砂泥岩薄互层电性各向异性及薄储层综合评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球很多大的油气田,从砂岩薄层里开发出了相当数量的油气。根据前人估算,砂泥岩的薄储层以及岩性裂缝型储层中的油气含量大约能占到全球储量的百分之三十。上述两种地层的电阻率在宏观上均表现各向异性,即在纵向上和横向上所测的电阻率是不相等的。然而常规的感应测井所反映出来的视电阻率是地层的横向的电阻率,利用它来计算地层的含油气饱和度,会出现低估的现象,这样就会造成漏掉含油气的储层的结果。为了解决砂泥岩薄互层评价和解释这一难题,发展了向量感应测井仪器,它的出现带动地层电阻率各向异性飞快发展,但是由于技术、成本等诸多原因,国内各大油田应用的三分量感应测井仍然很少,砂泥岩薄互层的评价还是以常规的测井系列及普通成像、阵列侧向电阻率、阵列感应电阻率等测井方法为主。
     苏里格北部的砂泥岩薄互层发育,针对常规测井难以评价砂泥岩薄储层、没有三分量感应测井的情况,本文是在示范工程编号为2008ZX05044的国家科技重大专项《大型油气田及煤层气开发》中的《鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程》的分支《低渗低阻气层测井定量解释与成岩相分析技术》和长庆油田测井采集及评价技术“十二五”发展规划的分支《致密气层测井解释标准与可动流体评价》的联合资助下,运用井眼微电阻率成像测井(FMI)与已有的常规测井、阵列侧向、阵列感应电阻率测井结合,提出了砂泥岩薄互层各向异性及薄储层综合评价方法。
     首先对苏里格北部砂泥岩薄互层的电学性质以及测井响应进行分析,然后对已有的薄砂岩储层的电阻率各向异性评价模型进行分析。本文基于Mollison模型在无三分量感应测井的情况下,利用微电阻率成像测井的分辨率高的特点,建立了电阻率各向异性模型,分布计算出泥岩的纵向、横向电阻率R_(sh_v)、R_(sh_h)。利用FMI数据分别与常规侧向测井数据、阵列侧向测井数据以及阵列感应测井数据结合,通过垂向电阻率R_v和横向电阻率R_h获得薄砂岩层的电阻率Rs d,给出了砂泥岩薄互层各向异性的评价方法。为薄砂岩储层进行各向异性评价打下了良好的基础。
     在地层的各向异性特征及计算得到薄砂岩层的真实电阻率的基础上,应用自然伽马、自然电位结合计算地层的总泥质含量,应用FMI计算层状泥质含量,再根据Thomas-Stieber交会图计算出不含分散泥质的纯砂岩层的有效孔隙度。这样,在阿尔奇公式的基础之上采用R_(sd)就得到了真实薄储层的含水饱和度,从而提高了储层孔隙度、饱和度的评价精度利用实际地区的岩心的孔渗关系来进行渗透率评价。
     本文应用图版法(包括声波与电阻率交会图图版、中子与电阻率交会图图版)、中子密度结合法、纵波的等效弹性模量差比法以及各向异性系数法进行流体性质识别。
     上述方法在苏里格北部获得了良好的应用。
A considerable amount of oil and gas from thin sandstone layer had been developed frommany large oil and gas fields in the world, According to previous estimated, about30percent ofglobal reserves occurrence in thin sandstone layer and fractured lithology reservoirs, Theresistivity of the two strata showed macroscopic anisotropy, That is, on horizontal and verticalorientation the resistivity are different. However, the resistivity which conventional inductionlogging measured is formation transverse resistivity,when using it to calculate the formationhydrocarbon saturation will be underestimated, this will result in missed petroleum reservoir. Inorder to solve the problem of sandstone thin interbedded and mudstone evaluation andexplanation, developed vector induction logging instrument, and the instrument drived formationresistivity anisotropy fast development, Due to technical, cost, and many other reasons, theapplication of three-component induction logging in domestic major oil field is still very small,sandstone thin interbedded and mudstone evaluation and explanation mainly use conventionallogging suite and array resistivity array induction resistivity well logging methods.
     In Changqing oilfield, sandstone and mudstone thin interbed development, Conventionallogging is difficult to evaluate sandstone and mudstone thin interbed, And not havethree-component induction logging, In this paper, combined FMI and conventional logging, thearray lateral array induction resistivity log,developed a method to evaluation sandstone andmudstone thin interbed Anisotropic and Reservoir Characteristics.
