掺半导体纳米微粒光纤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对信息需求的快速增长,光纤通信技术成为信息高速公路的核心和支柱,目前光纤网络正朝全光网络方向发展。基于高非线性光纤四波混频效应(FWM,Four-Wave Mixing)的全光纤波长变换技术因具有宽带的多信道同时变换能力以及远大于电子器件速率极限的超高响应速度等优点,在高速WDM网络中展示了极为广阔的应用前景。因此,高非线性光纤逐渐受到了人们的重视,而对于高非线性光纤的研究也随之成为了功能光纤研究领域的一大热点。
     本文首先概述了非线性光纤的研究现状;同时,将纳米技术与光纤制备技术相结合,选用尺寸在十几个纳米的纳米级InP微粒,利用改进的化学气相沉积法,研制出了新型的掺纳米InP微粒光纤,此种光纤较普通光纤的特殊之处在于:在普通光纤的纤芯中掺入了纳米级InP微粒。通过一系列的实验测定,测得该光纤的纤芯中,InP的掺杂浓度为0.1%,掺杂纳米微粒的大小约为20nm,且该光纤具有一定的通光性能。基于以上实验,根据有限元法分析思想,建立了微粒在纤芯中均匀分布的光纤纤芯模型,并通过FEMLAB仿真工具,计算了纤芯中关于电磁场的能量分布图,并计算了光纤的有效折射率为n_(eff)=1.400,以及其有效面积为A_(eff)≈10.01μm~2,说明该光纤已经具有较普通光纤更小的有效模式面积以及非同寻常的折射率分布。根据以上结果,计算了光纤的非线性系数约为γ≈10.53W~(-1)/km,说明了该光纤具有较强的非线性特性。
     基于以上研究,对本课题工作进行了分析总结,得出:一个更加周期性的掺杂微粒分布以及更小的掺杂浓度会更有利于减小光纤中的传播损耗以及获得更佳的光控性能,这样也会获得更强的非线性特性,使这种光纤能更好的应用于各种光电子器件中。本课题的工作也为后续的研究工作指明了方向。
     最后,文章对此种非线性光纤的应用前景做出了分析和展望,相信此种光纤必定会为新型的非线性光纤的研究开辟新道路。
With the rapid growth of the information needs nowadays, optical communication technology becomes the core of the information highway, and currently fiber optic networks are moving in the direction of the development of all-optical networks. The all-optical wavelength conversion technology, which based on the FWM (Four-Wave Mixing) technology of high nonlinear fibre, has the advantages of broadband multi-channel transform capacity, ultra-high response speed that more excellent than the electronic devices' rate limit, shows the wild usage in WDM networks. Therefore, the research on high nonlinear fibre becomes a hot spot of the functional fibre research filed.
     First of all, this article states the overview of nonlinear optical research. Then combined the nano-technology with the fibre fabrication technology, the InP particles at nano-scale is chosen to fabricate the novel optical fibre doped with InP through a modified MCVD (Modified Chemical Vapor Deposition). Compared with ordinary optical fiber, this fibre is special that it has InP particles doped in its core. Through experiment, the consistency of InP is approximately 0.1% in the core, and the particles scale is about 20nm, and the fibre has an excellent waveguide characteristic. Based on the experiment, a core model that the particles uniformly distributed in is built, and obtained the effective refractive index n_(eff) = 1.400 and the effective core area A_(eff)≈10.01μm~2 that is less than ordinary fibre and different with ordinary refractive index distribution. According to the result above, the nonlinear coefficientγ≈10.53W~(-1)/km is got, and this result reflects that this novel optical fibre has a strong nonlinearity.
     Based on the research above, we got this conclusion that, a more cyclical distribution and less dense of the particles in the core will have a less propagation loss, a better light control performance, and a higher nonlinearity, so that it can be easily used in multiple optoelectronic devices. This research leads a way for continuous research.
     At last, this article gives a brilliant future of this fibre and believes that this kind of fibre can open up new roads in nonlinear fibre field.
引文
[1]K.Kao,G.Hockham.Dielectric Surface Waveguides for Optical Frequencies.Proc.IEEE.1966,133.
    [2]韩一石,现代光纤通信技术,科学出版社,2005.
