等离子射流与整装式液体工质相互作用特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以整装式液体工质电热化学炮为工程背景,开展等离子射流与液体工质相互作用特性的实验和理论研究,探索控制整装式液体药燃烧稳定性的机理及方法,研究成果对指导整装式液体工质电热化学炮内弹道设计具有重要价值。主要研究内容及成果如下:
     (1)等离子射流在大气中扩展特性的实验研究
     设计等离子射流在大气中扩展的试验平台,采用瞬态测压系统测量毛细管内的压力特性,用数字高速录像系统观测了等离子射流在大气中扩展的序列过程,研究了放电电压、喷嘴直径对等离子射流扩展特性的影响。结果表明:等离子射流扩展时,轴向扩展速度大于径向扩展速度。扩展过程中,等离子射流可以分成两个部分:圆锥型的射流头部和细长的射流体,射流头部亮度最强。等离子射流与大气间存在强烈的湍流掺混作用。放电电压增大时,等离子射流亮度增强,扩展位移增大,但增量减小。喷嘴直径增大时,等离子射流扩展位移增大。
     (2)等离子射流在大气中扩展特性的数值模拟
     在实验基础上,建立了等离子射流二维非稳态数学模型,运用FLUENT软件对非稳态条件下的二维轴对称等离子射流在大气中的膨胀过程进行了数值模拟,获得了射流场中压力、速度、密度和温度的时空分布特性,以及等离子射流扩展界面的演化特性。结果表明:等离子射流扩展初期,喷嘴下游会逐渐出现马赫盘,马赫盘下游会出现一个锥形低速区,并伴随出现射流分叉,形成空心射流,随着射流的扩展,射流分叉逐渐合并,射流径向尺寸先增大再减小。喷嘴近场会出现周期性压力波结构。温度、速度和密度沿轴向分布具有脉动性,但总体上温度、速度沿轴向和径向递减,密度沿轴向和径向递增。等离子射流轴向扩展位移的计算值和实测值吻合较好。
     (3)等离子射流与液体工质相互作用特性的实验研究
     设计等离子射流与液体工质相互作用的试验平台,研究了等离子射流与液体工质在圆柱型和圆柱渐扩型观察室中相互作用的特性。重点观测放电电压、喷嘴直径、渐扩结构因子等参数变化对等离子射流与液体工质相互作用过程的影响,分析等离子射流在渐扩边界处的卷吸与回流特性。结果表明:等离子射流在圆柱充液室中扩展时,轴向扩展速度大于径向扩展速度。Taylor空腔扩展界面随机脉动性较大,Taylor-Helmhotz不稳定性较强,湍流掺混强烈。等离子射流在圆柱渐扩型充液室中扩展时,由于渐扩台阶的径向诱导作用,使得Taylor空腔沿着渐扩台阶逐级向前扩展,这种扩展方式能够削弱等离子射流轴向Taylor-Helmholtz不稳定效应,减弱两相界面的随机脉动性。放电电压、喷嘴直径以及渐扩结构因子(△D/L)对等离子射流扩展过程均有一定的影响,通过对这些参数的合理匹配,能够实现对等离子射流扩展过程的有效控制。
     (4)等离子射流与液体工质相互作用特性的数值模拟
     在实验基础上,建立了等离子射流与液体工质相互作用的二维非稳态数学模型,并用FLUENT软件进行数值模拟,获得了射流场中压力、速度、密度和温度的时空分布特性。结果表明:等离子射流在液体中形成Taylor空腔时,轴向扩展速度大于径向扩展速度,喷嘴近场各参数沿轴向都具有脉动性,但脉动程度比在大气中扩展时的脉动程度小。喷嘴近场会出现射流颈缩,并伴随液体卷吸进入Taylor空腔中。等离子射流在液体中扩展时可分为3个流动区:主流区、压缩区和回流漩涡区。等离子射流在圆柱型充液室中扩展时,压力波基本为平面波,射流径向扩展较弱。而等离子射流在圆柱渐扩型充液室中扩展时,渐扩处压力波呈弧形,径向压力梯度较大,与圆柱型充液室条件相比,径向扩展速度较大,台阶拐角处有回流涡出现。
     (5)整装式液体发射药等离子点火、燃烧及推进过程的数值模拟
     建立了等离子射流与整装式液体药相互作用过程的二维数学模型,并进行数值模拟。分析液体发射药点火、燃烧以及推动弹丸的全过程,获得流场中压力、速度、密度、温度以及两相界面变化特性。结果表明:整装式液体工质电热化学炮内弹道过程中,燃烧室出现轴向压力振荡现象,压力振荡的出现使得膛内压力曲线呈现多峰分布。圆柱渐扩型燃烧室能够使得燃烧面沿着渐扩型边界逐级扩展,削弱了燃烧面的随机脉动性,减小了Taylor-Helmholtz不稳定性。
Taking bulk-loaded liquid propellant electrothermal chemical gun as engineering background, experimental and theoretical studies on interaction characteristic the plasma jet with bulk-loaded liquid have been conducted. The control mechanism and method of combustion stability in BLPG are explored and the research results have an important value for guiding interior ballistic design of bulk-loaded liquid propellant electrothermal chemical gun. The main research contents and results are as follows:
     (1) Experimental study on plasma jet propagation in air
