半导体智能点火与内弹道性能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以降低或者消除环境温度对火炮内弹道性能的影响为目的,从点传火对内弹道性能影响的角度出发,提出利用智能点火系统调整不同环境下的点火强度从而对内弹道性能调整的方案。具体内容如下:
     (1)针对提出的降低环境温度对火炮内弹道性能影响的方案,从理论上验证所提出方案的可行性,建立了中心点火方式下的双一维两相流内弹道数学模型并进行数值仿真。分析了发射过程中点火管内与膛内各状态参量的分布规律以及膛底和弹底的压力、弹丸速度、压力波等主要内弹道参量的变化规律,并与实验数据进行对比验证模型的正确性。与此同时,利用此模型计算了点火系统中不同因素对内弹道性能的影响,从原理上分析通过智能点火系统改变点传火条件可以降低温度系数的可行性。
     (2)以对火工品工作性能和工作机理的分析为基础,对火工品的选择进行了研究。根据半导体桥火工品的工作特点,分析了半导体桥火工品的传热机制和传热过程,建立了半导体桥强瞬态点火的数学模型,对其作用机理进行了分析;结合半导体桥的桥体材料特性,建立了半导体桥生成等离子体过程中的升温模型,全面分析了整个升温过程中各种因素对生成等离子体快慢的影响,并与实验数据进行验证比较;基于半导体材料的物理化学性质和热力学状态随桥体温度的变化,建立了电能对半导体桥作用过程的分段模型,给出了半导体桥在电能作用下电阻及电导率的变化规律,分析了桥体动态电阻的变化过程和现象;从传热学角度出发,以半导体桥的典型基本结构为基础,建立半导体桥在作用过程中对电路特性影响的数学模型,论证了不同尺寸和构造的半导体桥的电特性规律。
     (3)建立了半导体桥作用过程的物理数学模型并进行数值仿真。以半导体物理基本方程和热传导方程为基础建立半导体桥熔化前的模型,详细分析了载流子浓度与温度之间的关系及载流子迁移率的确定,并对其进行了数值模拟,论证了外加电压对桥体温度分布的影响及桥体内电子密度的分布等;根据半导体桥生成等离子体过程中放电的特点,半导体桥生成等离子体的放电过程可确定为弧光放电,并根据低能电弧放电原理建立半导体桥放电模型,分析了其放电特性。
     (4)以对所提方案的理论分析和火工品的选择为基础,设计并制作了以飞思卡尔公司的DZ32单片机芯片为核心的智能点火系统。此点火系统包括硬件部分和软件部分,硬件部分分为信号调理部分,键盘和显示部分,与上位机通讯部分,受控点火部分以及控制部分。控制部分完成响应键盘指令,进行相应的显示,控制点火脉冲实现可靠点火和接受测温回馈信号,并对采集的数据进行A/D转换、处理和存储。软件部分设计了单片机内部以及与上位机通讯部分,实现了数据的采集、存储和传送功能。
The purpose of this research is to eliminate the effect of temperature on interior ballistic performance. From the point of ignition, the intelligent control ignition system is used to change the ignition intensity under different temperatures to realize the changing interior ballistic performance. The main parts of this research are concluded as follows:
     (1) Double one-dimensional two-phase flow interior ballistics mathematical model under center ignition is established and its numerical simulations are conducted. The change laws of interior ballistic parameters are analyzed. Base on the modeling results, the effect of different factors of the interior ballistic performance are discussed, such as particle size, ambient temperature and ignition factors.
     (2) To decrease the effect of temperature on interior ballistic performance, the choice of initiating devices is studied. The mechanism and process of heat transfer of Semiconductor Bridge initiating devices is studied. The model of Semiconductor Bridge device strongly transient initiating process is established, and the function mechanism of Semiconductor Bridge is analyzed. The temperatures rising model which describe the process of Semiconductor Bridge generating plasma is established, and pay more emphasis on analyzing the influence of several factors on the generating plasma, then the simulation data is compared with experimental data. The multi-section model of describing process of circuit applied on Semiconductor Bridge is established, dynamic resistance of Semiconductor Bridge and phenomenon are studied. And it is established that the effect of Semiconductor Bridge on circuit, analyze the influence of different size and structure on electrical performance.
