替代燃料理化性质对柴油机燃烧和排放特性的影响规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发和使用清洁的替代燃料是同时解决能源短缺与大气污染两个全世界亟待解决的关键问题的重要途径,生物柴油和天然气合成柴油两种液体燃料是目前最具潜力的替代燃料,在柴油机结构和参数不做大的变化情况下就可以单独或者掺烧的形式使用。本文在同一柴油机机型上,通过混合燃料理化特性的分析,深入研究生物柴油和天然气合成柴油燃料(GTL)对柴油机燃烧特性、常规排气污染物和排气微粒粒径分布的影响规律,分析排气污染物和排气微粒粒径分布特征和关键影响因素。
     采用国内通用的先进测试仪器搭建了满足国Ⅳ排放要求的增压中冷高压共轨柴油机的测试平台。开发设计了分流式排气微粒稀释采样系统和两级排气微粒粒径分布测量稀释采样系统,使用TSI EEPS3090型发动机排气粒径谱仪进行排气微粒粒径分布试验时,排气微粒粒径分布测量稀释采样系统的最佳稀释比控制在200~300范围内。
     测试分析了试验燃料的主要理化特性,总结出生物柴油和天然气合成柴油混合燃料十六烷值、密度、芳烃含量、蒸馏特性温度T90/T95、硫含量、氧含量和黏度等理化特性参数以及天然气合成柴油正构烷烃浓度的变化规律。
     研究结果表明,对于生物柴油/石化柴油混合燃料,随着生物柴油含量的增加,燃烧特性中最高燃烧压力降低、最大放热率和最大压力升高率增加,但在小负荷时变化规律有所差异。滞燃期略有延长,燃烧持续期缩短。在大负荷工况常规排气污染物的CO、HC、PM和碳烟排放减少,NO_x排放增加。在小负荷工况,PM排放和碳烟排放增加,NO_x排放减少,生物柴油燃料的CO排放和HC排放高于石化柴油。
     稳态工况时石化柴油的排气微粒粒径分布曲线呈单峰结构,生物柴油呈核态模式和积聚态模式的双峰结构,与石化柴油相比,生物柴油的50nm以下核态微粒排放数量浓度较大,50nm以上积聚态数量浓度少。随着负荷的增加,石化柴油积聚态微粒数量浓度增加的幅度比核态模式微粒大,浓度峰值向大粒径方向偏移;而生物柴油核态微粒数量浓度下降,浓度峰值向小粒径方向偏移,积聚态微粒浓度上升,峰值向大粒径方向偏移。随着生物柴油含量的增加,稳态工况燃料的微粒粒径浓度分布由石化柴油单峰结构逐渐向生物柴油双峰结构过渡,工况不同,过度趋势有所差别。瞬态工况时,石化柴油以积聚态微粒为主,生物柴油以核态微粒为主,其总微粒平均数量浓度要高于石化柴油,核态模式微粒平均浓度要高于积聚态峰值。随着瞬变率变小,两种燃料的核态模式微粒平均浓度均逐渐降低,积聚态模式微粒平均浓度变化不大。随着生物柴油含量的增加,核态模式微粒平均浓度逐渐增加,积聚态微粒平均浓度逐渐减小,核态微粒所占总微粒比例逐渐增加,最高可达97%。
     生物柴油黏度高,密度大,十六烷值高,氧含量多,芳烃含量少等特点是影响柴油机燃烧特性、常规排气污染物和排气微粒粒径分布的主要因素。
     对于天然气合成柴油/石化柴油混合燃料,随着混合燃料中GTL含量的增加,燃烧滞燃期缩短,燃烧持续期延长,预混合燃烧量减少,扩散燃烧比增加。最高燃烧压力、最大压力升高率和最大放热率在不同工况变化规律有所差异。常规排气污染物CO、HC、NOx、PM和碳烟排放逐渐减少,只有在10%小负荷工况,NO_x排放略有增加。GTL燃料可以明显改善NO_x-PM的折中关系。
     石化柴油、GTL以及混合燃料的微粒数量浓度分布曲线在稳态工况均呈单峰结构,分布曲线在25nm左右出现了凹点,峰值区域在50~100nm之间,积聚态模式微粒粒径浓度增加的幅度要比核态模式大。随着GTL含量的增加,不同负荷的25nm以下核态模式微粒数量浓度逐渐减少,25nm以上核态模式微粒数量浓度和50nm以上积聚态模式微粒数量浓度在小负荷工况减少而在中大负荷工况增加。瞬态工况时核态模式微粒数量浓度在增负荷过程前期增加,在中期附近达到峰值,在后期减少。积聚态模式微粒数量浓度在增负荷过程中增加幅度不大。随GTL含量增加,核态模式微粒数量浓度峰值时刻提前,积聚态模式微粒数量浓度增加。使用低含量合成柴油混合燃料,随着合成柴油含量的增加,瞬态工况的核态模式数量浓度逐渐降低,尤其对于大瞬变率工况效果更显著。
     天然气合成柴油十六烷值高,芳烃含量少,密度小等特点是影响柴油机燃烧特性、常规排气污染物和排气微粒粒径分布的主要因素。
The world faces two critical problems of energy shortage and air pollution. Developmentand utilization of clean alternative fuels is an effective solution. At present, biodiesel andgas-to-liquids (GTL) are most promising alternatives. They can be mono-fuel or blendedwith few diesel engine structure modification and parameters tuning. On the same dieselengine, this paper analyzes the physical and chemical characteristics of biodiesel andGTL blended fuel, their effects on combustion process, exhaust gas pollutants and PMsize distribution, and finding the key factors.