     A test platform on plasma jet expansion in atmosphere is designed. The testing system of transient pressure is used to measure the pressure in the capillary. The series processes of the plasma jet in atmosphere are recorded by means of a high-speed digital camera. The effects of discharge voltage and nozzle diameter on plasma jet are explored. The results indicate that:when the plasma jet expands in the air, the axial expansion velocity is greater than the radial expansion one. The plasma jet can be divided into two parts:cone-jet head and slender body of the jet. The cone-jet head is very bright. And turbulent mixing between plasma jet and air is very strong. When the discharge voltage increases, the brightness and the expansion displacement of the plasma jet all increase, but incremental decreases. As nozzle diameter is bigger, the expansion displacement of the plasma jet is larger.
     (2) Numerical simulation on plasma jet in atmosphere
     Based on the experiments, a two dimensional unsteady mathematical model is established, the process of plasma jet expansion in atmosphere is simulated by Fluent. The distribution properties of pressure, velocity, density and temperature in the plasma jet flow filed, and the interface evolution properties of plasma jet and air are obtained. The results show that, the Mach disk exists downstream at the beginning of jets and a tapered low velocity zone appears on the downstream zone of Mach disk. With the jets bifurcating, the hollow jet is gradually formed. As time goes on, the bifurcate jets begin to converge. The radial dimension of the jet first increases then decreases. The periodic pressure waves exist near the nozzle. The temperature, velocity and density are all pulsing along the axial direction. As a whole, the temperature and velocity increase progressively along the axial and radial direction. The simulated values of axial displacements of plasma jet coincide well with the experimental ones.
     (3) Experimental study on the interaction of plasma jet with liquid
     A test platform for plasma jet expansion in liquid was designed to study the interaction of plasma jet with liquid in cylindrical chamber and cylindrical stepped-wall chamber. Discussions focus on the effects of pressure, nozzle diameter and the structure factor of stepped-wall chamber on the expansion processes of plasma jets. The entrainment and backflow characteristics of plasma jet are analyzed. The results show that, the axial velocity is larger than radial one as the plasma jet expands in cylindrical chamber. In addition, the surface of Taylor cavity is more random and the Taylor-Helmholtz instability is more intense. However, in cylindrical stepped-wall chamber, Taylor cavity expands forward by step and step due to the induction effect of steps, which can weaken Taylor-Helmholtz instability effect along the axial direction and restrict randomness of gas-liquid interface. The pressure, nozzle diameter and the structure factor (AD/L) of stepped-wall chamber all affect the expansion process of plasma jet, so the expansion processes can be controlled by matching these parameters.
