电感耦合等离子体质谱法在高纯铟杂质元素分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电感耦合等离子体质谱法(ICP-MS)是20世纪80年代发展起来的分析技术,ICP-MS分析技术由于灵敏度高、检出限低、分析速度快、线性范围宽、可多元素测定、抗干扰能力强、适用于同位素比的快速测定等优点,在痕量元素和同位素领域得到了大量的应用。本文研究了利用电感耦合等离子体质谱法测定高纯铟中十二种国标规定的杂质元素的分析方法,对各元素测试条件进行了探讨,为分析高纯铟中各杂质元素提供了有益的参考。
     (1)仪器参数、实验方法、测试模式及分析元素质量数确定。仪器参数根据仪器最优化条件调谐得到;实验方法依据高纯铟的性质及仪器分析特点得到;重点研究了ICP-MS测定高纯铟各杂质元素的测试模式及选择的质量数,通过分析对比和选择,确定了在ICP-MS的三种模式下,~(56)Fe采用CCT模式,~(63)Cu、~(66)Zn、~(75)As、~(107)Ag、~(111)Cd、~(118)Sn、~(205)Tl、~(207)Pb采用常规的XS~-模式,~(25)Mg、~(27)Al、~(60)Ni采用冷焰模式测试。
     (2)碰撞池技术(CCT)模式测定铁。~(56)Fe采用CCT测试模式,在0.3mol·L~(-1)的硝酸介质中,把样品稀释2500倍,以~(59)Co作为内标校正元素,使用在线内标加入法测定样品,方法加标回收率在94.0-102.1%之间,精密度为6.67%,方法检出限为0.06ng·mL~(-1)。
     (3)常规(XS)模式下测定~(63)Cu、~(66)Zn、~(75)As、~(107)Ag、~(111)Cd、~(118)Sn、~(205)Tl、~(207)Pb。在常规模式下,在0.3mol·L~(-1)的硝酸介质中,把样品稀释2500倍,选取~(103)Rh作为~(63)Cu、~(66)Zn、~(75)As、~(107)Ag、~(111)Cd、~(118)Sn内标校正元素,~(209)Bi作为~(205)Tl、~(207)Pb内标校正元素,使用在线内标加入法测定样品,各元素加标回收率在94.0-102.0%之间,精密度在1.33-5.26%之间,方法检出限在0.05-0.07ng·mL~(-1)之间。
     (4)冷焰(Cool Plasma)模式下测定~(25)Mg、~(27)Al、~(60)Ni。在冷焰(CoolPlasma)模式下,在0.3 mol·L~(-1)的硝酸介质中,把样品稀释2500倍,以~(45)Sc作为~(25)Mg、~(27)Al、~(60)Ni内标校正元素,使用在线内标加入法测定样品,各元素加标回收率在96.0-102.5%之间,精密度在3.33-5.83%之间,方法检出限在0.05-0.07 ng·mL~(-1)之间。
Inductively coupled plasma mass spectrometry (ICP-MS) is an elemental measurement technology in the 1980s. Nowadays, ICP-MS has become an acknowledged powerful technique for the measurement of trace element and isotope, with a wide spectrum of applications. It has such analytical features as high sensitivity, extremely low limit of detection and wide linear dynamic range, simple lines, few interferences, rapid analysis, and capabilities for multi-element and isotope ratio determination. In this thesis, inductively coupled plasma mass spectrometry was applied for detecting the prescriptive twelve impurity elements in high purity indium, and investigating the detection condition for each element. The research has a beneficial significance for the detection of the impurity elements in high purity indium. The conclusions were indicated as follows:
     (1) Firstly, instrument parameters, experimental method, detecting pattern and mass number of every element were determined by turning the optimal condition of instrument and character of instrument analysis, and by the quality of high purity indium respectively. The detecting pattern and the selected mass number were intensive to measure the impurity elements of high purity indium by ICP-MS. By comparing of the results, three modes were resolved to detect the impurity elements, which were collision cell technology (CCT) for ~(56)Fe, conventional XS~- mode for ~(63)Cu, ~(66)Zn, ~(75)As, ~(107)Ag, ~(111)Cd, ~(118)Sn, ~(205)Tl, ~(207)Pb and cool plasma mode for ~(25)Mg, ~(27)Al, ~(60)Ni.
     (2) Collision cell technology (CCT) was developed for the determination of ~(56)Fe in high purity indium by ICP-MS. The sample was diluted by 2500 times in 0.3mol·L~(-1) nitric acid medium. As internal standard element ~(59)Co was added into the sample, and on-line standard addition method was applied to detect the sample. The coefficient of recovery, RSD and the limit of detection were ranged from 94.0-102.1 %, 6.67 % and 0.06ng·mL~(-1) respectively. The determination result was satisfied.