     First, analyze electrical properties and logging response of sandstone and mudstone thininterbed, Then analyze the existing thin sandstone reservoirs resistivity anisotropy evaluationmodel, This paper based on the Mollison model,under the Situation of no multi-componentinduction logging instrument, Uing FMI high resolution, Established Resistivity anisotropymodel. Calculate the horizontal resistivity and vertical resistivity separately, Using FMI data,separately Combined with conventional lateral logging data,array lateral logging data and arrayinduction logging data, We can obtain the resistivity of thin sand reservoir through verticalresistivity and horizontal resistivity and put forward the evaluation methodology of anisotropy inthin interbed sand-mudstone layer, which is the base of evaluation of anisotropy in thin sandreservoir. Based on the anisotropy of reservoir and the real resistivity that is calculated in thinsand reservoir.
     Basing on the anisotropy of reservoir and the real resistivity that is calculated in thin sandreservoir,Using GR and SP calculate formation total shale content, using FMI calculatelaminated shale content, then using Thomas-Stieber cross plot calculate effective porosity of puresandstone without dispersed shale. In this way, we can get a real reservoir water saturationbasised on Archie's equation, then to improve porosity, saturation evaluation accuracy, using coreporosity and permeability relationship of actual area to evaluation permeability.
     In this paper, using plot method(Including acoustic and resistivity crossplot plates, neutronand resistivity crossplot Plate), Neutron-density combined method, P wave elastic modulusdifferential ratio method, and Anisotropy coefficient method to identify fluid properties.
     The above method has a good application in north Sulige.
引文
[1] Adam Moss. Identification, Quantification and Distribution of Clay in thinly beddedReservoir Sandstones from the Integration of Core and Log Data [J]. SPWLA49nd AnnualLogging Symposium, May25-28,2008-JJ.
    [2] Ajay Kumar, AKS Kakani, Smruti Jena, et al. Measurement of Resistivity Anisotropy forReliable Assessment of Hydrocarbon Saturation in Gas Saturated Sands, India: A Case Study[J]. SPWLA50th Annual Logging Symposium, June21-24,2009-LLL.
    [3] Chanh Cao Minh, Jean-Baptiste Clavaud, Padmanabhan Sundararaman, et al. GraphicalAnalysis of Laminated Sand-Shale Formations in the Presence of Anisotropic Shales.SPWLA48th Annual Logging Symposium, June3-6,2007-MM.
    [4] ChengBing Liu, Qiming Li, Jan Smits, et al. The Dual-Electrical-Layer Model ForAnalyzing Thin-Bedded Reservoirs [J]. SPWLA45nd Annual Logging Symposium, June6-9,2004-QQQ.
    [5] Hezhu Yin, Bobby Kurniawan. Resistivity anisotropy models and multi-componentinduction measurements: impact on Sw and uncertainty on HPV estimation [J]. SPWLA49th Annual Logging Symposium, May25-28,2008-LLLL.
    [6] J.D. Klein, P.R. Martin, The Petrophysics Of Electrically Anisotropic Reservoirs.[J].SPWLA36th Annual Logging Symposium, June26-29,1995-HH.
    [7] Jean-Pierre Leduc, Laurie Butkovic, Fran ois Umbhauer, et al. Petrophysical Use ofBorehole Images, Characterization and Uantification of Reservoir Permeability Anisotropy[J]. SPWLA51th Annual Logging Symposium, June9-23,2010-M.
    [8] Jesús M. Salazar and A. Jeff Martin Assessment of Rock Quality Using The Effect ofSynthetic Oil-Base Mud-Filtrate Invasion on Borehole Array-Induction ResistivityMeasurements: A Case Study of a Tight Gas Sand Field in Offshore Viernam [J]. SPWLA51th Annual Logging Symposium, June9-23,2010-Z.
    [9] Michael A. Frenkel and Ingo M. Geldmache, Real-time Estimation of Resistivity AnisotropyUsing Array Lateral and Induction Logs,Offshore Technology Conference held in Houston,Texas, U.S.A.,5–8May2003-Z.
    [10]Ollivier Faivre, Tom Barber, Laurent Jammes, et al. Using Array Induction and ArrayLaterolog Data to Characterize Resistivity [J]. SPWLA43rd Annual Logging Symposium,June2-5,2002-M.
    [11]R. Hayden, A. Kostin, S. Jacobsen, et al. Thin Bed Interpretation Techniques forNorthwestern Gulf of Mexico Coastal and Offshore Clastics [J]. SPWLA50th AnnualLogging Symposium, June21-24,2009-KKK.
    [12]R.A. Mollison, O.N. Fanini, B.F. Kriegshauser, et al. Impact of Multicomponent InductionTechnology on a Deepwater Turbidite Sand Hydrocarbon Saturation Evaluation.[J].SPWLA42nd Annual Logging Symposium, June17-20,2001-T.