     (4) Numerical simulation of plasma jet expansion in liquid
     Based on the experiment, a two dimensional unsteady mathematical model was established and the process of plasma jet expansion in liquid is simulate by Fluent to obtain the distribution properties of pressure, velocity, density and temperature in the plasma jet flow filed, and the interface evolution properties of plasma jet with air. The results show that, as Taylor cavity is formed in expansion process of plasma jet, the axial velocity is larger than the radial one and the various parameters near the nozzle is pulsing along the axial direction. But the range of pulsation is smaller than expansion processes in the atmosphere. The necking phenomenon of plasma jet exists near the nozzle with liquid entrainment into Taylor cavity. The expansion processes of plasma je in liquid can divided into three flow zones:main stream zone, compression zone and backflow zone. When plasma jet expands in the cylindrical chamber, pressure waves basically are plane waves and the jet expands more slowly along radial direction. However, when plasma jet expands in the cylindrical stepped-wall chamber, pressure waves basically show cambered and the radial pressure gradient is larger. Compared with cylindrical chamber, the radial expansion velocity is bigger in the cylindrical stepped-wall chamber, and the backflow zone exists in the corners of each step.
     (5) Numerical simulation on ignition, combustion and propellant processes of plasma in BLPG
     The two dimensional mathematical model is established and ignition, combustion and propellant processes of plasma are simulated to obtain to obtain the distribution properties of pressure, velocity, density and temperature, and the variation properties of gas-liquid interfaces. The results show that, pressure in the combustion chamber appears to pulse in bulk-loaded liquid propellant electrothermal chemical gun and thus pressure curve of the chamber shows multimodal distribution. Cylindrical stepped-wall chamber can help that combustion front expands progressively along the expanding steps, weakening the random in the combustion process and decreasing the Taylor-Helmholtz instability effect.
引文
[1]Hurley J D, Bourham M A,Gilligan J G. Numerical Simulation and Experiment of Plasma Flow in the Electrothermal Launcher Sirens[J]. IEEE Transactions on Magnetics,1995,31(1):616-621.
    [2]Spector N, Kaplan Z,Loeb A, et al. Confined High Pressure Discharge Experiments[J]. IEEE Transactions on Magnetics,1989,25(1):538-540.
    [3]Rozanov V B. Gas-Dynamic Model of a Capillary Discharge with Evaporative Walls[J]. High Temperature,1970,8(5):895-900.
    [4]Hankins 0 E,Mann D. Analyses of Molecular and Neutral Atomic Emission Spectra From an Electrothermal Launcher Plasma[J]. IEEE Transactions on Magnetics,1995, 31(1):410-413.
    [5]Ashkenazy J. The Effect of the External Pressure On the Internal Conditions Inside the Discharge Tube[J]. IEEE Transactions on Magnetics,1993,29(1):539-543.
    [6]Kyoungjin K. Time-Dependent One-Dimensional Modeling of Pulsed Plasma Discharge in a Capillary Plasma Device[J]. IEEE Transactions on Plasma Science, 2003,31(4):729-735.
    [7]Beyer R A, Small-Scale Experiments in Plasma-Propellant Interactions[R]. ARL-TR-2598,2001.
    [8]Beyer R A,Pesce-Rodriguez R A. The Response of Propellants to Plasma Radiation [J]. IEEE Transactions on Magnetics,2005,41(1):344-349.
    [9]Nusca M J, Anderson W R,McQuaid M J. Multispecies Reacting Flow Model for the Plasma Efflux of an ETC Igniter-Application to an Open-Air-Plasma Jet Impinging On an Instrumented Plate[R]. ARL-TR-3275,2004.
    [10]Raja L L, Varghese P L, Wilson D E. Modeling of the Electrothermal Ignitor Metal Vapor Plasma for Electrothermal-Chemical Guns[J]. IEEE Transactions on Magnetics, 1997,33(1):316-321.
    [11]Burton R L, Hilko B K,Witherspoon F D, et al. Energy-Mass Coupling in High-Pressure Liquid-Injected Arcs[J]. IEEE Transactions on Plasma Science,1991, 19(2):340-349.
    [12]Benage J F, Shanahan W R, Sherwood E G, et al. Measurement of the Electrical Resistivity of a Dense Strongly Coupled Plasma[J]. Physical Review E,1994,49(5): 4391.
    [13]Kennaugh R J,Woods L C. Optimization of an Electrothermal Capillary[J]. IEEE Transactions on Magnetics,1995,31(1):431-434.
    [14]Rocca J J, Tomasel F G,Shlyaptsev V A, et al. Soft-X-Ray Amplification in a Capillary Discharge Plasma[C]. AIP Conference Proceedings,1995,332(1):359-366.
