柴油机掺混燃烧机理及排放控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的不断增加和排放法规的日益严格,进一步降低内燃机排放成为当前能源与环境领域的一个重要课题。柴油机作为动力装置以动力性强、热效率高、燃油消耗率低而得到广泛应用,但其NO_x和微粒(碳烟)排放量较高,且排放控制受“NO_X-微粒”折中曲线的束缚。为了改善柴油机的排放特性,本文以ZS195柴油机为研究对象,通过燃烧可视化实验和数值模拟相结合的方法,研究柴油机掺混燃烧过程的燃烧机理,探讨从机内净化入手达到同时降低NO_x和微粒的目的,破解柴油机的“NO_x-微粒”排放难题。
     本文综合各种可视化系统结构型式的优缺点和研究的实际情况,研制了一套视窗上置式柴油机可视化实验装置。在应用三基色测温法进行温度测量前,对光学测试系统进行温度标定,标定结果表明,用三基色法算出的温度场数值与实测值是非常相近的,其结果在工程上是可信的。利用三基色测温法在视窗上置式柴油机可视化实验装置上,对柴油机的着火和燃烧过程进行了可视化分析,结果表明,用三基色法分析缸内燃烧温度场与用其它方法得到的结果相一致,说明该方法是一种测试分析内燃机缸内着火、燃烧及火焰传播过程的有效方法;结合温度场和示功图曲线对柴油机的着火及燃烧过程进行了分析,结果符合实际柴油机燃烧过程的发展规律。
     利用柴油机可视化实验装置对柴油机掺氢、EGR(用CO_2模拟)和掺氢EGR的燃烧特性进行了试验研究,结果表明,柴油机采用EGR技术后,随着EGR率的增加,着火时刻呈现推迟的趋势,燃烧持续时间因不完全燃烧而缩短;缸内最大爆发压力减小,达到峰值压力的时间推迟,放热率峰值下降,放热率曲线整体推后,对柴油机的动力性和经济性产生不利影响;另外,EGR的加入使缸内燃烧的最高温度和平均温度降低,缸内氧体积数下降,有利于降低NO_X的排放。柴油机进气掺氢后,随着掺氢比的增加,着火时刻呈现提前的趋势,燃烧持续时间因燃烧速率加快而缩短;缸内最大爆发压力增大,达到峰值压力的时间提前,放热率峰值上升,放热率曲线整体提前,有利于提高柴油机的动力性和经济性;另外,掺氢使得缸内燃烧的最高温度和平均温度相应升高。对于柴油机的掺氢EGR燃烧,当EGR率一定时,随着掺氢比的增加,着火时刻呈现提前的趋势,小EGR率时,燃烧持续时间随着掺氢比的增加而缩短,大EGR率时,燃烧持续时间随着掺氢比的增加而延长;缸内最大爆发压力增加,达到峰值压力的时间提前,放热率峰值增加,放热率曲线整体提前;缸内最高温度和平均温度相应增高;另外,掺氢EGR可以在对发动机的动力性和经济性不产生较大影响和氧体积分数减少的前提下,改善柴油机的燃烧,有利于降低柴油机有害排放物的生成。
     柴油机掺烧模拟废气柴油重整气时,当EGR率一定时,随着掺氢比的增加,着火时刻呈现提前的趋势,其中H2对着火发生的影响作用大于CO;从火焰发展照片来看,H2对混合气燃烧的影响也要大于CO气体;由于模拟废气柴油重整气的掺混气体量较大,而总进气量和喷油量保持不变,导致过量空气系数变小,混合气变浓,氧体积数下降,所以造成燃料不能完全燃烧,燃烧结束较早导致燃烧持续时间较短,随着掺氢比的增大,燃烧逐步改善,燃烧持续时间开始延长;当EGR率一定时,随着掺氢比的增加,缸内最大爆发压力增加,达到峰值压力的时间提前;放热率峰值增加,放热率曲线整体提前;缸内最高温度和平均温度相应增高。
     利用FLUENT软件建立了三维燃烧模型,分别模拟计算了标定工况下ZS195柴油机不同方案的缸内压力变化趋势,与ZS195柴油机试验值进行比较,模拟结果和测试结果较为吻合,变化趋势一致,说明论文建立的燃烧模型真实可行。通过三维燃烧模拟,对缸内流场、温度、氧体积数和有害排放进行了分析,对比了掺烧模拟废气柴油重整气不同方案对柴油机工作过程的影响。在喷油初期,缸内速度矢量分布受柴油喷射速率的影响较大;随着掺混气体量的增加,缸内氧浓度下降;当EGR率一定时,随着掺氢比的增大,缸内最高温度升高;当掺氢比一定时,随着EGR率的增大,缸内最高温度降低,而CO的加入对燃烧温度的影响不太明显,这与试验结果基本一致。
     利用建立的三维燃烧模型,对掺烧模拟废气柴油重整气不同方案下柴油机的有害排放进行了预测分析。原机方案A的NO_X排放和碳烟排放值都比较大;5%EGR对应的B、C、D三种方案中,NO_X排放的降低效果差不多,碳烟排放降低效果从D至C再到B越来越好;15%EGR对应的E、F、G三种方案中,NO_X排放的降低效果从E至F再到G越来越好,碳烟排放大幅降低,降低最明显的是F方案。因此,模拟废气柴油重整气可以实现同时降低NO_x和碳烟排放的目的,为破解柴油机“NO_X-微粒”排放难题提供一条重要的技术途径。
With the increase of vehicle population and the stringency of emission regulation, one keyproblem in energy and environmental fields is to decrease emission from internal combustionengines (ICE). Diesel engine, as power device with strong dynamic, high thermal efficiency, lowfuel consumption, has been widely used. However, it also has higher NO_x and particles (carbonsmoke) emissions and which restricted by “NO_X-particles” tradeoff curve. In order to improve theemissions characteristic of diesel engine, this paper studies the burning mechanism of mixingcombustion by the way of the burning visualization experiment and the value simulation in theZS195diesel engine, explores the purpose of reducing NO_x and particulate by the internalpurification to crack “NO_x–particles” emission problems of diesel engine.