     The advanced test platform is established for high pressure common rail diesel enginewith advanced measurement facilities. Two partial flow dilution sampling systems aredesigned for PM mass and PM size measurement. Accroding to the requirement for theengine exhaust particle size spectrometer of TSI EEPS3090, the optimal dilution ratio isset in200~300.
     Seven physical and chemical properties of biodiesel and GTL blended fuel, aresummarized, as well as cetane number, density, aromatic content, distillationcharacteristic temperature T90/T95, sulfur content, oxygen content, viscosity, n-alkanesconcentration of GTL base on measurement.
     The results show that the peak pressure decreases, the maximum rate of heat releaseand the maximum pressure rising rate increases with more biodiesel. But, the case iscomparably different under low load. However ignition delay period increases slightlyand combustion duration decreases. Under high load, more biodiesel blended content,less CO, HC, PM and soot emission concentration, while more NOx. Under low load, PMand soot increases, NOxdecreases. CO and HC resulting from biodiesel B100arehigher than those of diesel. NOxand PM trade-off relationship are not obviouslyimproved.
     The particle size distribution curve of diesel is unimodal at steady operating conditions,while that of biodiesel is bimodal with nuclei mode and accumulation mode. Thenumber density of nuclei mode particle from biodiesel is higher than that of diesel,however, that of accumulation mode is less. Under higher load, the number densityrising rate of accumulation mode from diesel is bigger than that of nuclei mode, and thepeak shifts to the big size. The number density of nuclei mode from biodiesel decreasesand the peak shifts to the small size, while that of the accumulation mode rises and thepeak shifts to the big size. With more blended biodiesel under steady operatingconditions, particle distribution gradually changes from unimodal of diesel fuel tobimodal of biodiesel, but the transition trend is distinct under different operating condition. The particle size distribution from diesel dominates with50nm accumulationmode under transient operating conditions, and that of below50nm nuclei mode. Theaverage number density of biodiesel is higher than that of diesel, while that of nucleimode is higher than that of accumulation mode. With the transient rate decreases, theaverage number density of nuclei mode decreases, while that of accumulation is muchsmall. The average number density of nuclei mode gradually increases with moreblended biodiesel, while that of accumulation mode gradually decreases, the highestcan amount to97%.
     The biodiesel is of higher viscosity, cetane number, oxygen content and lower aromaticcontent, density. They have great effect on combustion,exhaust gases pollutants andPM size distribution.
     With more blended GTL, the shorter ignition delay period and longer combustionduration. At the same time pre-mixing combustion quantity decreases and diffusioncombustion ratio increases. The peak pressure, maximum pressure rise rate and themaximum rate of heat release are distinct under different operating condition. CO, HC,NOx, PM and soot emissions gradually decrease, but NOx increases slightly at10%lowload, GTL can significantly improve the NOxand PM trade-off relationship.
     Under steady operating conditions, PM number density distribution from diesel, GTL andblended fuel take on unimodal. At about25nm, the number density is the smallest. Thepeak area lies between50~100nm. That of accumulation mode from GTL is biggerthan that of nuclei mode. With more blended GTL,that of nuclei mode below25nmgradually decreases under different load, that of nuclei mode above25nm and that ofaccumulation mode above50nm decreases under low load decrease, however theyincrease at medium and higher load. Under transient operating conditions, the numberdensity of small particle size of nuclei mode increases under higher load at early stage,peak near interim and reduce in the later. That of accumulation mode change very smallunder higher load. With more blended GTL, the peak number density of nuclei modeadvances and that of large particle size of accumulation mode increases. With lessblended GTL, the peak number density of nuclei mode gradually decreases with moreblended GTL, especially for large transient rate condition better effect.The GTL is of higher cetane number, lower aromatic content, less density which hasgreat effects on combustion, exhaust pollutants and PM size distribution.
引文
[1]中国汽车工业协会.汽车产销量统计数据[DB/OL]. http://www.caam.org.cn.