     (3) ~(63)Cu, ~(66)Zn, ~(75)As, ~(107)Ag, ~(111)Cd,~(118)Sn, ~(205)Tl, ~(207)Pb were detected in the conventional XS- mode by ICP-MS. The same as above, the sample was diluted by 2500 times in 0.3mol·L~(-1) nitric acid medium, and then ~(103)Rh and ~(209)Bi were added into ~(66)Zn, ~(75)As, ~(107)Ag, ~(111)Cd,~(118)Sn and ~(205)Tl, ~(207)Pb sample, as internal standard element respectively until they were analyzed. On-line standard addition method was used to measure those elements. The coefficient of recovery, RSD and the limit of detection were investigated for all elements, the results were ranged from 94.0-102.0%, 1.33 - 5.26% and 0.05 -0.07ng·mL~(-1) respectively. The results indicate that the developed method was accurately, reliability and satisfied.
     (4) The cool plasma mode of ICP-MS was applied to detect the three impurities of ~(25)Mg, ~(27)Al,~(60)Ni element in high purity indium. The elements were measured by On-line standard addition method. In the method, the sample was diluted by 2500 times in 0.3mol·L~(-1) nitric acid medium, and ~(45)Sc was added to the sample as internal standard element. The coefficient of recovery, RSD and the limit of detection were ranged from 96.0-102.5 %, 3.33-5.83 % and 0.05-0.07 ng·mL~(-1) for the elements respectively.
     In this work, the three methods (Collision cell technology, the conventional XS~- mode and cool plasma mode of ICP-MS) were developed to detect the twelve prescriptive impurity elements in high purity indium. The application of analytical instrument parameter and the methodological condition were investigated. The results illustrate that those technologies can provide a beneficial reference for the determination of the prescriptive impurities of metal elements in high purity metal.
引文
[1] 王树楷.铟冶金[M].北京:冶金工业出版社,2007.3
    [2] 屠海令,赵国权,郭青蔚.有色金属-冶金、材料、再生与环保[M].北京:化学工业出版社,2004.2(303)
    [3] 费多洛夫,阿克楚林著(俄).铟化学手册[M].张启运,徐克敏,编译.北京:北京大学出版社,2005.5
    [4] 陈志飞,沈湘黔,宁明顺.锌铟实用冶金[M].湖南:中南工业大学出版社,1994.4
    [5] 朱水波.高纯铟的应用[J].中国有色冶金,1982,02(12):57-60
    [6] 陈薇,徐柳苏,李东等.我国纳米铟的研究现状[J].沿海企业与科技,2005(02):78-81
    [7] 冯同春,杨斌,刘大春等.铟的生产技术与产业现状[J].冶金丛书,2007(02):245-259
    [8] 梁杏初.发挥铟资源优势发展铟的高新产业[J].广东有色金属学报,2002,(S1):108-110
    [9] 戴军.高纯铟的制备[J].中国有色冶金,1995,04(12):38-43
    [10] 石怀源.铟精炼工艺的改进[J].南方金属,2008(04):50-53
    [11] 中华人民共和国国家标准局.GB2594.1-2594.5-81,高纯铟分析方法[S].北京:中国标准出版社,1987-06-26
    [12] 邓必阳,黄惠芝,谢建新.氢化物连续发生电感耦合等离子体原子发射光谱法测定高纯铟中砷锑锡[J].理化检验(化学分册),2006,8(5):68-70
    [13] 熊晓燕,王津.金属铟中杂质元素的ICP-AES测定[J].广东有色金属学报,2006,3(1):17-19
    [14] 刘传仕.电感耦合等离子体发射光谱法测定铟中杂质元素[J].矿冶,2005,3(2):24-26
    [15] 刑志强,郭兴家,康平利,等.等温平台石墨炉原子吸收光谱法测定高纯铟中痕量杂质铅和砷[J].辽宁大学学报:自然科学版,2005,5(4):33-34
    [16] 程建,刘新玲.火焰原子吸收光谱法直接测定精铟中铊[J].冶金分析,2004,11(6):32-33