     An optical engine modified from production engine with observation window provided on thecylinder-head has been developed beyond the actual situation and the advantages and disadvantagesof structure type of visualization system. Before applying the way of three-primary-color fortemperature measure, calibrating the optical measurement system for temperature. The results showthat the temperature values of calculation and measurement are very similar, and which is credible inthe project. The ignition and combustion process of diesel engine are analyzed by the use ofthree-primary-color in the optical engine. The results show that the temperature distribution analyzedby three-primary-color consistent with which obtained by other methods, so the methods ofthree-primary-color is an effective way to measure and analyze the ignition, combustion andflame-propagation process in cylinder of ICE. In the meantime, the research result of the fuelignition and combustion process in diesel engine taken by the methods of combining the temperaturefields with indicator diagram is corresponded with that of real engine.
     The combustion characteristics of intake air blended with hydrogen, EGR, hydrogen and EGRhas been studied in the optical diesel engine. The experimental results show that the ignition timeshowing delay of the trend and the combustion duration reduction because of incomplete combustionas EGR rate increasing when EGR technique is adopted. EGR system with increasing of EGR ratewill result in peak value of the cylinder pressure and heat release rate decreasing, the curve ofcylinder pressure and heat release rate postponing which will lead to negative effects on powerperformance and fuel economy of the diesel engine. In addition, EGR system with increasing ofEGR rate will also result in maximum temperature and average temperature of cylinder reducing andoxygen concentrations decreasing which will lead to beneficial effects on NO_Xemission reducing.When the intake air mixes with hydrogen, the ignition time appears ahead of trend as the hydrogenratio increasing; the combustion duration shorten because of the rapidity of combustion speeds upand the peak of both the cylinder pressure and heat release rate increase and becomes ahead of timewhich will lead to beneficial effects on power performance and fuel economy of the diesel engine. Inaddition, cylinder maximum temperature and average temperature increase accordingly as thehydrogen ratio increasing. When the intake air blends with hydrogen and EGR and the EGR rate isconstant, the ignition time appears ahead of trend as the hydrogen ratio increasing; the combustionduration shortens with small EGR rate and extends with big EGR rate, the peak of both the cylinder pressure and heat release rate increase and becomes ahead of time and cylinder maximumtemperature and average temperature increase accordingly as the hydrogen ratio increasing. Inaddition, under not producing a significant impact on engine power and economy and decreasing inoxygen concentrations, the intake air mixing with hydrogen and EGR can improve combustionwhich is advantageous in reducing the harmful emission of diesel engine.