    [3]I.P.Alcock,A.I.Ferguson,D.C.Hanna et al.,Mode-locking ofa meodymium-doped monomode fiber laser,Electron.Lett.,1986,22(5):268-269.
    [4]Shiquan Yang,Evgueni A.Ponomarev and Xiaoyi Bao,80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser,IEEE Photon.Technol.Lett.,2005,17(2):300-302.
    [5]Zhihong Li,Caiyun Lou,Kam Tai Chan et al.,A novel actively and passively mode locked fiber laser with dispersion-imbalanced loop mirror,Opt.Commun.,2000,186:173-176.
    [6]H.Chien,C.Yeh,K.Lai et al.,Stable and wavelength-tunable erbium-doped fiber double-ring laser in S-band window operation,Opt.Commun.,2005,249:261-264.
    [7]S.Li,C.Lou and K.T.Chan,Rational harmonic active and passive modelocking in a figure-of-eight fiber laser,Electron.Lett.,1998,34(4):375-376.
    [8]施纯峥,廖延彪,赖淑蓉.硫系光纤的非线性特性及其在全光开关上的应用.激光杂志,2001,22(5):1-4.
    [9]刘艳,谭中伟,傅永军,等.基于高非线性光纤四波混频的全光纤波长变换.半导体光电,2003,24(2):110-116.
    [10]R.Stolen,E.Ippen,A.Tynes.Raman Oscillation in Glass Optical Fibers.Appl.Phys.Lett.1972,20:62-64.
    [11]R.Stolen,J.Bjorkholm,A.Ashkin.Phase-matched Three-wave Mixing in Silica Fiber Optical Waveguides.Applied Physics Letters.2003,24:308.
    [12]A.Hasegawa.E Tappert,Appl.Phys.Lett.1973,23:142.
    [13]A.Gouveia-Neto,A.Gomes,J.Taylor.Femto Soliton Raman Generation.Quantum Electronics,IEEE Journal of.1988,24(2):332-340.
    [14]M.Farries,D.Payne.Optical Fiber Switch Employing a Sagnac Interferometer.Applied Physics Letters.1989,55:25.
    [15]R.Fork,C.Cruz,P.Becker,et al.Compression of Optical Pulses to Six Femtoseconds by Using Cubic Phase Compensation.Opt.Lett.1987,12(7):483-485.
    [16]N.Bloembergen.Nonlinear Optics.World Scientific,1996.
    [17]Y.Shen.The Principles of Nonlinear Optics.New York:John Willey & Sons.1984,307.
    [18]J E.P.Ippen and R.H.Stolen,Stimulated Brillouin scattering in optical fibers,Appl.Phys.Lett.,1972,21:539-541.
    [19]Alfano,R.R.The Supercontinuum Laser Source:Fundamentals With Up-dated References.[S.l.]:Springer,2006.
    [20]Mori,A.,Y.Ohishi,T.Kanamori,and S.Sudo.Optical amplification with neodymium-doped chalcogenide glass fiber.Applied Physics Letters,1997,70:1230.
    [21]任广军,张强,王鹏,等.掺钕保偏光纤激光器的研究.物理学报.2007:07.
    [22]戴世勋,聂秋华,徐铁锋,等.高非线性铋酸盐玻璃光纤的研究进展,光纤与电缆及其应用技术,2007,2:5-10.
    [23]P.Petropoulos,H.Ebendorff-Heidepriem,V.Finazzi,et al.Highly Nonlinear and Anomalously Dispersive Lead Silicate Glass Holey Fibers.Optics Express.2003,11(26):3568-3573.
    [24]H.Ebendorff-Heidepriem,P.Petropoulos,S.Asimakis,et al.Bismuth Glass Holey Fibers with High Nonlinearity.Optics Express.2004,12(21):5082-5087.
    [25]Auxier,J.M.,S.Honkanen,A.Sch(A|¨)ulzgen,M.M.Morrell,M.A.Leigh,S.Sen,N.F.Borrelli,and N.Peyghambarian.Silver and potassium ion-exchanged waveguides in glasses doped with PbS semiconductor quantum dots.Journal of the Optical Society of America B,2006,23(6):1037-1045.