    [15]郭海波,刘东尧,周彦煌.等离子体发生器脉冲放电特性实验研究[J].南京理工大学学报(自然科学版),2007,31(4):466-469.
    [16]Taylor M J, Dunnett J. A Description of the Wire Explosion Process for ETC Plasma Generators[J]. IEEE Transactions on Magnetics,2003,39(1):269-274.
    [17]Taylor M J, Interruption of the Explosion of Plasma Initiator Wires [C].12th Symposium on Electromagnetic Launch Technology, Snowbird, UT, United states, 2004; 312-317.
    [18]Williams A W,Beyer R A. Ablation Loss Studies for Capillary-Sustained Plasmas[R]. ARL-MR-651,2006.
    [19]夏胜国,刘克富,秦实宏,等.两间隙毛细管等离子体发生器主放电特性研究[J].高电压技术,2003,29(1):39-41.
    [20]夏胜国,刘克富.两间隙毛细管等离子体发生器出口参数研究[J].高电压技术,2006,32(6):72-74.
    [21]刘东尧,周彦煌,余永刚.毛细管等离子体阻抗特性实验研究[J].弹道学报,1999,11(2):74-77.
    [22]刘东尧,周彦煌,余永刚.放电毛细管等离子体模拟研究[J].高压物理学报,1999,13(3):205-210.
    [23]White K, Katulka G L,Burden H, et al. Measurement Techniques for Electrothermal-Chemical Gun Diagnostics[R]. ARL-TR-316,1993.
    [24]Powell J D, Zielinski A E. Theory and Experiment for an Ablating-Capillary Discharge and Application to Electrothermal-Chemical Guns[R]. BRL-TR-3355, 1992.
    [25]Ogurtsova N N, PodmoshenskⅡ I V, Rogovtsev P N. Calculation of the Parameters of an Optically Dense Plasma Obtained by a Discharge with an Evaporating Wall[J]. High Temperature,1971,9(3):430-436.
    [26]Niemeyer L. Evaporation Dominated High Current Arcs in Narrow Channels [J]. IEEE Transactions on Power Apparatus and Systems,1978,97(3):950-958.
    [27]Ibrahim E Z. The Ablation Dominated Polymethylmethacrylate Arc[J]. Journal of Physics D:Applied Physics,2000,13(11):2045.
    [28]Kovitya P, Lowke J J. Theoretical Prediction of Ablation Stabilized Arcs Confined in Cylindrical Tubes[J]. Journal of Physics D:Applied Physics,1984,17:1197-1212.
    [29]Loeb A, Kaplan Z. A Theoretical Model for the Physical Processes in the Confined High Pressure Discharges of Electrothermal Launchers[J]. IEEE Transactions on Magnetics,1989,25(1):342-346.
    [30]Gilligan J G,Mohanti R B. Time-Dependent Numerical Simulation of Ablation-Controlled Arcs[J]. IEEE Transactions on Plasma Science,1990,18(2):190-197.
    [31]Pekker L, A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge[R]. AIAA 2008-3891,2008.
    [32]Pekker L,Pekker O, Zero Dimensional Model of High-Pressure Ablative Capillary Discharge with Capillary Wall Thermal Conduction and Radiation Absorption[R]. AFRL-RZ-ED-TP-2009-224,2009.
    [33]Pekker L,Pekker O. A Model of High-Pressure Ablative Capillary Discharge for Plasma Thrusters with Capillary Wall Thermal Conduction and Radiation Absorption [R]. AFRL-RZ-ED-JA-2010-041,2010.
    [34]Pekker L. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge[R]. AFRL-RZ-ED-TP-2008-213,2008.
    [35]Pekker L,Cambier J L. A Model of Ablative Capillary Discharge[R]. ADA455725, 2006.
    [36]Zoler D, Cuperman S, Ashkenazy J, et al. A Time-Dependent Model for High-Pressure Discharges in Narrow Ablative Capillaries[J]. Journal of plasma physics,1993,50(1):51-70.
    [37]Keidar M, Boyd I D. Ablation Study in the Capillary Discharge of an Electrothermal Gun[J]. Journal of Applied Physics,2006,99(5):53301.