    [13]Richard Rosthal, Tom Barber, Steve Bonner, et al. Field Test Resules of an ExperimentalFullytriaxial Induction Tool [J]. SPWLA44nd Annual Logging Symposium, June22-25,2003-QQ.
    [14]Tabanou, J. R., Anderson, B. Bruce, S., et al. Which Resistivity Should Be Used to EvaluateThinly Bedded Reservoirs in High-Angle Wells?[J]. SPWLA40th Annual LoggingSymposium, May30-June3,1999-E.
    [15]边会媛,潘保芝.利用横波数据进行低孔低渗储层气层识别与储层参数定量评价[J].吉林大学学报(地球科学版).2010,40(S1):106-109.
    [16]陈峰,安金珍,廖椿庭.原始电阻率各向异性岩石电阻率变化的方向性[J].地球物理学报,2003,46(2):271-278.
    [17]董建党.各向异性地层电磁测井响应的时域有限差分方法研究[D].青岛:中国石油大学(华东),2008.
    [18]高杰,尚作源,陈木银.电测井评价各向异性研究与应用[C].中国地球物理年会,2001.
    [19]韩颜峰,赵宏梅,张玉增,等.高分辨率阵列感应测井技术在王集油田低阻油层评价中的应用[J].石油地质与工程,2010,24(5):42-45.
    [20]蒋宏娜,孙建孟,徐峰华,等.应用双电层模型求取薄互层含水饱和度的方法研究[J].石油天然气学报(江汉石油学院学报),2009,31(1):229-233.
    [21]蒋建亮.阵列侧向测井响应正演研究[D].青岛:中国石油大学(华东),2009.
    [22]孔繁达,何涛,姜洪福.薄互层水平井测井电阻率的各向异性校正[J],北京大学学报(自然科学版),2011,47(2):302-308.
    [23]李同华,孟宪路,马建海,等. Sharplite薄层处理方法在台南气田的应用[J].西南石油大学学报(自然科学版),2010,32(1):63-67.
    [24]李茂兵.电成像测井自动识别和定量评价研究[D].青岛:中国石油大学(华东),2010.
    [25]梁巧峰,邵维志,王志克.高分辨率阵列感应测井在储集层解释评价中的应用[J].测井技术,2003,27(3):227-232.
    [26]覃世银,管志宁,王昌学,等.层状各向异性地层的识别与评价[J].测井技术,2003,27(3):194-197.
    [27]宋延杰.混合泥质砂岩通用电阻率模型综合研究[D].大庆:大庆石油学院.2006.
    [28]李金柱,孙波.利用常规测井和电成像资料评价薄层砂岩[J].测井技术,2003,27(1):35-38.
    [29]谭辉红,付晨东.高分辨率阵列感应测井在大庆东部油田的应用[J].测井技术,2006,30(4):347-356.
    [30]唐晓敏.低阻油层通用有效介质电阻率模型研究[D],大庆:大庆石油学院.2007.
    [31]汪宏年,杨善德,常明澈.层状各向异性介质中普通电阻率测井的快速正演模拟与应用[J].石油地球物理勘探,1998,33(3):320-327.
    [32]王忠东.利用薄层电阻率测井识别薄油气层[J].国外测井技术,2000,3.
    [33]吴健.薄层测井评价方法研究[D].青岛:中国石油大学(华东),2009.
    [34]吴鹏程,陈一健,杨琳,等.成像测井技术研究现状及应用[J].天然气勘探与开发,2007,30(2):36-40.
    [35]吴庆岩.高分辨率阵列感应测井在储层参数解释中的应用[D].杭州:浙江大学,2008.
    [36]夏宏泉等.随钻电阻率测井的各向异性影响及校正方法研究[J].国外测井技术,2007,1.
    [37]杨春梅,高杰,蔡建荣.各向异性地层的饱和度模型研究.
    [38]杨梅.提高测井曲线分辨率的方法研究[D].青岛:中国石油大学(华东),2009.
    [39]杨云侠,庞巨丰.浅谈中国测井技术的发展方向[J].科学实践,2005,20(3):315-316.
    [40]原宏壮,陆大卫,张辛耘,等.测井技术新进展综述[J].地球物理进展,2005,20(3):786-795.
    [41]张静.苏里格地区致密砂岩含气性评价及产能预测[D].青岛:中国石油大学(华东),2011.
    [42]张向林,刘新茹,刘向汉.中国测井技术的发展方向[J].吐哈油气,2008,13(1):72-82.
    [43]周凡,姜洪福,王立艳,等.基于阵列感应测井的支持向量机流体识别方法[J].中国海洋大学学报,2011,41:317-323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700