    [26]李永升,田强.用非本征吸收区的透射系数研究CdSeS量子点玻璃的非线性系数.光学技术,2004,30(001):30-32.
    [1]栾野梅,安茂忠,半导体纳米材料的性质及化学法制备,半导体光电,2003,24(6):382-385.
    [2]Richard L W,Mark F S,Andrew T M,et al.Synthesis,Characterization and Thermal Decomposition of[Cl_2Ga](SiMe_3)2]_2,a Potential Precursor to Gallium Phosphide.Organometallics,1993,2832-2834.
    [3]Steven R A,Andrew T M,Richard L W,et al.Preparation,Characterization and Facile Thermolysis of[X_2GaP(SiMe)_2]_2 and(Cl_3Ga_2P)_2:New Precursors to Nanocrystalline Gallium Phosphide.Chem Master,1994,6:82-86.
    [4]卢肖,吴传贵,张万里等,射频溅射制备的BST薄膜介电击穿研究,物理学报,2006,55(5):2513-2517.
    [5]蒙冕武,邓希敏,刘明登,射频溅射Sn薄膜的工艺研究,传感技术,1999,18(1):7-9.
    [6]王雪敏,曾小勤,吴国松等,磁控溅射在镁合金表面处理中的应用,铸造技术,2006,27(4):412-415.
    [7]李宝河,冯春,杨涛等,磁控溅射方法制备垂直取向FePt/BN颗粒膜,物理学报,2006,55(5):2562-2566.
    [8]冯琳,袁连山,褚莹,反胶束法制备纳米微粒.东北师大学报科学版,1999,(3):52-58.
    [9]阎建辉,黄可龙,戴潇燕,反胶束微乳法制备无机功能纳米材料,精细化工中间体,2003,33(3):4-7.
    [10]万涛,王跃川,反胶束溶胶.凝胶法制备纳米TiO2,石油化工,2005,34(5):464-468.
    [11]周富荣,郭晓洁,匡亚琴,反胶束微乳液法制备纳米ZnO,应用化工,2005,34(11):690-694.
    [12]李月峰,赖琼任,反胶束微乳液法合成纳米SrTiO_3研究,无机化学学报,2005,21(6):915-918.
    [13]黄之杰,费逸伟,尚振锋等,溶胶.凝胶法制备纳米SiO_2试验研究,精细石油化工进展,2006,7(1):34-36.
    [14]李芝华,任冬燕,溶胶凝胶法制备ITO透明导电薄膜的工艺研究,材料科学与工艺,2006,14(2):174-177.
    [15]邹龙江,王旭珍,曲江英等,化学气相沉积法制备定向碳纳米管及其生长机理的研究,化工新型材料,2006,34(4):9-11.
    [16]闰志巧,熊翔,肖鹏等,化学气相沉积法制备Ta_2O_5薄膜的研究进展.功能材料,2006,37(4):511-514.
    [17]唐仁杰.光纤预制棒技术的最新发展.光机电信息.2001,(4):26-31.
    [18]胡显清.制备光纤预制棒的新方法.光纤光缆传输技术.1992,(001):32-37.
    [19]陈炳炎,光纤光缆的设计和制造,浙江:浙江大学出版社.2003
    [20]P.Schultz.Fabrication of Optical Waveguides by the Outside Vapor Deposition Process.Proceedings of the IEEE.1980,68(10):1187-1190.
    [21]M.Blankenship,C.Deneka.The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fibers.Microwave Theory and Techniques,IEEE Transactions on.1982,82(10):1406-1411.
    [22]K.Imoto,M.Sumi.Inner Pressure Control Method in Optical Fiber Preform Fabricationby Vapor-phase Axial Deposition.Lightwave Technology,Journal of.1988,6(4):574-581.
    [23]M.Carratt,S.Walker.MCVD-Plasma Process for Manufacturing Single-mode Optical Fibers for Terrestrial Applications.ELECTRICAL COMMUNICATION.1994:11-11.
    [24]D.Brenner.Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films.Physical Review B.1990,42(15):9458-9471.
    [25]S.Yugo,T.Kanai,T.Kimura,et al.Generation of Diamond Nuclei by Electric Field in Plasma Chemical Vapor Deposition.Applied Physics Letters.1991,58:1036.