    [2]申琴宇,吴磊.全球石油资源:稀缺还是充足[J].中国石油大学学报,2006,22(3);1~7.
    [3]International Energy Agency (IEA). Key World Energy Statistics2010[M]. FranceSoregraph,2010.
    [4]陈斌.坚决控制汽车产业产能过剩[C].中国汽车产业发展国际论坛,天津,2010.
    [5]田春荣.2009年中国石油进出口状况分析[J].国际石油经济,2010(3):4~13.
    [6]周龙保.内燃机学(第三版)[M].北京:机械工业出版社,2011:211~220.
    [7]刘巽俊.内燃机的排放与控制[M].北京:机械工业出版社,2005:6~10.
    [8]中国环境保护部.中国机动车污染防治年报(2010)[EB/OL]. http://www.zhb.gov.cn.
    [9]蒋德明,黄佐华.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007:2~3.
    [10]蒋德明等.高等车用内燃机原理[M].西安:西安交通大学出版社,2007:28~30,18~22.
    [11]何学良,詹永厚,李疏松.内燃机燃料[M].北京:中国石化出版社,1999:240~264.
    [12]崔心存.内燃机的代用燃料[M].北京:机械工业出版社,1990:8~10,39~59.
    [13]钱伯章.新型汽车代用燃料的开发和应用前景[J].天然气与石油,2004,22(2):1~7.
    [14]柴油品质对发动机排放性能的影响[J].汽车工程,2008,30(3):657~663
    [15]ACEA,Alliance, EMA, JAMA. Worldwide Fuel Charter[S].4th edition,2006.
    [16]Ullman T L,Spreen K B,Mason R L. Effects of Cetane Number,Cetane Improver,Aromatics,and Oxygenates on1994Heavy-Duty Diesel Engine Emissions[C]. SAEPaper941020.
    [17]Spreen K B, Ullman T L, Mason R L. Effects of Cetane Number, Aromatics, andOxygenates on Emissions From a1994Heavy-Duty Diesel Engine with ExhaustCatalyst[C]. SAE Paper950250.
    [18]Signer M,Heinze P,Mercogliano R,et al. European Programme on Emissions,Fuelsand Engine Technologies (EPEFE)-Heavy Duty Diesel Study[C]. SAE Paper961074.
    [19]Cowley L T,Shadling R J,Doyon J. The Influence of Composition and Properties ofDiesel Fuel on Particulate Emissions from Heavy-Duty Engines[C]. SAE Paper932732.
    [20]Noboru Miyamoto, Hideyuki Ogawa, Nabi Md. Nurun,et al. Smokeless, Low NOx, HighThermal Efficiency,and Low Noise Diesel Combustion with Oxygenated Agents asMain Fuel[C]. SAE Paper980506.
    [21]Hallgren B E,Heywood J B. Effect of Oxygenated Fuels on DI Diesel Combustion andemissions [C]. SAE Paper2001-01-0648.
    [22]Mani Natarajan,ManuelAGonzález D,EdwinA. Fram,et al. Oxygenates forAdvancedPetroleum-Based Diesel Fuels: Part1. Screening and Selection Methodology for theOxygenates[C]. SAE Paper2001-01-3631.
    [23]ManuelA. González D,William Piel,TomAsmus. Oxygenates Screening forAdvancedPetroleum-Based Diesel Fuels: Part2. The Effect of Oxygenate Blending Compoundson Exhaust Emissions[C]. SAE Paper2001-01-3632.
    [24]P. Tamil Porai,S. Chandrasekaran. S. Subramaniyam. Combustion and Performance of aDiesel Engine with Oxygenated Diesel Blend[C]. SAE Paper2004-01-0082.
    [25]A. S.(Ed) Cheng,Robert W. Dibble. Emissions from a Cummins B5.9Diesel EngineFueled with Oxygenate-in-Diesel Blends [C]. SAE Paper2001-01-2505.
    [26]C.D. Rakopoulos,D.T. Hountalas and T.C. Zannis. Theoretical Study Concerning theEffect of Oxygenated Fuels on DI Diesel Engine Performance and Emissions [C]. SAEPaper2004-01-1838.
    [27]Robert Lee,Hobbs C H,Pedley J F. Fuel Quality Impact on Heavy-Duty DieselEmissions: A Literature Review[C]. SAE Paper982649.
    [28]Schmidt D,et al. Review and Assessment of Fuel Effects and Research Needs in CleanDiesel Technology[J]. Proceeding of the ASME ICE Division,2001Spring TechnicalConference,ICE,Vol.36(1),2001.
    [29] Fukuda H, Duke M A, Mclean D D, et al. Biodiesel Fuel Production byTransesterfication of Oils[C].Journal of Bioscience and Bioengineering,2001,92(5).
    [30]Athawale V D, Rathi S C, Bhabhe M D. Novel Method for Separating Fatty Esters fromPartial Gylcerides in Biocatalytic Transesterification of Oils[C]. Seperation andTechnology,2000,18.