     (3) Based on the basic equations of semiconductor physics and heat transfer, the model of Semiconductor Bridge before melting is established. The relationship among the carrier concentration and temperature, the mobility of carrier, the effect of external voltage on Semiconductor Bridge temperature distribution and electron density distribution is discussed. It is proposed that the process of Semiconductor Bridge generating plasma is disc discharge with the establishment of its math model. And the discharge characteristic is analyzed.
     (4) The controlled parameters and suited structure and packing structure are discussed. The intelligent ignition system based on DZ32chip is designed and made. The intelligent ignition system includes both hardware and software. And the hardware of system consists of the signal modulator circuits, keyboard and LCD display circuits, RS-485serial communication and control circuits. The software includes the communication between DZ32chip and upper pc, and the main function of software includes data acquisition, data store and data communication.
引文
[1]王泽山,史先扬.低温感度发射装药.第1版,北京:国防工业出版社,2006
    [2]Cooner W W, Wenonah N J. Progressive burning smokeless powder coated with an organic. US 3704185,1972
    [3]Dcas R W. Design and evaluation of deterred propellant for use in kinetic energy ammunition. Proceeding of the 1980 JANNAF Propulsion meeting CPIA publication, 1980,1:315
    [4]Beat Vogelsanger, Kurt Ryf. EI-Technology — The key for high performance propulsion design. ICT Conference,2001,5:11-27
    [5]Clifford W Fong. Temperature sensitivity of aircraft cannon propellants. Journal of Ballistics.1982,4,1534-1575
    [6]Flanagan, Joseph E, Lo, George A. Gum propellant grains with inhibitor coating. U.S.Patent 3948697.1976
    [7]Mellow D. Manufacture of a burning rate deterrent coated propellant. US.P3798085. 1974
    [8]Mellow D. Temperature-compensating propellant charge. U.S.4106960.1978
    [9]Lefamcux A. Ammunition containing coated spherical propellant. FR 2590360.1987
    [10]Bolinder B. Method of producing progressively burning artillery propellant powder and agent adapted thereto. US 4597994.1986
    [11]Bolinder B. Deterrent coating of propellants. UK Apply 2169277'A.1986
    [12]Bolinder B. Method for the manufacture of inhibited granular propellant. Swed SE451716.1987
    [13]Langlotz Walter. Propellant charge powder for barrel-type weapon. US2001003295 (US01003295).2001
    [14]Candland Calvin T. Temperature compensating electro-mechanical ballistic control tube system. US 4777881.1988.
    [15]Candland Calvin T. Temperature compensating varial stroke projectile positioning system. US 4870886.1989
    [16]史先扬,王泽山.低温感高能硝铵发射药的实验研究.火炸药学报.2001,24(1):4-6