     In simulated exhaust diesel reforming gas (SEDRG) conditions, when the EGR rate is constant,there is fire timing advance with increasing of hydrogen ratio and more effect on ignition in H2thanCO. Hydrogen has more effect on combustion of mixed gas from the flame development picture.Due to mixed gas of SEDRG larger and total intake gas and spray oil keep not variable, there is theexcessive air coefficient small, mixed gas concentrated and oxygen volume number declined whichwill led to fuel not full burning and combustion duration shorten with burning end early. Asincreasing of hydrogen ratio, combustion gradually improved and combustion duration time beganextended. When the EGR rate is constant, the peak of both the cylinder pressure and heat release rateincrease and becomes ahead of time as the hydrogen ratio increasing; while cylinder maximumtemperature and average temperature increase accordingly.
     Three-dimensional-combustion model has been developed using FLUENT software. Thecylinder pressure of the different programs is simulated in the ZS195diesel engine under calibrationconditions. The modeling results are good agreement with the measured data obtained from aparallel experimental investigation, so the combustion model of establishment is feasible. The flowfield, temperature, oxygen concentrations and harmful emission are analyzed and the effects ofdifferent programs in SEDGR condition on work process of diesel are contrasted. The velocityvector was influenced largely by the fuel injection quantities at the begging of fuel injection. Thecylinder oxygen concentration drops with increasing of mixed gases volume. When the EGR rate isconstant, cylinder maximum temperature increases with increasing of hydrogen ratio. When thehydrogen ratio is constant, cylinder maximum temperature decreases with increasing of EGR rate.The effect of CO admission is little on combustion temperature which is agreed with experimentalresults.
     The forecast analysis is studied on the diesel harmful emission of different programs withthree-dimensional-combustion model in SEDGR condition. The value of both NO_x and sootemission of program A are large. The results of NO_x emission decreasing are the same and sootemission are better and better from program D to program C and then program B among program B,program C and program D with5percent EGR. In the program E, program F and program G with15percent EGR, the soot emission of three programs especially program F are all decreased largely andNO_x emission decreasing are better and better from program E to program F and then program G.Therefore, the SDEGR technique can reduce NO_x and soot emission and provide an importanttechnical approach for resolving “NO_x–particles” emission problems of diesel engine.
引文
[1]百度文库.国内外柴油机技术的现状与发展,2010
    [2] BP集团.《BP世界能源统计2011》,2011
    [3]百度文库.全球石油储量剩余现状及排名,2010
    [4]新华网.http://news.xinhuanet.com/world/2010-11/12/c_12765595.htm,2010
    [5]中国环境网.http://www.cenews.com.cn/xwzx/hjyw/201112/t20111219_710580.html,2011
    [6] Onishi S,Jo S H,Shoda K,et a1.Active Thermo-Atmosphere Combustion(ATAC)一A NewCombustion Process for internal Combustion Engines[C],SAE Paper790501,1979
    [7] Zhao F,Asmus T W,Assanis D N,et a1.Homogenous Charge Compression Ignition(HCCI)Engine:Key Research and Development Issues,Society of Automotive Engineers,2002
    [8] Najt P M,Foster D E. Compression Ignited Homogeneous Charge Combustion[C].SAE Paper830264,1983
    [9] Thring R H,Homogeneous Charge Compression Ignition(HCCI) Engines[C],SAE Paper892068.1989