    [31]A. Senatore, M. Cardone, et al. A Comparative Analysis of Combustion Process in D.I.Diesel Engine Fueled with Biodiesel and Diesel Fuel[C].SAE Paper2000-01-0691.
    [32]袁银南,张恬,梅德清等.直喷式柴油机燃用生物柴油燃烧特性的研究[J].内燃机学报,2007,25(1):43-46.
    [33]何超,葛蕴珊,韩秀坤等.直喷式柴油机燃用生物柴油的燃烧特性[J].内燃机工程,2007,28(6):7-10.
    [34]陆小明,葛蕴珊,韩秀坤等.柴油机燃用生物柴油及柴油的燃烧分析与排放特性[J].燃烧科学与技术,2007,13(3):204-208.
    [35]谭满志,李小平,徐振波等.电控高压共轨柴油机燃用生物柴油的燃烧特性[J].车用发动机,2009(3):36-39.
    [36]United States Environmental Protection Agency(EPA). AComprehensive Analysis ofBiodiesel Impacts on Exhaust Emissions [C].Draft Technical Report,EPA420-P-02-001,2002.
    [37]Hu Li,Gordon E.Andrews,Juan L. Balsevich-Prieto. Study of Emission and CombustionCharacteristics of RME B100Biodiesel from a Heavy Duty DI Diesel Engine[C]. SAEPaper2007-01-0074.
    [38]Francisco Emílio Baccaro Nigro,MaurícioAssump o Trielli,Celso Macarini da Costa.Emission characteristics of a diesel engine operating with biodiesel and blend[sC]. SAEPaper2007-01-2635.
    [39]王忠,袁银南,历宝录等.生物柴油的排放特性试验研究[J].农业工程学报,2005,21(7):77-80.
    [40]梅德清,孙平,袁银南等.柴油机燃用生物柴油的排放特性研究[J].内燃机学报,2006,24(4):331-335.
    [41]谭满志,金文华,张淑华等.电控高压共轨柴油机燃用生物柴油的排放特性[J].吉林大学学报(工学版),2010,40(3):619-624.
    [42] Bhaskar Mazumdar, Avinash Kumar Agarwal. Performance, Emission andCombustion Characteristics of Biodiesel (Waste Cooking Oil Methyl Ester) Fueled IDIDiesel Engine[C]. SAE Paper2008-01-1384.
    [43]ChristopherA. Sharp,Thomas W. Ryan III,Gerhard Knothe. Heavy-Duty Diesel EngineEmissions Tests Using Special Biodiesel Fuels[C]. SAE Paper2005-01-3671.
    [44]Christopher A. Sharp, Steve A. Howell, Joe Jobe. The Effect of Biodiesel Fuels onTransient Emissions from Modern Diesel Engines: Part I Regulated Emissions andPerformance[C].SAE Paper2000-01-1967.
    [45]M.Alam,J. Song,R.Acharya. Combustion and Emissions Performance of Low Sulfur,Ultra Low Sulfur and Biodiesel Blends in a DI Diesel Engine[C]. SAE Paper2004-01-3024
    [46]Md. Nurun Nabi,Mhia Md. Zaglul Shahadat,Md. Shamimur Rahman. Behavior ofDiesel Combustion and Exhaust Emission with Neat Diesel Fuel and Diesel-BiodieselBlends[C]. SAE Paper2004-01-3034.
    [47]Robert L. McCormick,Christopher J. Tennant,R. Robert Hayes,et al. RegulatedEmissions from Biodiesel Tested in Heavy-Duty Engines Meeting2004EmissionStandards [C].SAE Paper2005-01-2200.
    [48]Michel Souligny,Lisa Graham,Greg Rideout,et al. Heavy-Duty Diesel EnginePerformance and Comparative Emission Measurements for Different Biodiesel BlendsUsed in the Montreal BIOBUS Project[C]. SAE Paper2004-01-1861.
    [49]覃军,刘海峰,尧命发等.柴油机掺烧不同比例生物柴油的试验研究[J].燃烧科学与技术,2008,13(4):336-340.
    [50]F. Payri, V. Macián, J. Arrègle,et al. Heavy-Duty Diesel Engine Performance andEmission Measurements for Biodiesel (from Cooking Oil) Blends Used in the ECOBUSProject[C]. SAE Paper2005-01-2205.
    [51]WayneA. Eckerle,Edward J. Lyford-Pike,Donald W. Stanton. Effects of Methyl EsterBiodiesel Blends on NOx Emissions[C]. SAE Paper2008-01-0078.
    [52]Xusheng Zhang,Haibin Wang,Liguang Li,et al. Characteristics of Particulates andExhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel SystemFueled with Bio-diesel Blends[C]. SAE Paper2008-01-1834.