    [38]Keidar M, Boyd I D, Williams A, et al. Ablation Study in a Capillary Sustained Discharge[J]. IEEE Transactions on Magnetics,2007,43(1):308-312.
    [39]成剑,栗保明.消融毛细管等离子体发生器一维数值仿真[J].兵工学报,2003,(3):304-308.
    [40]Seong H K, Kyung S Y, Seong W L, et al. Capillary Discharge in the Open Air[J]. IEEE Transactions on Magnetics,2003,39(1):244-247.
    [41]Fifer R A, Sagan E S,Beyer R A. Chemical Effects in Plasma Ignition[J]. IEEE Transactions on Magnetics,2003,39(1):218-222.
    [42]Taylor M J. Consideration of the Energy Transfer Mechanisms Involved in Spetc Ignition Systems[J]. IEEE Transactions on Magnetics,2003,39(1):262-268.
    [43]Cuperman S, Zoler D,Ashkenazy J, et al. Consistent Treatment of Critical Plasma Flows in High Pressure Discharge Ablative Capillaries[J]. IEEE Transactions on Plasma Science,1993,21(3):282-288.
    [44]Powell J D, Thornhill L D, Current Distribution and Plasma Properties in Injectors for Electrothermal-Chemical Launch [J]. IEEE Transactions on Magnetics,2001,37(1): 183-187.
    [45]Taylor M J. Direct Measurement of Radiative Flux Incident upon Propellant During Plasma Propellant Interactions[J]. Propellants, Explosives, Pyrotechnics,2003,28(1): 26-31.
    [46]Bourham A M. Effect of Temperature Sensitivity and Plasticizer Diffusive Transport On Performance of Layered Solid Propellants Under Electrothermal Plasma Injection[R]. ADA412214,2002.
    [47]Seong H K, Kyung S Y,Young H L, et al. Electrothermal-Chemical Ignition Research On 120-Mm Gun in Korea[J]. IEEE Transactions on Magnetics,2009,45(1):341-346.
    [48]Sharikov L V,Surzhikov S T. Experimental Study of Unsteady Supersonic Underexpanded Ablative Plasma Jet Dynamics[R]. AIAA 2005-4930,2005
    [49]谢玉树,袁亚雄,张小兵.等离子体与发射药相互作用的研究[J].火炮发射与控制学报,2001,(1):55-58.
    [50]Nusca M J, White K. J, Williams A W, et al. Computational and Experimental Investigations of Open-Air Plasma Discharges[R]. AIAA 99-16701,1999.
    [51]Nusca M J, McQuaid M J, Anderson W R. Investigation of a High-Velocity, Multi-Species Jet Undergoing Unsteady Expansion Into Open Air[R]. AIAA 2000-0819,2000.
    [52]Nusca M J, McQuaid M J, Anderson W R. Numerical Simulation of an Open-Air Plasma Jet Using a Multi-Species Reacting Flow CFD Code[R]. AIAA 2000-2675, 2000.
    [53]Kim J U, Suk H. Characterization of a High-Density Plasma Produced by Electrothermal Capillary Discharge[J]. Applied Physics Letters,2002,80(3):368-370.
    [54]Kohel J M, Su L K,Clemens N T, et al. Emission Spectroscopic Measurements and Analysis of a Pulsed Plasma Jet[J]. IEEE Transactions on Magnetics,1999,35(1): 201-204.
    [55]Taylor M J, Measurement of the Properties of Plasma From ETC Capillary Plasma Generators[J]. IEEE Transactions on Magnetics,2001,37(1):194-198.
    [56]Chang L M,Howard S L. Influence of Pulse Length On Electrothermal Plasma Jet Impingement Flow[R]. ARL-TR-4348,2007.
    [57]Das M, Thynel S T,Li J, et al, Material Dependence of Plasma Radiation Produced by a Capillary Discharge[R]. AIAA 2006-3425,2006.
    [58]刘东尧,郭海波,余永刚,等.毛细管消融等离子体及其射流压力特性研究[J].南京理工大学学报(自然科学版),2009,(3):348-351.