    [10] Christensen M,Einewall P,Johansson B.Homogeneous Charge Compression Ignition(Hcci)Using Isooctane, Ethanol and Natural Gas—A Comparison with Spark—IgnitionOperation[C].SAE Paper972874,1997
    [11] Christensen M,Hultqvist A,Johansson B.Demonstrating the Multi Fuel Capacity of aHomogeneous Charge Compression Ignition Engine with Variable Compression Ratio[C].SAEPaper1999-01-3679,1999
    [12] Morimoto S S,Kawahata Y,Sakurai T,et al.Operating Characteristics of a Natural Gas-FiredHomogeneous Charge compression ignition Engine (Performance improvement Using EGR)[C].SAE Paper2001-01-1034,2001
    [13] Fiveland S B,Agama R.Experimental and Simulated Results Detailing the Sensitivity ofNatural Gas HCCI Engines to Fuel Composition[C].SAE Paper2001-0l-3609.200l
    [14] Olsson J O,Tunestal P,Johansson B,Fiveland S B,Agama R.Combustion Ratio Influenceon Maximum Load of Natural Gas—Fueled HCCI Engine[C].SAE Paper2002-01-0111,2002
    [15] Chen Z.Study on Homogeneous Premixed Charge CI Engine Fueled With LPG[C].JSAE Paper20014339,2001
    [16] T.Seko,et a1.Methanol Lean Burn in an Auto-Ignition DI Engine[C].SAE Paper980531,1998
    [17] Seko T,Kuroda E.Combustion Improvement of a Premixed Charge compression IgnitionMethanol Engine Using Flash Boiling Fuel Injection[C].SAE Paper2001-01-361l,2001
    [18] YaoM F,Chen Z,Zheng Z Q,et a1.Study on the Controlling Strategies of HomogeneousCharge Compression Ignition Combustion with Fuel of Dimethylether and Methanol[J].Fuel,2006,85(10):2046-2056
    [19] YaoM F,Zheng Z Q,Chen Z,et a1.Experimental Study on Hcci Combustion of DimethylEther(Dme)/Methanol Dual Fuel[C].SAE Paper2004-01-2993,2004
    [20] OakleyA,Zhao H,Ladommatos N.Dilution Effects on the Controlled Auto Ignition(CAl)Combustion of Hydrocarbon and Alcohol Fuels[C],SAE Paper2001-01-3606,2001
    [21] Daeyup L,Hochgreb S,Keck J C。Autoignition of Alcohols and Ethers in a Rapid CompressionMachine[C].SAE Paper932755,1993
    [22] Cathy K N,Murray J T.A Computational Study of the Effect of Fuel Reforming,Egr and InitialTemperature on Lean Ethanol Hcci Combustion[C].SAE Paper2004-0l·0556,2004
    [23] Gnanam G. An HCCI Engine Fuelled with iso-octane and Ethanol[C]. SAE Paper2006-01-3246,2006
    [24] OgawaH,Miyamoto N,Kaneko N,et a1.Combustion Control and Operating Range Expansionwith Direct Injection of Reaction Suppressors in a Premixed Dme Hcci Engine[C].SAE Paper2003-01-0746,2003
    [25] Shudo T.Hcci Combustion of Hydrogen,Carbon Monoxide and Dimethyl Ether[C].SAE Paper2002-01-0112,2002
    [26] YamadaH,Goto Y Tezaki A.Analysis of Reaction Mechanisms Controlling Cool and ThermalFlame with DME Fueled HCCI Engines[C].SAE Paper2006-0I-3299,2006
    [27] Stanglmaier R H,Roberts C E.Homogenous Charge Compression Ignition (HCCI):Benefits,Compromises,and Future Engine Applications[C],SAE Paper1999-01-3682.1999
    [28] Pischinger F.The Diesel Engine for Cars—is there a Future?[C],ASME Fall Conference,l995
    [29] Sberg M,Dec J E.An Investigation of the Relationship Between Measured Intake Temperature,BDC Temperature,and Combustion Phasing for Premixed and DI HCCI Engines[C].SAEPaper2004-01-1900,2004
    [30] Dec.J E,Wontae H,Sj6berg M.An Investigation of Thermal Stratification in HCCI enginesUsing Chemiluminescence Imaging[C].SAE Paper2006-01-1518,2006
    [31] Flowers D L,Aceves S M,Smith J R et a1.HCCI in a CFR Engine:Experiments and DetailedKinetic Modeling[C].SAE Paper2000-01-0328,2000
    [32] Dec.JE.Sjfberg M.Comparing Enhanced Natural Thermal Stratification Against RetardedCombustion Phasing for Smoothing of HCCI Heat-Release Rates[C]. SAE Paper2004-01-2994,2004
    [33] Dec.J E.Understanding HCCI charge stratification using optical,conventional,andcomputational diagnostics[C].SAE HCCI Symposium,Lund,Sweden,September,2005