    [53]高继东,宋崇林,高俊华等.直喷式轿车柴油机燃用生物柴油的排放特性[J].燃烧科学与技术,2008,14(3):247-252.
    [54]Anton C. V. Fischer-Tropsch: a futuristic view [J]. Fuel Processing Technology,2001,71(1):149-155.
    [55]D. J. Wilhelm,D. R. Simbeck,A.D. Karp,et al. Syngas Production for Gas-to-liquidsApplications: Technologies,Issues and Outlook [J]. Fuel Processing Technology,2001,71(1):139-148.
    [56]Leo L. Stavinoda,Emilio S.Alfaro,et al.Alternative Fuels: Gas to Liquids as Potential21st Century Truck Fuels[C]. SAE Paper2000-01-3422.
    [57]蒋德明.一种超清洁柴油机代用燃料—F-T柴油[J].柴油机,2003,5:1~4.
    [58]Kit ano K, Sakata I, Clark R. Effects of GTL Fuel Properties on DI Diesel Combustion
    [C]. SAE2005-01-3763.
    [59]Chrisopher M. Atkinson,Gregory J. Thompson,Michael L. Traver,et al. In CylinderCombustion Pressure Characteristics of Fischer-Tropsch and Conventional Diesel Fuelsin a Heavy Duty CI Engine [C]. SAE Paper1999-01-1472.
    [60]Michael H Mcmillion,Mridul Gautam. Combustion and Emission Characteristics ofFischer-T ropsch and Standard Diesel Fuel in a Single Cylinder Diesel Engine[C]. SAEPaper2001-01-3517.
    [61]Misuharu Oguma. Experimental study of Direction Injection Diesel Engine Fueled withtwo Types of Gas To Liquid (GTL)[C]. SAE Paper2002-01-2691.
    [62]黄勇成,李永旺,任杰等. F-T柴油在直喷式柴油机中燃烧与排放特性的研究[J].燃料化学学报,2005,33(4):492~496.
    [63]孙万臣,李国良,马一功等.天然气制油/柴油混合燃料对小型柴油机燃烧特性的影响[J].吉林大学学报(工学版),2010,40(6):1507~1512.
    [64]Alleman T. L.,McCornmick R. L. Fischer-Tropsch Diesel Fuels Properties and ExhaustEmissions: a Literature Review [C]. SAE Paper2003-01-0763.
    [65]Kitano K, Sakata I, Clark R. Effects of GTL Fuel Properties on DI Diesel Combustion[C].SAE2005-01-3763.
    [66]武涛,黄震,张武高等.柴油/GTL混合燃料特性及对柴油机排放的影响[J].汽车工程,2007,29(9):397~400.
    [67]杨帅,周毅,杜海明等.清洁能源GTL柴油作为柴油机代用燃料的试验研究[J].内燃机工程,2008,29(6):50~54.
    [68]胡志远,赵杰,谭丕强等.共轨柴油机燃用天然气合成油的性能与排放特性[J].内燃机工程,2009,30(1):19~26.
    [69]胡志远,谭丕强,赵杰,楼狄明.重型柴油机燃用天然气合成油的性能与排放[J].同济大学学报(自然科学版),2009,37(7):960-963.
    [70]谭丕强,张同,胡志远,楼狄明.GTL燃料发动机的性能及排放特性[J].车用发动机,2011(4):63-66.
    [71]孙万臣,解方喜,孟德军等. GTL/柴油混合燃料对直喷式柴油机排放特性的影响[J].内燃机工程,2010,31(5):87~91.
    [72] Kidoguchi Y,Yang C,Kato R,et al. Effects of Fuel Cetane Number andAromatics onCombustion Process and Emissons of a Direct Injection Diesel Engine [J]. JSAEReview,2000,21(4):469~475.
    [73]黄勇成,周龙保,蒋德明.清洁燃料F-T柴油在柴油机中应用的研究[J].内燃机工程,2005,26(5):18~23.
    [74]Marcel Ginu Popa,Niculae Negurescu,Constantin Pana,el at. Results Obtained byMethanol Fuelling Diesel Engine [C]. SAE2001-01-3748.
    [75]李晖,刘圣华,周龙保.柴油机燃用甲醇的应用研究和进展[J].柴油机,2004,5:1~3.
    [76]姚春德.甲醇在柴油机上应用的技术进展[J].中外能源,2009,14:38~43.
    [77] Zuohua Huang, Hongbing Lu, Deming Jiang. Combustion Behaviors of aCompression-ignition Engine Fuelled with Diesel/methanol Blends under Various FuelDelivery Advance Angles[J]. Bioresource Technology,2004,95(3):331-341.