    [59]赵文华,唐皇哉,田阔,等.存在空气卷吸时等离子体射流光谱诊断应做的修正[J].光谱学与光谱分析,2004,24(4):388-391.
    [60]赵文华,刘笛,田阔.电弧等离子体射流核脉动及射流卷吸的实验研究[J].核聚变与等离子体物理,2002,22(1):1-5.
    [61]潘文霞,孟显,李腾,等.层/湍流等离子体射流的稳定性与三维特性的实验观测研究[J].工程热物理学报,2008,29(1):139-141.
    [62]Wilson D E, Kim K, Raja L L. Theoretical Analysis of an External Pulsed Plasma Jet[J]. IEEE Transactions on Magnetics,1999,35(1):228-233.
    [63]Liu B, Zhang T, Gawne D T. Computational Analysis of the Influence of Process Parameters On the Flow Field of a Plasma Jet[J]. Surface and Coatings Technology, 2000,132(2-3):202-216.
    [64]Porwitzky A J, Scalabrin L C,Keidar M, et al. Chemically Reacting Plasma Jet Expansion Simulation for Application to Electrothermal Chemical Guns[R]. AIAA 2007-4600,2007.
    [65]Porwitzky A J, Keidar M, Boyd I D. Progress Towards an End-to-End Model of an Electrothermal Chemical Gun[C].14th Symposium on Electromagnetic Launch Technology,2008.
    [66]Taylor M J. Evidence for the Hypothesis of Ignition of Propellants by Metallic Vapour Deposition[J]. Propellants, Explosives, Pyrotechnics,2002,27(6):327-335.
    [67]Nusca M J, Howard S L. Experimental and Modeling Studies of Plasma Injection by an Electrothermal Igniter Into a Soul Propellant Gun Charge[R]. ARL-TR-3806, 2006.
    [68]Chang L,Howard S L. Electrothermal-Chemical Plasma Ignition of Gun-Propelling Charges the Effect of Pulse Length[R]. ARL-TR-4253,2007.
    [69]张小兵,袁亚雄,谢玉树.等离子体点火密闭爆发器实验研究[J].火炸药学报,2003,26(2):24-26.
    [70]李海元,栗保明,李鸿志.等离子体点火条件下火药燃速的实验研究[J].弹道学报,2007,19(2):78-81.
    [71]谢玉树,张小兵,白桥栋,等.含能材料等离子体点火过程的强瞬态二维热传导分析[J].兵工学报,2005,26(6):20-24.
    [72]Kuo K K,Cheung F B. Droplet Entrainment of Breakup by Shear Flow [R].ARL-CR-276,1995.
    [73]Bychkov V L, Esakov I I,Chernikov V A, et al, Plasma Jets Over a Surface of a Liquid[R]. AIAA 2009-1412,2009.
    [74]Kuo K K, Cheung F B, Hsieh W H, et al. Experiments Study of Plasma/Fluid Interaction in a Simulated Cap Gun[C].27th JANNAF Combustion Subcommittee Meeting. Columbia, Maryland:The Johns Hopkins University,1990.365-375.
    [75]Arensburg A, Wald S, Goldsmith S. X-Ray Diagnostics of a Plasma-Jet-Liquid Interaction in Electrothermal Guns[J]. Journal of Applied Physics,1993,73(5):2145,
    [76]周彦煌,刘东尧,余永刚.非稳态等离子体射流在液体中的膨胀特性[J].南京理工大学学报(自然科学版),2003,27(5):525-529.
    [77]张琦,余永刚,刘东尧,等.脉冲等离子射流与液体工质相互作用特性实验研究及数值模拟[J].兵工学报,2012,33(5):519-525.
    [78]刘东尧,周彦煌,余永刚.爆炸等离子体射流在液体中扩展过程实验研究[J].弹道学报,2004,16(2):7-10.
    [79]Yu Yonggang, Yan Shanheng, Zhao Na. Influence of Boundary Shape on Interaction Process of Plasma Jet and Liquid Media[J]. International Journal of Applied Electromagnetics and Mechanics.2010,33:541-548.
    [80]Knapton J D, Stobie I C,Elmore L. A Review of the Bulk-Loaded Liquid Propellant Gun Program for Possible Relevance to the Electrothermal Chemical Propulsion Program[R]. AD-A263 143,1993.