    [17]宋时育,王泽山.低温感发射装药发射的或然误差.火炸药学报.2000,23(1):17-19
    [18]宋时育,王泽山.低温感发射装药弹道性能的研究.火炸药学报.2000,23(2):4-7
    [19]贺增弟,刘幼平,马忠亮等.变燃速发射药的低温感性能.火炸药学报.2006,29(1):65-67
    [20]史先扬,王泽山.低温感火药降低火炮弹道温度系数的研究.弹道学报.2002(4):14-18
    [21]低温度系数装药技术研究技术总结报告.第一部分技术基础研究.南京理工大学火药装药技术研究所.1995
    [22]罗运军.低温感包覆火药装药技术的理论与实验研究.南京:南京理工大学,1994
    [23]史先扬.低温感硝铵发射药的研究及弹道模拟.南京:南京理工大学,2002
    [24]王泽山.发射药装药设计原理.北京:兵器工业出版社,1994
    [25]贺晓军.低温感装药的燃烧、弹道特征及数值模拟.南京:南京理工大学,1997
    [26]A.J.Beardell. Combustion characteristics of NOSOL 363 single perforated and slotted stick propellant. BPL 19th Jannaf combustion.1982
    [27]Denisyuk.A.P, Demidova.L.A. Effect of some catalysts on combustion of double-base propellants. Combustion, Explosion, and Shock Wave. 2004,40(3):311-318
    [28]刘庆荣,王泽山.火药装药设计.北京:国防工业出版社,1986
    [29]周彦煌,王升晨.实用两相流内弹道学.第1版.北京:兵器工业出版社,1990
    [30]袁亚雄,张小兵.高温高压多相流体动力学基础.第1版.哈尔滨:哈尔滨工业大学出版社,2005
    [31]金志明.枪炮内弹道学.第1版.北京:北京理工大学出版社,2004
    [32]金志明,袁亚雄,宋明.现代内弹道学.第1版.北京:北京理工大学出版社,1992
    [33]Benson D A, Larsen M E, Renlund A M, Trott W M, and Bickes R W, Jr. Semiconductor bridge:A plasma generator for the ignition of explosives. Journal of Applied Physics.1987,62:1622-1632
    [34]Marx K D, Bickes R W, Jr., and Wackerbarth D E. Characterization and electrical modeling of semiconductor bridges. SAND97-8246.1997
    [35]Robert W Bickes, Jr., Alfred C. Schwarz. Semiconductor bridge (SCB) igniter. United States Patent:4708060.1987
    [36]Bickes R W, Jr. Semiconductor bridge (SCB) development technology transfer symposium, SAND86-2211.1987
    [37]祝逢春.SCB火工品的研究与发展.爆破器材.2003(1):135-138
    [38]Willis K E, Richman M G. Semiconductor bridge explosive device. US Patent 5912427.19999
    [39]Mandgo F N, Mei G C, Fister J C. Semiconductor Bridge (SCB) packaging system. US Patent 5113764.1992
    [40]刘西广,徐振相,宋敬埔.半导体桥火工品的发展.爆破器材.1995,24(4):16-17
    [41]费三国,文贵印,施志贵.半导体桥点火装置的研制及其应用.光电惯性技术论文集.2002:207-211
    [42]周美林,费三国,黄龙剑.半导体桥点火及起爆技术.中国工程物理研究院.1996:36-37
    [43]祝逢春.半导体桥火工品研究的新进展.兵工学报.2003,24(1):106-110
    [44]祝逢春.半导体桥点火数值模拟与实验研究.南京:南京理工大学,2004
    [45]胡剑书,焦清介.半导体桥电热性质初探.工程爆破.2006,12(1):90-91
    [46]杜志军,汪佩兰.半导体桥火工品在油气井中的应用.火工品.2005(4):53-56
    [47]Kye-Nam Lee, Myung-I1 Park, Sung-Ho Choi, et.al. Characteristics of plasma generated by polysilicon semiconductor bridge (SCB). Sensors and Actuators A. 2002,96:252-257
    [48]Jongdae Kim, Tae Moon Roh, and Kenneth C Jungling. Optical characteristics of silicon semiconductor bridge under high current density conditions. IEEE Transactions on Electron Devices.2001,48:852-857
    [49]Jongdae Kim, Kee-Soo Nam, and Jungling K C. Plasma electron density generated by a semiconductor bridge as a function of input energy and land material. IEEE Transactions on Electron Devices.1997,44:1022-1026