    [34] Milovanovic N,Blundell D,Pearson氏Turner J,Chen R.Enlarging the operational range ofa gasoline HCCI engine by controlling the coolant temperature[C].SAE paper2005-01-0157,2005
    [35] Christensen M, Johansson B. Influence of Mixture Quality on Homogeneous ChargeCompression Ignition[C].SAE Paper982454,1998
    [36] Dec.J E.Sj6berg M.Isolating the Effects of Fuel Chemistry on Combustion Phasing in anHCCI Engine and the Potential of Fuel Stratification for Ignition Contr01[C].SAE Paper2004-01-0557,2004
    [37] Tanet A,Philipp w’Volker M S,et a1.Expanding the Hcci Operation With theChargeStratification[C].SAE Paper2004-01-1756,2004
    [38] Sj6berg M,Dec.J E.Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratificationwith Two-Stages Ignition Fuels[C].SAE Paper2006-01-0629.2006
    [39] Steeper Zi, lwa S D.Automotive HCCI Combustion Research.2005Advanced CombustionEngine Program Review.Argonne National Laboratory,USA.April2005
    [40] Tian G H,Wang J X,Shuai S J,et a1.HCCI Combustion Control by Injection Strategy withNegative Valve Overlap in a GDI Engine[C],SAE Paper2006-01-0415,2006
    [41]苏万华,林铁坚,张晓宇,等.HCCI复合燃烧放热特征及其对排放和放热率的影响[J],内燃机学报,2004,22(3):193-200
    [42] Su W H,Lin T J,Pei Y O.A Compound Technology for HCCI Combustion in a DI DieselEngine Based on the Multi-pulse Injection and the BUMP Combustion Chamber[C], SAE Paper2003-01-0741,2003
    [43] Su W H,Zhang X Y, Lin T J,et a1.Study of Pulse Spray,Heat Release,Emissions andEfficiencies in A Compound Diesel HCCI Combustion Engine[C],Proceedings of ASME-ICEASME Internal Combustion Engine Division2004Fall Technical Conference,ICEF2004-927,2004
    [44] Su W H,Zhang X Y, Lin T J,et a1.Effects of Heat Release Mode on Emissions and Efficienciesof a Compound Diesel Homogeneous Charge Compression Ignition CombustionEngine[J].Journal of Engineering for Gas Turbines and Power,2006,128:446-454
    [45] WeisslMck M,Csat6J,Glensvig M,et,al.Alternative Combustion-An Approach for FutureHSDI Diesel Engines[J],MTZ Worldwide,2003,64(9):17-20
    [46] Mueller C,Upatnieks A.Dilute Clean Diesel Combustion Achieves Low Emissions and HighEfficiency While Avoiding Control Problems of HCCI[C],l lth Annual Diesel EngineEmissions Reduction Conference,Chicago,Illinois,2005
    [47] Mueller C. Using Unconventional Fuels and In-Cylinder Strategies to Achieve HighEfficiency[C],Clean Combustion,Sandia National Laboratories,ERC Symposium on FutureFuels for Internal Combustion Engines,June6,2007
    [48] Alriksson M,Rente T,Denbratt I.Low Soot Low NOx in a Heavy Duty Diesel Engine UsingHigh Levels of EGR[C].SAE Paper2005-01-3836,2005
    [49] Alriksson M,DenbraR I.Low Temperature Combustion in a Heavy Duty Diesel Engine UsingHigh Levels of EGR[C].SAE Paper2006-01-0075,2006
    [50]周龙保.内燃机学-2版[M].北京:机械工业出版社,2005.1:114-115
    [51]王宇霁,朱会田,杜愎刚..车用柴油机尾气颗粒排放控制[J],柴油机,2003(1):26-29
    [52] STAVINODA.L.L, ALFARO.E.S, DOBBS.H.H. Alternative Fuels: Gas to Liquids as Protential21st Century Truck Fuels[C], SAE paper2000-01-3422,2000
    [53]董刚,陈义良,李德桃.利用实测放热规律研究十六烷值改进剂对柴油机着火特性和燃烧过程的影响[J].内燃机工程,2000,2l(2):60-64
    [54]陈振斌,蒋盛军蜮,肖明伟,等.复配乳化剂乳化柴油的经济性和排放特性[J],农业工程学报,2010,26(7):285-289
    [55]陈昊,祁东辉,边耀璋.柴油机燃用生物柴油-乙醇-水微乳化燃料性能研究[J],内燃机工程,2010,31(1):21-26
    [56]韩大明王猛.微乳化柴油的动力经济性及排放的试验[J],东北林业大学学报,2009,37(2):103-104
    [57] S.J.Jelles. The Influence of NOx on the Oxidation of Metal Actirated Diesel Soot[J].CatalysisToday,1999,53:623-630.
    [58] Vitaliv, Lissianski.Effect of Metal-containing Additive on NOx Reduction in Combustion andReburning[J], Combustion and Flame,2001,125;1118-1127.
