pt/Alumina Catalyst and its application for micro-thermoelectric hydrogen sensor. Applied Catalysis A,2005,287(1):19-24
    [137]Shin W, Matsumiya M, Qiu F, et al. Thermoelectric gas sensor for detection of high hydrogen concentration. Sensors and Actuators B,2004,97(2-3):344-347
    [138]Qiu F, Matsumiya M, Shin W, et al. Investigation of thermoelectric hydrogen sensor based on SiGe film. Sensors and Actuators B,2003,94(2):152-160
    [139]王克涛,廖毛雄,汪献忠等.301HP氢气纯度分析仪的设计.郑州轻工业学院学报(自然科学版),2003,18(3):35-37
    [140]Choi Y, Tajima K, Shin W, et al. Effect of Pt/alumina catalyst preparation method on sensing performance of thermoelectric hydrogen sensor. Journal of materials science,2006,41(8):2333-2338
    [141]Zalvidea D, Diez A, Cruz J L, et al. Hydrogen sensor based on a palladium-coated fibre-taper with improved time-response. Sensors and Actuators B,2006,114(1):268-274
    [142]陈吉安,张晓晶,武湛君等.探测氢气泄露的布拉格光栅型传感器.光学技术,2005,31(5):688-690
    [143]Sekimoto S, Nakagawa H, Okazaki S, et al. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B,2002,66(1-3):142-145
    [144]Okazaki S, Nakagawa H, Asakura S, et al. Sensing characteristics of an optical fiber sensor for hydrogen leak. Sensors and Actuators B,2003,93(1-3): 142-147
    [145]焦正,李民强,刘锦淮.新型真空微电子氢气传感器.传感器技术,2002,3:7-16
    [146]Ramesh C, Murugesan N, Krishnaiah M V, et al. Improved nafion-based amperometric sensor for hydrogen in argon,2008,12(9):1109-1116
    [147]Sakthivel M, Weppner W. Development of a hydrogen sensor based on solid polymer electrolyte membranes. Sensors and Actuators B,113(2):998-1004
    [148]徐洪峰,燕希强.质子交换膜恒电位式氢气传感器.膜科学与技术,2000,20(6):58-61
    [149]Weng Y-C, Huang K-C. Amperometric hydrogen sensor based on PtxPdy/nafion electrode prepared by Takenata-Torikai method, Sensors and Actuators B, 2009,141(1):161-167
    [150]Rosini S, Siebert E. Electrochemical sensors for detection of hydrogen in air: model of the non-Nernstian potentiometric response of platinum gas diffusion electrodes. Electrochemica Acta,2005,50:2943-2953
    [151]Walter E C, Penner R M, Liu H, et al. Sensors from electrodeposited metal nanowires. Surface and Interface Analysis,2002,34(1):409-412
    [152]Kumar P, Malhotra L K. Palladium capped samarium thin films as potential hydrogen sensors. Materials Chemistry and Physics,2004,88:106-109
    [153]Kiefer T, Favier F, Vazquez-Mena O, et al. A single nanotrench in a palladium microwire for hydrogen detection. Nanotechnology,2008,19:125502 (9pp)
    [154]Jeon K J, Jeun M, Lee E, et al. Finite size effect on hydrogen gas sensing performance in single Pd nanowire. Nanotechnology,2008,19:495501 (6pp)
    [155]Jung C C, Saaski E W, McCrae D A. Fiber optic hydrogen sensor. Proceedings of SPIE,1998,3489:9-15
    [156]Hunter G W, Bickford R L, Jansa E D, et al. Microfabricated hydrogen sensor technology for aerospace and commercial applications. Proceedings of SPIE, 1994,2270:77-88
    [157]Liu P, Lee S H, Hyeonsik M, et al. Stable Pd/V2O5 optical H2 sensor. Journal of the Electrochemical Society,2002,149(3):76-80
    [158]Favier F, Walter E C, Zach M P, et al. Hydrogen sensors and switches from electrodeposited palladium mesowire array. Science,2001,293:2227-2231
    [159]Chtanov A, Gal M. Differential optical detection of hydrogen gas in the atmosphere. Sensors and Actuators B,2001,79(2-3):196-199
    [160]Fedtke P, Wienecke M, Bunesu M-C, et al. Hydrogen sensor based on optical and electrical switching. Sensors and Actuators B,2004,100:151-157
    [161]Zhao Z, Sevryugina Y, Carpenter M A, et al. All-optical hydrogen-sensing materials based on tailored palladium alloy thin films. Analytical Chemistry, 2004,76:6321-6326
    [162]彭伟斌,吴德隆.布喇格光栅光纤氢浓度传感器的研究.压电与声光,2005,27(2):95-97
    [163]Matsumiya M, Shin W, Izu Noriya, et al. Nano-structured thin-film Pt catalyst for thermoelectric hydrogen gas sensor. Sensors and Actuators B,2003,93: 309-315
    [164]Qiu F, Shin W, Matsumiya M, et al. Miniaturization of thermoelectric hydrogen sensor prepared on glass substrate with low-temperature crystallized SiGe film. Sensors and Actuators B,2004,103(1-2):252-259
    [165]董汉鹏,张威,郝一龙.原电池型高分子电解质三电极氢传感器的研究.传感技术学报,2007,20(4):747-750