    [50]Jongae Kim, Edl Schamiloglu, and Kenneth C Jungling. Temperature measurement of plasma density variations above a semiconductor bridge (SCB). IEEE Transactions on Instrumentation and Measurement.1995,44:843-846
    [51]Myung-I1 Park, Hyo-Tae Choo, Suk-Hwan Yooh. Comparison of plasma generation behaviors between a single crystal semiconductor bridge (single-SCB) and a polysilicon semiconductor bridge (poly-SCB). Sensors and Actuators A.2004,115: 104-108
    [52]Willis K, Whang D. Semiconductor Bridge Technologies. AIAA.1995:95-102
    [53]Benson D A. Semiconductor Bridge discharge characterization. SAND 86-2211 UC-13.1986:327-360
    [54]岳素格.新一代火工品即半导体桥火工品的机理研究与研制.成都:电子科技大学,1994
    [55]戴荣,栗保明,卢顺祥.固体发射药等离子体点火过程及弹道效应分析.爆炸与冲击.1999,19(1):84-89
    [56]李海元.固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究.南京:南京理工大学,2006
    [57]张小兵,金志明,袁亚雄.用半密闭爆发器研究粒状炸药床的对流燃烧过程.测试技术学报.1994,8(2):170-173
    [58]卢顺祥,栗保明,吴轩.电热增强型固体发射药火炮内弹道模拟研究.弹道学报.1998,10(1):1-6
    [59]邹瑞荣,袁亚雄.不同点火条件下膛内药床运动规律的实验研究.弹道学报.2001,13(1):84-87
    [60]张小兵,袁亚雄,陈建,杨均匀.等离子体点传火过程两相流数值模拟.火炮发射与控制学报.2002(4):1-5
    [61]谢玉树,袁亚雄,张小兵.等离子体增强发射药燃烧的实验研究.火炸药学报.2001,24(3):1-4
    [62]罗运军.钝感火药装药膛内实际燃烧规律的研究.北京理工大学学报.1998,18(5):625-629
    [63]周彦煌,刘千里,王升晨.底部点火结构两相流内弹道模型及计算.兵工学报.1989,10(1):4-11
    [64]刘千里,王升晨,张明安.中心点火结构三维两相流内弹道数值模拟.火炮发射与控制学报.1996(3):1-9
    [65]周彦煌,王升晨.中心点火管装药结构两相流内弹道模型及计算.兵工学报.1987,8(4):12-21
    [66]周彬,徐振相,刘西广等.半导体桥对粒状炸药的微对流传热数值模拟.南京理工大学学报.1996,20(6):493-496
    [67]Bickes R W, Jr, Schlobohm S L. SemiconductorBridge (SCB) igniter studies I: Comparison of SCB and Hot-wire pyrotechnic actuators. SAND87-3095C1.1987
    [68]周蓉.半导体桥的研究.半导体学报.1998,19(2):857-860
    [69]陈越洋,谢珺堂,汪佩兰等.半导体点火桥的电路模拟.北京理工大学学报.2002,22(2):630-632
    [70]陈越洋.半导体点火桥温度特性的模拟.北京:北京理工大学,2002
    [71]Jonfdae Kim, Kenneth C Jungling. Measurement of plasma density generated by a semiconductor bridge:related input energy and electrode material. ETRI Journal. 1995,17:11-19
    [72]Jong U K, Chong-ook P, Myung-il P. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS). Physics Letters A. 2002,305:413-418
    [73]Craig J Boucher, David B Noyotney.新一代半导体桥起爆器AIAA.2000
    [74]Benson D A, Rose B H. An electro-optic explosive igniter. SAND87-2598.1987
    [75]Fahe W D, Quantic Industries. An improved ignition device:The reactive semiconductor bridge. AIAA.2001:1-12
    [76]Tovar B M, Foster M C, Novotney D B. Voltage-protected Semiconductor Bridge Igniter Elements. US Patent 6199484B1.2001
    [77]Tovar B M, Montoya J A. Surface-connectable Semiconductor Bridge Element and Decvice Including the Same. US006054760A.2000
    [78]Kim J, Kim S G. Correlated electrical and optical measurements of firing semiconductor bridges. Journal of Vacuum Science & Technology B.1997,15: 1943-1948