    [17] Gray A L,Houk R S,Jarvos K E.Handbook of Inductively Coupled Plasma Mass Spectrometry.England:Chapman& Hall, 1992.43-45
    [18] Data A R, Gray A L.Application of Inductively Coupled Plasma Mass Spectrometry.England:Chapman& Hall, 1989.38-39
    [19] Becker J S,Dietze H J. 1999. Precise isotope ratio measurements for uranium, thorium and plutonium by quadrupol-based inductively coupled plasma mass spectrometry. Fresenius J. Anal. Chem., 364,pp. 482-488
    [20] Becker J S,Dietze H J. 2000. Precise and accurate isotope ratio analysis by ICP-MS. Freseninus J. Anal. Chem., 368,pp.23-30
    [21] Vanhaecke F, Moens L, Dams R, et al. 1999b. Evaluation of the Isotope Ratio Performance of an Axial Time-of-Flight ICP Mass Spectrometry. Anal. Chem., 71(15), pp. 3297-3303
    [22] Vanhaecke F, Wannemacker G D, Moens L, et al. 2001. The Use of Sector Field ICP-Mass Spectrometry for Rb-Sr Grochronological Dating. Fresenius J. Anal. Chem.,. 371 pp. 915-920
    [23] Bacon J R, Crain J S, Vaeck L V, William J G. 2001. Atomic Spectrometry Update, pp. Atomic mass spectrometry. J. Anal.At. Spectrom., 16. pp. 879-915
    [24] 邵友彬.等离子体质谱在元素分析中的应用.岩矿测试,1992,11(1-2):24-36
    [25] 李冰,杨红霞.电感耦合等离子体质谱技术最新进展.分析实验室,2006,22(1):94-100
    [26] 胡圣虹,罗彦,马彦芳等.近年来电感耦合等离子体质谱技术进展.国外分析仪器,2005,2:1-13
    [27] 刘湘生,张安定.电感耦合等离子体质谱技术新进展.现代科学仪器,2000,(1):19-26
    [28] 陈登云,Tye Christopher.ICP-MS技术及应用.现代仪器,2001,(4):8-11
    [29] 李金英,郭冬发,姚继军,曹淑琴.电感耦合等离子体质谱(ICP-MS)新进展.质谱学报,2002,23(3):164-179
    [30] 罗彦,胡圣红,林守麟等.2001.激光剥蚀电感耦合等离子体质谱微区分析新进展.分析化学,29(11):1345-1352
    [31] 吕元琦,尹明,李冰.流动注射----电感耦合等离子体质谱应用现状及进展.岩矿测试,2001,20(2):115-124
    [32] 陈杭亭,曹淑琴,曾宪津.电感耦合等离子体质谱法在生物样品分析中的应用.分析化学,2001,29(5):592-600
    [33] 杨朝勇,庄峙厦,谷胜等.同位素稀释法电感耦合等离子体质谱在痕量元素分析中的应用.分析测试学报,2001,20(2):87-92
    [34] 刘英,臧慕文,刘安生,徐纪成,李华昌.有色金属进展-有色金属分析检测[M].长沙:中南大学出版社,2007.(11):113-126
    [35] 张万祥.现代有色冶金分析、测试新工艺新技术实用手册[M].北京:冶金工业出版社,2007.(11):245-259
    [36] 符斌,李华昌.有色冶金分析手册[M].北京:冶金工业出版社.2004.(10):187-197
    [37] 王海.冶金分析前沿[M].北京:科学出版社.2004.324-327
    [38] 刘江晖,焦红,谢守新,谢湘娜,胡思,谢玉珊.ICP-MS同时测定植物性食品中稀土元素的方法研究[J].分析试验室,2007,26(12):52-55
    [39] 郭鹏.电感耦合等离子体质谱法测定高纯氧化钽中28种痕量杂质元素[J].分析试验室,2008,27(3):106-109
    [40] 刘虎生,邵宏翔.电感耦合等离子体质谱技术与应用[M].北京:化学工业出版社,2005.8:292-301
    [41] 王小如.电感耦合等离子体质谱应用实例[M].北京:化学工业出版社,2005.9:275-296
    [42] 李冰,杨红霞.电感耦合等离子体质谱原理和应用[M].北京:地质出版社,2005.9:244-247
    [43] 施燕支,王英峰,王艳泽,陈玉红.带八极杆碰撞/反应池的电感耦合等离子体质谱法测定中药中的微量元素[J].分析试验室,2007,26(3):47-50
    [44] 李政军,黄金凤,刘健斌,等.八极杆碰撞/反应池-ICP-MS测定纯铜中的磷[J].分析试验室,2007,26(1):76-78
    [45] 张华,王英峰,施燕支,等.电感耦合等离子体质谱法测定镁合金中的多种元素[J].分析试验室,2007,26(6):47-49
    [46] Tan S H,Horlick G. Appl Spedrosc, 1986.40:445-460

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700