    [59]苏万华,林志强,汪洋,等.气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究[J].内燃机学报,2001,19(2):102-108
    [60]张红光,盛宏至,潘奎润,等.车用柴油/天然气双燃料发动机的开发[J].农业机械学报,2003,34(5):8-14.
    [61] H. Cho, B. He. Spark Ignition Natural Gas Engines[J]. Energy Conversion and Management,2007,48(2):608-618.
    [62]孙嗣炎,张振东,方祖华,等.缸内直喷式天然气发动机的试验研究[J].农业机械学报,2005,36(10):13-16.
    [63]顾善愚,赵奎翰,刘建京,等.汽油/液化石油气(LPG)两用燃料发动机的研究[J].内燃机学报,2001,19(4):323-327.
    [64] S. Ganesan, A. Ramesn. Experimental Investigations on a LPG-diesel Dual Fuel Engine[J].Journal of the Institution of Engineers: Mechanical Engineering Division,2002,83(2):105-111.
    [65]王建,刘胜吉.单缸直喷柴油机燃用液化石油气的研究[J].内燃机工程,2005,26(3):82-84.
    [66]陈振天,张振东,方毅博,等..电控液化石油气单缸发动机试验研究[J].上海理工大学学报,2006,28(4):363-366.
    [67] K. Lee, J. Ryu. An Experimental Study of the Flame Propagation and CombustionCharacteristics of LPG Fuel[J]. Fuel,2005,84(9):1116-1127.
    [68]王建昕,闰小光,程勇,等.乙醇-柴油混合燃料的燃烧与排放特性[J].内燃机学报,2002,20(3):225-229.
    [69] Thomas W.Ryan,Timothy J.Callahan. Dual Fuel Injection Nozzle for Methanol FueledCompression Ignition Engine Operation[C]. SAE Paper912357,1991
    [70] Paul Zelenka,Paul Kapus. Development and Optimization of Methanol Fueled CompressionIgnition Engines for Passenger Cars and Light Duty Trucks[C]. SAE Paper910815
    [71] Uchida,M.,Y Akasaka. A Comparison of Emissions from Clean Diesel Fuels[C].SAE Paper1999-01-l121,1999
    [72] Sharp,C.A.,S.A.Howell,et, al. The Effect of Biodiesel Fuels on transient Emissions fromModem Diesel Engines, Part I Regulated Emissions and Performance[C]. SAE Paper2000-01-1967,2000
    [73]陈吴,张春化,边耀璋,等.直喷式柴油机燃用生物柴油的性能与排放[J].长安大学学报(自然科学版),2007,27(5):98-102
    [74] Ramadhas A.S.,MuraleedharanC,et a1.Performance and Emission Evaluation of a DieselEngine Fueled with Methylesters of Rubber Seed Oil[J].Renewable Energy,2005:1789-1798
    [75]葛蕴珊,张世鹰,郝利君,等.生物柴油在柴油机中的应用研究[J].内燃机工程,2004,25(2):12-14
    [76]王贺武,陈鸿雁,周龙保,等.直喷柴油机燃用二甲醚的试验研究[J].内燃机学报,1999,17(3):242-246
    [77]王贺武,周龙保,蒋德明,等.直喷柴油机燃用二甲醚排放特性的研究[J].内燃机学报,2000,l8(1):6-10
    [78]杨立平,李君,王立媛,等.氢在车用发动机上的应用[J].汽车技术,2006,12:1-5.
    [79] J. Yamina, H. Guptaa, B. Bansala,et,al. Effect of Combustion Duration on the Performance andEmission Characteristics of a Spark Ignition Engine Using Hydrogen as a Fuel[J]. InternationalJournal of Hydrogen Energy,2000,25(6):581-589.
    [80] C. White, R. Steeper, A. Lutz. The Hydrogen-fuelled Internal Combustion Engine: A TechnicalReview[J]. International Journal of Hydrogen Energy,2006,31(15):1292-1305.
    [81] E. Kahramana, S. Ozcanlb, B. Ozerdemb. An Experimental Study on Performance andEmission Characteristics of a Hydrogen Fuelled Spark Ignition Engine[J]. International Journalof Hydrogen Energy,2007,32(12):2066-2072.
    [82] M. Ali, S. Masahiro, N. Yasuyuki, et al. Performance and Combustion Characteristics of aDirect Injection SI Hydrogen Engine[J]. International Journal of Hydrogen Energy,2007,32(4):296-304.