    [79]Robert W Bickes, Jr, Anita M Renland. SCB initiator. US0000001366H.1994
    [80]Benson D A, Bickes R W, Jr. Tungsten bridge for the low energy ignition of explosive and energetic materials. US Patent 4976200.1990
    [81]Bickes R W, Jr, Schlobohm S L. A Trabsformer Coupled Semiconductor Bridge Igniter for Low Voltage Ignition from a high Voltage Source. SAND90-0001C.1990
    [82]Marx K D, Ingersoll D, Bickes R W, Jr. Electrical modeling of semiconductor bridge BNCP detonators with electrochemical capacitor firing sets. SAND 98-0137C.1998
    [83]Francois Prinz, Kent Steeves, Perter L C, Atkeson. Programmable Electronic Time Delay Initiator. US005460093A.1995
    [84]David W Ewick, Brendan M Walsh. Initiator with loosely packed ignition charge and method of assmbly. US006408759B.1998
    [85]David W Ewick, Paul N Marshall, Kenneth A Rode. Hybrid electronic detonator delay circuit assembly. US005929368A.1999
    [86]张正喜,董余良.微控制器在精密延时点火装置中的应用.火工品.2002(1):5-7
    [87]徐振相.微电子火工品的研究与发展.爆破器材.2004,33(增刊):29-32
    [88]李华梅,李东杰.多功能可变电压半导体桥起爆装置的设计.第二届全国信息与电子工程学术交流会论文集,1993:321-325
    [89]蔡瑞娇.火工品设计原理.第1版.北京:北京理工大学出版社,1999
    [90]王鹏,杜志明.桥丝式电火工品热点火理论.火工品.2007(4):27-30
    [91]汪佩兰,曾象志,张松正.灼热桥式火工品桥温的数值模拟.北京理工大学学报.1994,14(3):67-70
    [92]Kim J D, Jungling K C. Modelling of the current density distribution in a heavily doped semiconductor bridge. INT.J. ELECTRONICS.1996,80:623-625
    [93]徐长发,李红.偏微分方程的数值解法.武汉:华中理工大学出版社,2000
    [94]刘恩科,朱秉升,罗晋生等.半导体物理学.第4版.北京:国防科技出版社,1994
    [95]陈治明,王建农等.半导体器件的材料物理学基础.第1版.科学出版社,1999
    [96]谢玉树,张小兵,白桥栋等.含能材料等离子体点火过程的强瞬态二维传导分析.兵工学报.2005,26(4):738-742
    [97]王国娟.半导体桥火工品电爆特性研究.南京:南京理工大学,2006
    [98]周彬.半导体桥对粒状炸药的微对流加热机理的研究.南京:南京理工大学,1994
    [99]贺树兴,半导体桥火工品的研究与发展.火工情报.1993(1):1-15
    [100]祝明水,何碧.半导体桥动态阻抗的实验研究.爆破器材.2007,36(4):18-20
    [101]Howard S L, Chang L M. Enhancement of semiconductor bridge initiators for ignition of large-caliber ammunition. Aberdeen Proving Ground MD:Army Research Lab.1995
    [102]Howard S L, Chang L M. Semiconductor bridge initiators igniting multicomponent propelling charges. Aberdeen Proving Ground MD:Army Research Lab.1996
    [103]Ewick David W, Walsh Brendan M. Optimization of the bridge/power interface for a low energy SCB device.1997:97-2831
    [104]Bickes R W, Grubelich M D, Harris S M. Semiconductor Bridge, SCB, ignition of energetic materials, SAND97-0188 C.1997
    [105]Bickes R W. Semiconductor Bridge (SCB):A new method for the ignition of explosives and pyrotechnics. SAND88-0679C.1988
    [106]弗兰克,英克鲁佩勒等.传热和传质基本原理.北京:化学工业出版社,2007
    [107]王启杰.对流传热传质分析.西安:西安交通大学出版社,1991
    [108]毛国强.低发火能量、高安全性半导体桥的研究.南京:南京理工大学,2007
    [109]Nowakowski D. Using semiconductor bridge technology in a life support application. USA:Survival Flight Equipment Assoc.1996