    [78]Z.H. Huang, H.B. Lu, D.M. Jiang, et al. Combustion Characteristics and Heat ReleaseAnalysis of a Compression Ignition Engine Operating on a Diesel/methanol Blend[J].IMechE,2004,218(D4):1011–1024.
    [79]黄佐华,卢红兵,蒋德明.柴油机燃用柴油/甲醇混合燃料的燃烧特性研究[J].内燃机学报,2003,21(6):401-410.
    [80]张俊强,卢红兵,王锡斌等.直喷式柴油机燃用甲醇/柴油混合燃料的燃烧及排放特性[J].燃烧科学与技术,2004,10(2):171-175.
    [81]Z H Huang,H B Lu,D M Jiang. Engine Performance and Emissions of a CompressionIgnition Engine Operating on the Diesel-Methanol Blends[J]. IMechE,2004,218(D4):435–447.
    [82]Hakan Bayraktar. An Experimental Study on the Performance Parameters of anExperimental CI Engine Fueled with Diesel–methanol–dodeceanol Blends[J]. Fuel,2008,87(2):158-164.
    [83]M.S. Kumar,A. Ramesh and B. Nagalingam.An Experimental Comparison of Methodsto Use Methanol and Jatropha Oil in a Compression Ignition Engine[J]. BiomassBioenergy,2003,25:309–318.
    [84]黄佐华,卢红兵,蒋德明.柴油机燃用柴油/甲醇混合燃料时的性能和排放研究[J].内燃机学报,2004,22(1):7-16.
    [85]宫艳峰,胡铁刚,李跟宝.甲醇柴油混合燃料对柴油机性能的影响[J].农业机械学报,2007,38(1):48-51,64.
    [86]李芳,张学敏,葛蕴珊等.甲醇柴油与生物柴油常规污染物的对比研究[J].农业化研究,2009,7:218-222.
    [87]Bang-Quan He,Jian-Xin Wang,Xiao-Guang Yan. Study on Combustion and EmissionCharacteristics of Diesel Engines Using Ethanol Blended Diesel Fuels[C]. SAE Paper2003-01-0762.
    [88]Yan Yan, Zhang Yu-sheng,Rao Si-ping,et al. Study on Combustion and EmissionCharacteristics of Diesel Engines Fueled with Ethanol/Diesel Blended Fuel[C]. SAEPaper2009-01-2675.
    [89]谭满志,郭英男,刘金山等.增压中冷柴油机燃用柴油醇燃烧特性的试验研究[J].燃烧科学与技术,2004,10(2):135-139.
    [90]邢元,尧命发,张福根.乙醇与柴油混合燃料燃烧特性及排放特性的试验研究[J].内燃机学报,2007,25(1):24-29.
    [91]吕兴才,绪斌,黄建平.基于放热率分析的乙醇柴油燃烧特性的研究[J].内燃机工程,2007,28(2):24-26.
    [92]Michael D. Kass, John F. Thomas, John M. Storey. Emissions From a5.9Liter DieselEngine Fueled with Ethanol Diesel Blends [C]. SAE Paper2001-01-2018.
    [93]Irshad Ahmed. Oxygenated Diesel: Emissions and Performance Characteristics ofEthanol-Diesel Blends in CI Engines[C]. SAE Paper2001-01-2475.
    [94]M. Lapuerta, O.Armas, and J. M. Herreros. Emissions from a Diesel-bioethanol Blend inan Automotive Diesel Engine[J]. Fuel,2008,87(1):25–31.
    [95].D. C. Rakopoulos, C. D. Rakopoulos, E. C. Kakaras, et al. Effects of Ethanol-diesel FuelBlends on the Performance and Exhaust Emissions of Heavy Duty DI Diesel Engine[J].Energy Conversion and Management,2008,49(11):3155–3162.
    [96]Yutaka Masuda,Zhili Chen. Combustion and Emission Characteristics of a PCI EngineFueled with Ethanol-Diesel Blends[C]. SAE Paper2009-01-1854.
    [97]郭英男,谭满志,刘金山等.增压中冷压燃式发动机燃用柴油醇的燃烧和排放[J].内燃机学报,2005,23(5):417-422.
    [98]A. Chotwichien,A. Luengnaruemitchai and S. Jai-In. Utilization of Palm OilAlkyl Estersas an Additive in Ethanol–diesel and Butanol–diesel blends[J]. Fuel,2009,88:1618–1624.
    [99]张全长,尧命发,郑尊清.正丁醇对柴油机低温燃烧和排放的影响[J].燃烧科学与技术,2010,16(1):363-368.
    [100]Mate Z ldy,Andras Hollo,Artur Thernesz. Butanol as a Diesel Extender Option forInternal Combustion Engines[C]. SAE Paper2010-01-0481.
    [101]Dimitrios Savvidis,Lech Sitnik. Investigation of Three Different Mixtures of EcofuelsUsed on a Perkins Engine on a Test Bed [C]. SAE Paper2010-01-1970.