    [166]Lu X, Wu S, Wang L, et al. Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sensors and Actuators B,2005, 107:812-817
    [167]Varghese O K, Gong D. Hydrogen sensing using titania nanotubes. Sensors and Actuators B,2003,93:338-344
    [168]Wang B, Zhu L F, Yang Y H, et al. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. Journal of Physical Chemistry C,2008, 112(17):6643-6647
    [169]Das S N, Kar J P, Choi J, et al. Fabrication and characterization of ZnO single nanowire-based hydrogen sensor. Journal of Physical Chemistry C,2010,114: 1689-1693
    [170]胡明,冯有才,尹英哲等.直流反应磁控溅射法制备WO3薄膜及其氢敏特性研究.传感器与微系统,2008,27(3):46-48
    [171]Lee K H, Fang Y K, Lee W J, et al. Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sensors and Actuators B,2000,69:96-99
    [172]陈卫兵,宋跃.MISiC高温氢气传感器研究.微电子学,2003,33(5):380-382
    [173]Ali M, Cimmla V, Lebedev V, et al. Pt/GaN Schottky diodes for hydrogen gas sensors. Sensors and Actuators B,2006,113(2):797-804
    [174]吴伯荣.电动车用MH-Ni动力电池.电源技术,2000,24(1):45-48
    [175]杨毅夫.从EVS-17看国际电动车及动力电池发展趋势.电池,2001,31(4):192-194
    [176]Tobiska P, Hugon O, Trouillet A, et al. An integrated optic hydrogen sensor based on SPR palladium. Sensors and Actuators B,2001,74(1-3):168-172
    [177]Luongo K, Sine A, Bhansali S. Development of a highly sensitive porous Si-based hydrogen sensor using Pd nano-structures. Sensors and Actuators B, 2005,111-112:125-129
    [178]Scharnagl K, Eriksson M, Karthigeyan A, et al. Hydrogen detection at high concentrations with stabilized palladium. Sensors and Actuator B,2001,78: 138-143
    [179]Hughes R C, Schubert W K. The film of Pd-Ni alloys for detection of high hydrogen concentrations. Journal of Applied Physics,1992,71:542-548
    [180]Penner R M. Mesoscopic metal particles and wires by electrodeposition. Journal of Physical Chemistry B,2002,106(3):3339-3353
    [181]Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature. Langmuir,2003,19(6):1951-1953
    [182]Plieth W, Dietz H, Schmidt J, et al, Nanocrystalline structures of metal deposits studied by locally resolved roman microscopy. Electrochimica Acta, 1999,44(21-22):3659-3666
    [183]Xiao Y K, Yu G, Yuan J, et al. Fabrication of Pd-Ni nanowire arrays on HOPG surface by electrodeposition, Electrochimca Acta,2006,51:4218-4227
    [184]Yuan J, Xiao Y K, Yu G, et al. A research on low speed electrodeposition of Pd-Ni alloy, Electroplating & Pollution Control,2004,24(6):14-17
    [185]王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社.1997:89-123
    [186]Fitzer E, Heym M. High-temperature mechanical properties of carbon and graphite. High Temperature-High Pressures,1978,10(1):26-66
    [187]Ismail I M K. Structure and active surface area [ASA] of carbon fibers. Carbon, 1987,25(5):653-662
    [188]Gulyas J, Foldes E, Lazar A, et al. Electrochemical oxidation of carbon fibres: surface chemistry and adhesion. Composites,2001,32(3-4):353-360
    [189]曹海琳,黄玉东,张志谦等.电解液对PAN基碳纤维电化学改性效果的影 响.材料科学与工艺,2004,12(1):24-28
    [190]王耀先,赵玉庭,任白箩.碳纤维表面气相氧化的研究.炭素,1990,1(1):17-22
    [191]冀克俭,邓卫华,陈刚等.臭氧处理对碳纤维表面及其复合材料性能的影响.工程塑料应用,2003,31(5):34-36
    [192]霍彩红,何为,范中晓.碳纤维表面金属化工艺研究.表面技术,2003,32(6):40-42
    [193]张积桥,杨玉国,朱红等.碳纤维化学镀钻工艺研究.电镀与精饰,2008,30(5):33-38
    [194]Boehm H P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon,1994,32(5):759-769
    [195]Mubeen S, Zhang T, Yoo B, et al. Palladium nanoparticles decorated single-walled carbon nanotube hydrogen sensor. Journal of Physical Chemistry C,2007,111(17):6321-6327
    [196]Yang F, Taggart D K, Penner R M. Fast, sensitive hydrogen gas detection using single palladium nanowires that fracture. Nano Letters,2009,9:2177-2182
    [197]刘超卓,施立群,徐世林等.吸气剂材料的吸氢动力学理论.原子能科学技术,2004,38(5):399-404
    [198]Cheng Y-T, Li D, Lisi D, et al. Preparation and characterization of Pd/Ni thin films for hydrogen sensing. Sensors and Actuators B,1996,30(1):11-16
    [199]Huang L, Gong H, Peng D, et al. Pd-Ni thin films grown on porous Al2O3 substrates by metalorganic chemical vapor deposition for hydrogen sensing. Thin Solid Films,1999,345(2):217-221
    [200]Lee E, Lee J M, Lee E, et al. Hydrogen gas sensing performance of Pd-Ni alloy thin films. Thin Solid Films,2010,519(2):880-884

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700