    [110]Bickes R W, Wackerbarth D E, Mohler J H. Semiconductor bridge, SCB, ignition studies of Al/CuO thermite. SAND97-0186C.1997
    [111]Grubelich M C, Bickes R W. Semiconductor bridge ignited gas generator. SAND 92-0021C.1992
    [112]Harris S I, Porter S. Semiconductor Bridge (SCB) is an enabling technology for next generation safety systems. USA:Survival Flight Equipment Assoc.1998
    [113]谢茂浓.半导体硅桥点火器的设计初探.四川大学学报.1997,34(3):762-766
    [114]Fyfe D W, Fronabarger J W, Bickes R W. BNCP prototype detonator studies using a semiconductor bridge initiator. SAND94-0336C.1994
    [115]Bickes R W. Smart semiconductor bridge (SCB) igniter for explosives. SAND88-1438C.1988
    [116]Bickes R W, Schwarz A C. Feasibility study of a semiconductor bridge (SCB) for initiating pyrotechnic and explosives. SAND86-2617.1987
    [117]严谨容.半导体桥特性及其规律研究.南京:南京理工大学,2007
    [118]何野,魏同立.半导体器件的计算机模拟方法.北京:科学出版社,1989
    [119]赵鸿麟,半导体器件计算机模拟.天津:天津大学出版社,1989
    [120]S.赛尔勃赫.半导体器件的分析与模拟.上海:上海科学技术文献出版社,1988
    [121]Donald A Neamen. Semiconductor Physics and Devices (Third Edition). Publishing House of Electronics Industry.2006:419-473
    [122]聂建军,余稳.P-N结器件模拟参数的确定.常德师范学院学报.1999,11(3):27-29
    [123]张家泰,何斌,贺贤士.激光聚变快点火机理研究.物理学报.2001,50(5):921~925
    [124]罗运军,刘清珺,王泽山.低温感包覆火药装药的两相流内弹道数值模拟.工程力学.1998,15(1):70-76
    [125]张小兵,金志明,袁亚雄.分装式高装填密度装药火炮内弹道两维多相流数值模拟.兵工学报.1998,19(1):10~15
    [126]翁春生,金志明,袁亚雄.高含能颗粒床中瞬变点传火过程的三维两相流数值模拟.爆炸与冲击.1996,16(3):202~210
    [127]戴荣,栗保明.固体工质电热化学炮膛内两相流模型与计算.南京理工大学学报.2000,24(3):318~321
    [128]戴荣.消融控制电弧等离子体增强固体含能工质点火与燃烧热性的研究.南京:南京理工大学,1999
    [129]张小兵.高膛压火炮异常压力试验研究及数值模拟.南京:南京理工大学,1995
    [130]Roache P J. Compuational fluid dynamics,1976.钟锡冒译.计算流体力学.北京:科学出版社,1983
    [131]邹瑞荣,袁亚雄,金志明.火炮点火初期膛内火药床运动规律研究.南京理工大学学报.1994,18(2):33~37
    [132]曾思敏.内弹道中的脉冲X射线摄影技术装备的研制及其应用研究.南京:华东工学院,1989
    [133]翁春生,袁亚雄,金志明.一种复杂装药结构的两相流内弹道模型及计算.南京 理工大学学报.1995,19(2):297~301
    [134]翁春生.密实火药床点传火机理研究.南京:华东工学院,1991
    [135]金志明,翁春生,袁亚雄,点火结构影响压力波的实验研究与数值模拟.兵工学报.1993,14(2):13~17
    [136]Groenenboom P H L. Two-phase flow computation for a 40mm granular propellant gun in comparison with experimental result. In:Celens E.Pro. of the 11th Inter. Sym. on ballistics. Brussels:Royal Military Academy.1989:356-363
    [137]Thrmas C M, Albert W H. Experimental studies of ignition phenomena ane-dimensional propelling charges. ADA 100298.1981
    [138]惠宁利,杨银栋,崔宝生.点火管稳健性技术研究.火工品.1998(2):34~39
    [139]李海庆.点火管装药结构研究.火工品.1997(3):43~45
    [140]周彦煌.固定床条件下火炮装药点火理论模型.火炮研究.1980
    [141]陆欣,周彦煌.炮用发射装药点火管现状及未来发展趋势.弹道学报.1996,8(1):92~96
    [142]曲作家.点火管的内弹道模型.兵工学报武器分册.1981(4):32~37
    [143]陶其恒.中心点火管的两相流模型.兵工学报武器分册.1983(1):10~15
    [144]龚海刚.高压点火管的理论模型机计算.兵工学报武器分册.1984(1):12-15
    [145]王升晨,周彦煌.膛内多相燃烧理论及应用.北京:兵器工业出版社,1994