    [102]D.C. Rakopoulosa,C.D. Rakopoulosa,E.G. Giakoumisa. Effects of Butanol–diesel FuelBlends on the Performance and Emissions of a High-speed DI Diesel Engine[J].Energy Conversion and Management,2010,51(10):1989–1997.
    [103]D.C. Rakopoulosa, C.D. Rakopoulosa,R.G. Papagiannakis. Combustion Heat ReleaseAnalysis of Ethanol or N-butanol Diesel Fuel Blends in Heavy-duty DI DieselEngine[J]. Fuel,2011,90(5)1855-1867.
    [104]De Lucas A,Duran A,Carmona M, et al. Characterization of Soluble Organic Fractionin DPM:Optimization of the Extraction Method[C]. SAE Paper1999-01-3532.
    [105]谭丕强,陆家祥,邓康耀等.柴油机排气微粒中可溶有机组分的分析[J].车用发动机,2003,6:506~509.
    [106]United States Environmental ProtectionAgency. Particulate Matter Sampling[EB/OL]www.epa.gov
    [107]Jean Paul Morin, Elsa Leprieur. The Influence of a Particulate Trap on the in VitroLung Toxicity Response to Continuous Exposure to Diesel Exhaust Emissions [C].SAE Paper1999-01-2710.
    [108]United States Environmental Protection Agency. Air Quality Criteria for ParticulateMatter [M]. EPA,1996(1).
    [109]Kittelson D B. Engines and Nanoparticles: a review [J]. Journal of Aerosol Science,1998,29(5-6):575―588.
    [110]Berube K A,Jones T P,Williamson B J,et al. Physico-chemical characterization ofdiesel exhaust particles: factors for assessing biological activity [J]. AtmosphericEnvironment,1999,33(10):1599-1614.
    [111]Johnson T V. Diesel emission control in review [C]. SAE Paper2001-01-0184.
    [112]Burtscher H. Physical characterization of particulate emissions from diesel engines: areview [J].Journal of Aerosol Science,2005,36(7):896―932.
    [113]Imad A. Khalek. Characterization of Particle Size Distribution of a Heavy-duty DieselEngine During FTP Transient Cycle Using ELPI [C]. SAE Paper2000-01-2001.
    [114]Affiliation,Jan C. M.,Jacob A. The Choice of Instrument (ELPI and/or SMPS) forDiesel Soot Particulate Measurements [C]. SAE Paper2003-01-0784.
    [115]Daisuke Kawano, Terunao Kawai,Hiroyoshi Naito,et al. Measurements of Particlesin Exhaust Emission From Diesel Engine Using SMPS and LII[C]. SAE Paper2004-08-0166.
    [116]AbdulKhalek I S,Kittelson D B,Brear F. The Influence of Dilution Conditions onDiesel Exhaust Particle Size Distribution Measurements [C]. SAE Paper1999-01-1142.
    [117]Maricq M M,Podsiadlik D H,Chase R E. Vehicle Exhaust Particle Size Distributions:a Comparison of Tailpipe and Dilution Tunnel Measurements[C]. SAE Paper1999-01-1461.
    [118]李旭海.柴油机排气颗粒尺寸的研究综述[J].柴油机,2008,30(4):36-40.
    [119]刘双喜,宁智,付娟等.柴油机排气微粒冷却演变特性的实验研究[J].环境科学,2007,28(6):1193-1197.
    [120]Pi-qiang Tan, Zhi-yuan Hu, Di-ming Lou. Particle Number and Size Distribution from aDiesel Engine with Jatropha Biodiesel Fuel [C]. SAE Paper1999-01-2726.
    [121]Pi-qiang Tan, Di-ming Lou and Zhi-yuan Hu. Nucleation Mode Particle Emissions froma Diesel Engine with Biodiesel and Petroleum Diesel Fuels [C]. SAE Paper2000-01-0787.
    [122]Hall D E, Stradling R J, Zemroch P J, et al. Measurement of the Number and SizeDistribution of Particle Emissions From Heavy Duty Engines [C]. SAE Paper2000-01-2000.
    [123]Md. Nurun Nabi,Johan Einar Hustad. Effect of Fuel Oxygen on Engine Performanceand Exhaust Emissions Including Ultrafine Particle Fueling with Diesel-OxygenateBlends [C]. SAE Paper2000-01-2030.
    [124]张旭升,赵晖,胡宗杰等.共轨柴油机燃用生物柴油的排气颗粒粒径分布及核态纳米颗粒生成机理研究[J].中国科学E辑:技术科学,2009,39(9),1589~1594.
    [125]赵晖,张旭升,胡宗杰等.国Ⅲ柴油机生物柴油颗粒排放特性研究[J].内燃机工程,2010,30(1):23~26.