    [26]C.Bower,O.Zhou,W.Zhu,et al.Nucleation and Growth of Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition.Applied Physics Letters.2000,77:2767.
    [27]查健江.光纤预制棒外包层制作方法浅析.光纤与电缆及其应用技术.2002,(005):35-38
    [1]Agrawal,G.P.and ScienceDirect(Online service).Nonlinear fiber optics.:Springer,1989.
    [2]Tsao,C.Optical fibre waveguide analysis.:Oxford University Press New York,1992.
    [3]龙彩华,陈抱雪,and沙慧军.光纤-波导自动调芯系统的研究.光学学报,2004,24(4):442-447.
    [4]Winge,RK,RK Winge,et al.Inductively coupled plasma-atomic emission spectroscopy:Elsevier,1985.
    [5]Uden,PC.Element-specific chromatographic detection by atomic emission spectroscopy,1992.national meeting of the American Chemical Society(ACS).,1992,22.
    [6]刘永明and李桂芝.电感耦合等离子体原子发射光谱法间接测定盐酸苯海索.分析化学,2001,29(001):66-69.
    [7]范哲锋.活性氧化铝微柱分离富集-电感耦合等离子体原子发射光谱法在线测定水中铬(Ⅲ)和铬(Ⅵ).分析化学,2003,31(009):1073-1075.
    [8]Winge,RK,VJ Peterson,and VA Fassel.Inductively Coupled Plasma-Atomic Emission Spectroscopy:Prominent Lines.Applied Spectroscopy,1979,33(3):206-219.
    [9]ZHAO,F.,SP MCGRATH,and AR CROSLAND.Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy(ICP-AES).Communications insoil science and plant analysis,1994,25(3-4):407-418.
    [10]Boumans,P.Line coincidence tables for inductively coupled plasma atomic emission spectrometry:Pergamon Press,1984.
    [11]MERMET,JM.Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics.Analytica chimica acta,1991,250(1):85-94.
    [12]Boumans,P.Inductively coupled plasma emission spectroscopy.Part Ⅱ:applications and fundamentals.Volume 2:John Wiley and Sons,New York,NY,1987.
    [13]Reimer,L.Scanning Electron Microscopy.Usp.Fiz.Nauk,1987,152:357-358.
    [14]Goldstein,J.Scanning Electron Microscopy and X-ray Microanalysis:Kluwer Academic Publishers,2003.
    [15]Reimer,L.Scanning Electron Microscopy:Physics of Image Formation and Microanalysis.Measurement Science and Technology,2000,11:1826.
    [16]Eigler,DM and EK Schweitzer.Positioning single atoms with a scanning electron microscope.Nature,1990,344:524-526.
    [17]Kutz,J.N.,C.V.Hile,W.L.Kath,R.D.Li,and P.Kumar.Pulse propagation in nonlinear optical fiber lines that employ phase-sensitive parametric amplifiers.J.Opt.Soc.Am.B,1994,11(10):2112-2123.
    [18]戴世勋,聂秋华,and徐铁锋.高非线性铋酸盐玻璃光纤的研究进展.2007.
    [19]蔡春平.光纤折射率的依赖因素.应用光学,2000,21(005):13-18.
    [1]R.W.Clough.The Finite Element Method of Structural Analysis.Proc.2nd Conf.Electronic Computation.ASCE,Pittsburgh,Pa.,Sept.1960.
    [2]Peano A G,Pasini A.Adaptive approximation in finite element structural analysis.Computers and Structures,1979,10(2):332-342.
    [3]Szabo B A.Mesh design for the p-version of the finite element method.Computer methods in Applied Mechanics and Engineering,1986,55(1):181-197.
    [4]Zienkiewicz O C,Zhu J Z,et al.Effective and practical h-p version adaptive analysis procedures for the finite element method.International Journal for Numerical Methods in Engineering,1989,28(3):879-891.
    [5]Oden J T,Demkowicz L,et al.Toward a universal h-p adaptive finite element strategy,Part Ⅱ:a posteriori error estimation.Computer Methods in Applied Mechanics and Engineering,1989,77(1):113-180.