    [146]Robbins F W, Bundy M L, Wahlde R V. Combuctible metallic high pressure igniter casing.27th JANNAF Combustion Subcommeitee Meeting.1990
    [147]黄寅生,沈瑞琪,戴实之.气体发生器中心点火管燃烧过程的数值模拟.火工品.1996(3):17~20
    [148]Chen X Yao, Shen R. Ignition and flame spread system with LVD tube.18th international pyrotechnics seminar.1992
    [149]Lindefelt.U. Heat generation in semiconductor devices. J. Appl. Phys.1994, 75:942-957
    [150]Fushinobu K, Majumdar A, Hijikata K. Heat generation and transport in submicron semiconductor devices. Journal of Heat Transfer.1995,117:25-31
    [151]Robert P Mertens, Roger J Van Overstraeten, Hugo J De Man. Heavy doping effects in silicon. Advances in electronic and electron physics.2000,55:77-117
    [152]任振.基于有限元方法的半导体器件电-热分析.计算机仿真.2009,26(4):330~333
    [153]黎小鹿.激光与半导体材料相互作用的热效应分析.江西:江西师范大学,2008
    [154]郑楠,梁田,石颖.超短脉冲激光辐照硅膜升温效应的模拟研究.强激光与粒子 束.2008,20(3):353~357
    [155]陈玉凤,,刘尧,王培吉.微尺度传热学进展.济南大学学报(自然科学版).2008,22(4):102~106
    [156]过增元.国际传热研究前沿—微细尺度传热.力学进展.2000,30(1):1~6
    [157]马哲树.微细尺度传热学及其研究进展.自然杂志.2002,25(5):76~79
    [158]杨汉武,钟辉煌.PSpice模型用于电爆炸丝的数值模拟.国防科技大学学报.2000,22(1):38-42
    [159]张文超,叶家海,秦志春等.半导体桥电爆过程的能量转换测量与计算.含能材料.2008,16(5):564~566
    [160]祝逢春,秦志春,陈西武等.半导体桥的设计分析.爆破器材.2004,33(2):22~25
    [161]邓志杰,郑安生.半导体材料.北京:化学工业出版社,2004
    [162]成剑,栗保明.点爆炸过程导体放电电阻的一种计算模型.南京理工大学学报.2003,27(3):272~276
    [163]戴荣,栗保明.电热氢气炮电弧电阻计算及其弹道分析.南京理工大学学报.1999,23(3):227-230
    [164]王莹.电爆炸导体及其应用.爆炸与冲击.1986,6(2):184~192
    [165]Zollweg R J, Liebermann R W. Electrical conductivity of nonideal plasmas. J. Appl. Phys.1987,62:3621-3627
    [166]Trtica M S, Ostojic G N. Numerical modeling of self-sustained TEA CO2 laser operation. SPIE.1999,3612:4-7
    [167]Dadelsen M V, Roth D E. Coupled gas discharge and pulse circuit analysis. IEEE Transactions Plasma Science.1991,19:329-339
    [168]Ekkehard Schade, Dmitry Leonidovich Shmelev. Numerical simulation of high-current vacuum arcs with an external axial magnetic field. IEEE Transactions on plasma science.2003,31:890-901
    [169]Powell J, Zielinski A. Capillary discharge in the electeothermal gun. IEEE Transactions on Magnetics.1993,29:591-596
    [170]Hurley J D, Bourham M A. Numerical simulation and experiment of plasma flow in the electrothermal launcher SIRENS. IEEE Transactions on Magnetics.1995, 31:616-621
    [171]范雪坤,马忠亮,朱林.变燃速发射药燃烧性能研究进展.四川兵工学报.2011,32(7):48~50
    [172]王凯,傅康,何衡宗.一种智能化的舰炮电气设备故障诊断技术.四川兵工学报.2011,32(6):86~88
    [173]Ryan W Houim, Kenneth K Kuo. Understanging interior ballistic processes in a flash tube.25th international symposium on ballistics.2010:11-15
    [174]Mojtaba Behroozi, Reza Ebrahimi. One dimensional modeling of reaching two-phase flow of gas-solid particle in gun system.25th international symposium on ballistics. 2010:11-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700