    [81]周彦煌,张兆钧,官汉章,等.一种整装式液体发射药燃烧控制技术[J].爆炸与冲击,1995,15(3):275-281.
    [82]Rosenberger T E, Stobie I C, Knapton J D. Test Results From a 37-Mm Segmented-Chamber Bulk-Loaded Liquid Propellant Gun[R].ARL-TR-871,1995.
    [83]Talley R L, Owczarczak J A. Investigation of Bulk-Loaded Liquid Propellant Gun Concepts[R]. ARL-TR-871,1994.
    [84]Bracuti A J, Chiu D S, MacPherson A K. Advanced Propulsion Concept Step Chamber for Bulk-Loaded Gun[R]. ADA296691,1995.
    [85]Talley R L, Bracuti A. Diagnostics of Combustion Evolution in a Bulk-Loaded Lp Gun[C]. Proceedings of the Twenty-Seventh JANNAF Combustion Meetini, CPIA Publication,1990,557:461-471.
    [86]Talley R L. Interior Ballistic Process Control Using Mechanical Concepts Medium Caliber Bulk Loaded Lp Guns. Proceedings 31st JANNAF Combustion Subcommittee Meeting. USA:CPIA Publication,1994.
    [87]Talley R L and Owczarczak J A. Ballistic Testing of Liquid Propellant in a Bulk-Loaded Gun with Combustion Control Features[R]. Report No. C90-001, Veritay Technology,1991
    [88]刘东尧,周彦煌,余永刚.液体工质电热化学发射实验研究[J].爆炸与冲击,1998,18(3):29-34.
    [89]齐丽婷,余永刚,彭志国.含能气体射流在液体工质中扩展过程的简化模型[J].火炮发射与控制学报,2008,(1):90-93.
    [90]齐丽婷,余永刚.整装式液体发射药火炮燃烧稳定性控制的研究进展[J].火炮发射与控制学报,2005,(4):72-75.
    [91]余永刚,昌学霞,周彦煌,等.整装式含能液体燃烧推进实验研究及数值模拟[J].工程热物理学报,2008,29(3):531-534.
    [92]齐丽婷,余永刚,彭志国,等.边界形状对气液相互作用过程的影响[J].弹道学报,2008,20(1):5-10.
    [93]莽珊珊,余永刚.高压热气流与整装式液体工质相互作用的实验研究[J].工程热物理学报,2009,30(12):2017-2020.
    [94]齐丽婷,余永刚,彭志国,等.含能气体射流在液体工质中扩展的两维模型及数值模拟[J].含能材料,2008,16(2):131-137.
    [95]Yonggang Yu, Xuexia Chang, Na Zhao. Study of Bulk-Loaded Liquid Propellant Combustion Propulsion Processes With Stepped-Wall Combustion Chamber[J]. Journal of Applied Mechanics,2011,78(5):051001-051008.
    [96]莽珊珊,余永刚.边界形状对高压受限射流扩展稳定性影响[J].推进技术,2011,32(3):334-338.
    [97]张琦,余永刚,陆欣,等.等离子射流与渐扩边界中液体工质相互作用特性的模拟实验[J].爆炸与冲击,2011,31(3):311-316.
    [98]Yu Yonggang, Chang Xuexia, Zhao Na, et al. Study of bulk-load liquid propellant combustion propulsion processes with stepped-wall combustion chamber[J]. Journal of Applied Mechanics.2011,78(5):051001-1-051001-8.
    [99]莽珊珊,余永刚.高压燃气射流在整装液体中扩展过程的实验和数值模拟[J].爆炸与冲击,2011,31(3):300-305.
    [100]曹永杰,钟阳,余永刚.含能气体射流与液体相互作用的实验研究[J].力学与实践,2010,32(4):22-26.
    [101]Despirito J. CFD Analysis of the Interior Ballistics of the Bulk-Load Liquid Propellant[R]. AIAA 96-3079,1996.
    [102]余永刚,闫善恒,陆欣,等.双股高速燃气射流在液体中扩展及相互作用的实验研究[J].科学技术与工程,2008,8(1):43-46.