    [126]Paul W Schaberg,Darrick D. Zarling,Robert W. Waytulonis,et al. Exhaust ParticleNumber and Size Distributions with Conventional and Fischer-Tropsch Diesel Fuels
    [C]. SAE Paper2002-01-2027.
    [127]Chol-Bom Kweon,Shusuke Okada. Effect of Fuel Composition on Combustion andDetailed Chemical/Physical Characteristics [C]. SAE Paper2003-01-1899..
    [128]孙万臣,谭满志,陈士宝等.燃料特性对柴油机排放微粒粒度分布的影响[J].汽车工程,2010,32(7):569~574.
    [129]谭丕强,鲍锡君,胡志远,楼狄明.发动机燃用GTL柴油的排气颗粒数量及粒径分布规律[J].环境科学学报,2012,32(6):1306-1311.
    [130]胡志远,孙鹏举,谭丕强,楼狄明.柴油轿车燃用不同替代燃料的模态排放特性[J].汽车工程,2012,34(1):22-25.
    [131]Kent Nord,Dan Haupt,Peter Ahlvik,et al. Particulate Emissions From an EthanolFueled Heavy-Duty Diesel Engine Equipped With EGR, Catalyst and DPF [C]. SAEPaper2004-01-1987.
    [132]Mitsuharu Oguma,Shinichi Goto,Zhili Chen.Fuel Characteristics Evaluation of GTLfor DI Diesel Engine[C].SAE paper2004-01-0088.
    [133]Gunfeel Moon,Yonggyu Lee,Kyonam Choi and Dongsoo Jeong.Experimental studyon characteristics of diesel particulate emissions with diesel,GTL, and blended fuels[C].SAE paper2009-24-0098.
    [134]Di Yao, Diming Lou, Zhiyuan Hu and Piqiang Tan.Experimental Investigation onParticle Number and Size Distribution of a Common Rail Diesel Engine Fueling withAlternative Blended Diesel Fuels[C].SAE paper2011-01-0620.
    [135]王晓燕,李芳,葛蕴珊等.甲醇柴油与生物柴油微粒排放粒径分布特性[J].农业机械学报,2009,40(8):7~12.
    [136]王小臣,葛蕴珊,谭建伟等.基于尺寸分布的生物柴油排气微粒形态研究[J].车辆与动力技术,2009(4):52~57.
    [137]Berube KA,Jones T P,Williamson B J,et al. Physico-chemical Characterization ofDiesel Exhaust Particles: Factors for Assessing Biological Activity [J]. AtmosphericEnvironment,1999,33(10):1599-1614.
    [138]ChengA,Buchholz B,Dibble R. Isotopic Tracing of Fuel Carbon in the Emissions ofa Compression Ignition Engine Fueled with Biodiesel Blends [C]. SAE Paper2003-01-2282.
    [139]S. Chuepeng,H. M. Xu,A. Tsolakis,et al. Particulate Emissions from a Common RailFuel Injection Diesel Engine with RME-based Biodiesel Blended Fuelling UsingThermo-gravimetric Analysis [C]. SAE Paper2008-01-0074.
    [140]谭建伟,葛蕴珊,何超等.基于尺寸分布的生物柴油排气微粒组分研究[J].内燃机工程,2010,31(1):12~26.
    [141]Christopher A Sharp, Steve A Howell, Joe Jobe. The Effect of Biodiesel Fuels onTransient Emissions from Modern Diesel Engines, Part Ⅱ:Unregulated Emissions andChemical Characterization [C]. SAE Paper2000-01-1968.
    [142]Sergio Machado Correa,GracielaArbilla.Aromatic Hydrocarbons Emissions in Dieseland Biodiesel Exhaust [J]. Atmospheric Environment,2006,40:6821-6826.
    [143]葛蕴珊,何超,韩秀坤等.柴油机燃用生物柴油的多环芳香烃排放试验研究[J].内燃机学报,2007,25(2):126~129.
    [144]黄慧龙,王忠,毛功平等.生物柴油发动机非常规排放物及测试方法[J].车用发动机,2008,6:17~20.
    [145]尤可为,葛蕴珊,何超等.柴油机燃用生物柴油的非常规污染物排放特性[J].内燃机学报,2010,28(6):506~509.
    [146]刘忠长,刘巽俊,矫振伟等.车用柴油机排气微粒分流式稀释取样测量系统的研制[J].汽车工程,1997,19(1):45~51.
    [147]韩永强.车用增压柴油机的瞬态燃烧及其性能改善[D].吉林省:吉林大学博士学位论文。2003.
    [148]陈士宝.燃料特性对柴油机微粒排放粒度分布的影响规律[D].吉林省:吉林大学硕士学位论文。2011.
    [149]赖春杰.高压共轨柴油机超细微粒排放特性分析[D].吉林省:吉林大学硕士学位论文。2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700