    [6]Turcke D J,McNeice GM.Guidelines for selecting finite element grids based on an optimization study.Computers and Structures,1974,24(2):499-519.
    [7]倪光正.电磁场数值计算,高等教育出版社,1996,183-235.
    [8]Frederick C O,Wong Y C,Edge F W.Two dimensional automatic mesh generation for structural analysis.J.Int J Num Meth Eng,1970(2):133-144.
    [9]Cendes Z J,Shenton D,Shahnasser H.Magnetic field computation using Delaunay triangulation and complementary finite element methods[J].IEEE Trans Mag 1983,19(6):2551-2557.
    [10]Hassan O,Probert E J,Morgan K,Peraire J.Mesh generation and adaptivity for the solution of compressible viscous high speed flow.J.Int J Numer Meth Eng,1995,38:1123-1148.
    [11]J.Broeng,T.Sondergaard,S.E.Barkou,P.M.Barbeito and A.Bjarklev.Waveguidance by the photonic Bandgap Effect in Optical Fibers.J of Opt.A:Pure Appl.Opt.vol.1,1999:477-482.
    [12]L.P.Shen,W.-P.Huang,et al.Design and Optimization of Photonic Crystal Fibers for Broad-Band Dispersion Compensation[J].IEEE Photonics Technology Letters.2003.Vol.15,No.4,April.:540-542.
    [13]M.A.R.Franco,A.Passaro,J.R.Cardoso and J.M.Machado,Finite Element Analysis of Anisotropic Optical Waveguide with Arbitrary Index Profile,IEEE Transaction on Magnetics,vol.35,No.3,1999:1546-1549.
    [14]Maros A.R.Franco,Haroldo T.Hattori,et al.Finite Element Analysis of Photonic Crystal Fibers.IMOC.Volume 1,6-10 Aug.2001:5-7.
    [15]Cirak F,Ramm E.A posteriori estimation and adaptivity for linear elasticity using the reciprocal theorem.J.Comp Meth Appl Mech Eng,1998,156:351-362.
    [16]Zhu J Z,Zienkiewicz O C,Wu J.A new approach to the development of automatic quadrilateral mesh generation.J.Int J Num Meth Eng,1991,32:849-866.
    [17]Wriggers P,Scherf O.Adaptive finite element techniques for frictional contact problems involving large elastic strain.J.Comp Meth Appl Mech Eng,1998,151:593-603.
    [1]J.Teipel,K.Franke,D.T(u|¨)rke,F.Warken,D.Meiser,M.Leuschner,and H.Giessen,Characteristics of supercontinuum generation in tapered fibers using femtosecond laser pulses,Apply.Phys.B,2003,77,245-250
    [2]J.K.Ranka,R.S.Windeler,and A.J.Stentz,Visible continuum generation in air silica microstructure optical fiber with anomalous dispersion at 800nm,Opt.Lett.2000,25:25-27
    [3]S.Coen,A.H.L.Chau,R.Leonhardt,J.D.Harvey,J.C.Knight,W.J.Wadsworth,and P.St.J.Russell,White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,Opt.Lett.2001,26:1356-1358
    [4]S.Coen,A.H.L.Chau,R.Leonhardt,J.D.Harvey,J.C.Knight,W.J.Wadsworth,and P.St.J.Russell,Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,J.Opt.Soc.Am.B 2002,19:753-764
    [5]W.J.Wadsworth,N.Joly,J.C.Knight,T.A.Birks,F.Biancalana,and P.St.J.Russell,Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,Opt.Express 2004,12,299-309
    [6]盛广沪,俞进,and廖兴展.超慢光速的研究进展.江西科学,2006,24(5):323-326.
    [7]沈京玲and戴建华.光能够走多慢?—极慢光速研究若干进展.物理,2002,31(002):88-92.
    [8]Ku,EC.,F.Sedgwick,C.J.Chang-Hasnain,P.Palinginis,T.Li,H.Wang,S.W.Chang,and S.L.Chuang.Slow light in semiconductor quantum wells.Optics Letters,2004,29(19):2291-2293.
    [9]程静.慢光波导的传播模式与慢光孤子.量子光学学报,2006,12(B08):31-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700