    [103]莽珊珊,余永刚.整装式液体中高速燃气射流扩展与掺混过程实验研究[J].南京理工大学学报(自然科学版),2010,34(3):356-360.
    [104]Edelman R B, Phillips G, Wang T S. Analysis of Interior Ballistics Processes of Bulk Loaded Liquid Propellant Guns[R].Final Report 83-048,1983.
    [105]Kuo K K, Chueng B F, Chen L J. A Multi-Phase Mulit-Dimensional Transient Bulk-Loaded Liquid Propellant Gun Model[C]. Proceedings of the 11th International Symposium on Ballistics,1989.
    [106]Macpherson K A, Bracuti J A, Chiu S D. Modeling of a Bulk Loaded Liquid Propellant Gun[C]. Proceedings of the 31st JANNAF Combustion Subcommittee Meeting.1994.295-303.
    [107]Despirito J. Interior Ballistic Simulations of the Bulk-Loaded Liquid Propellant Gun[R]. ARL-TR-2316,2001.
    [108]Haak H K, Schaffers P,Weise T H G G, et al. Basic Investigations in a 70-Mm Firing Simulator[J]. IEEE Transactions on Magnetics,2003,39(1):231-234.
    [109]Jacob E, Bouquet S, Tortel B. A Global Theoretical Approach for the Plasma of the Electrothermal Gun:Scaling Laws and a 0-D Time-Dependent Mode[J]. IEEE Transactions on Magnetics,1995,31(1):419-424.
    [110]Baer P G, Coffee T P, Morrison W F. Design Optimization for a High Performance Regenerative Liquid Propellant Gun[R]. BRL-TR-2860,1987.
    [111]Beyer R A, Brant A L. Plasma Ignition in a 30mm Cannon[R]. ADA476387,2006.
    [112]Tran P, Wren G. Trade-Offs in Performance Enhancement of Solid-Propellant Electrothermal-Chemical Guns[R]. ARL-TR-692,1995.
    [113]李海元,栗保明,李鸿志.膛内等离子体点火及燃烧增强过程数值模拟[J].爆炸与冲击,2002,22(3):229-236.
    [114]李海元,栗保明,李鸿志.等离子体增强火炮发射性能的实验研究[J].弹箭与制导学报,2007,27(2):297-299.
    [115]Wren G P, Oberle W F. A Coupled Thermochemistry-Interior Ballistic Model and Application to Electrothermal-Chemical (ETC) Guns[R]. AD-A261 639,1993.
    [116]Hsiao C C, Phillips G T,Su F Y.A Numerical Model for ETC Gun Interior Ballistics Applications[J]. IEEE Transactions on Magnetics,1993,29(1):567-572.
    [117]Wren G P, Oberle W F,Sinha N, et al. Us Army Activities in Multidimensional Modeling of Electrothermal-Chemical Guns[J]. IEEE Transactions on Magnetics, 1993,29(1):631-636.
    [118]李海元,栗保明,李鸿志,等.液体工质电热化学炮膛内流动特征研究[J].弹道学报,2001,13(2):63-68.
    [119]刘东尧,周彦煌,余永刚.小口径电热化学超高速发射实验研究[J].推进技术,1999,20(6):48-51.
    [120]Gough P S. Theoretical Modeling of the Interior Ballistics of the Electrothermal Gun[R]. AD-A268583,1993.
    [121]刘东尧,余永刚.电热发射内弹道集总参数模型[J].兵工学报,2000,21(2):112-115.
    [122]刘东尧,周彦煌.液体发射药电热化学发射内弹道一维两相流模型及数值模拟[J].爆炸与冲击,2002,22(2):158-162.
    [123]吴轩,栗保明,李鸿志.液体工质电热化学炮的两维多相流模型研究[J].弹道学报,1999,11(4):19-24.
    [124]吴轩,栗保明,卢顺祥.液体工质电热化学发射过程内弹道特性分析[J].弹道学报,1997,9(4):43-48.
    [125]吴轩,栗保明,卢顺祥.液体工质电热化学发射过程燃烧特性分析[J].南京理工大学学报,1999,23(2):24-27.
    [126]夏胜国.脉冲消融毛细管放电等离子体的理论和实验研究[D].华中科技大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700