    [83]冯国胜,吴文江,赵金生,等.汽车发动机排放污染分析及对策[J].车用发动机,1997,4:39-43
    [84]刘允辉,赵春明,河清云,等.汽车排放污染控制技术现状及前景[J].世界汽车,1999,7:13-15
    [85]黄佐华,蒋德明,周龙保.汽车发动机燃料及我国对策[J].车用发动机,1997,1:55-57
    [86]田柳青,叶代启.柴油车排气颗粒物的后处理技术[J].环境污染治理技术与设备,2003,4(10):74~77.
    [87]王天友,ERIC L K s,林漫群,等.燃油催化微粒捕集器微粒捕集与强制再生特性的研究[J].内燃机学报,2007,25(6):527-531
    [88] Hirata K,Masaki N,Ueno H,et al Development of SCR System Forheavy-duty CommercialVehicles[C],SAE Paper2005-01-1860,2005.
    [89] Mathr HB,Das LM. Performance Characteristics of a Hydrogen Fuelled SI Engine UsingTimed Manifold Injection. Journal of Hydrogen Energy,1991,16(2):115-127
    [90] Anand G,Ravi MR,Subrahmanyam.P. Performance and Emissions of Natural Gas andHydrogen/Natural Gas Blended Fuels in Spark Ignition Engine[C]. Proceedings of the2005Spring Technical Conference of the ASME Internal Combustion Engine Division,2005:337-341
    [91]张勇,黄佐华,廖世勇,等.天然气-氢气-空气混合气的层流燃烧速度测定[J].内燃机学报,2006,24(2):97-103.
    [92]张勇,黄佐华,王倩,等.天然气一氢气一空气混合气火焰传播特性研究[J].内燃机学报,2006,24(6):481-488.
    [93]王金华,黄佐华,刘兵,等.直喷发动机燃用天然气掺氢混合燃料的性能与排放[J].西安交通大学学报,2006,40(5):521-525.
    [94]徐正好,杨宗栋,郑康元,等.氢-汽油双燃料发动机性能实验研究[J].内燃机工程,2003,24(3):59-61.
    [95]杜天申,许沧粟,王振子,等.氢/汽油双燃料燃烧过程中有害排放物生成机理研究[J].浙江大学学报,1996,30(1):42-48.
    [96]谭宏伟,史守华,刘永智,等.氢油混燃在汽油机中的试验研究[J].稀土,2000,21(5):31-34.
    [97] H. Janabi,M. Baghdadi. A Prediction Study of the Effect of Hydrogen Blending on thePerformance and Pollutants Emission of a Four Stroke Spark Ignition Engine[J]. InternationalJournal of Hydrogen Energy,1999,24(6):363-375.
    [98] M. Baghdadi, H. Janabi. Improvement of Performance and Reduction of Pollutant Emission of aFour Stroke Spark Ignition Engine Fueled with Hydrogen/Gasoline Fuel Mixture[J]. EnergyConversion and Management,2000,41(2):77-91.
    [99] M. Minutillo. On-board Fuel Processor Modeling for Hydrogen-Enriched Gasoline FuelledEngine[J]. International Journal of Hydrogen Energy,2005,30(14):1483-1490.
    [100] E. Galloni, M. Minutillo. Performance of a Spark Ignition Engine Fuelled with Reformate GasProduced on-board Vehicle[J]. International Journal of Hydrogen Energy,2007,32(13):2532-2538.
    [101] Lucas G G, Richards W L. The Hydrogen/Petrol Engine-The Means to Give Good Part-LoadThermal Efficiency[C]. SAE Paper820315,1982
    [102] Andrea T D, HenshawP F. Investigating Combustion Enhancement and Emissions Reductionwith the Addition of2H2+O2to a SI Engine[C]. SAE Paper,2003-32-0011,2003
    [103]张波,傅维标,武向辉.氢气对柴油机油耗的影响[J].燃烧科学与技术,2006,12(3):238-242。
    [104]石鲁民,刘明树,王志中,等. S195柴油机掺氢燃烧的试验研究[J].拖拉机,1993,2:23-26.
    [105]崔可润,高孝洪.柴油机加氢降低燃油消耗的研究[J].武汉水运工程学院学报,1992,16(3):253-259.
    [106]徐挺,石鲁民,王志中,等.传统柴油机的排放情况及掺氢燃烧后的排放预测[J].吉林工业大学学报,1996,28(2):93-97.
    [107] M. Masood, M. Ishrat, A. Reddy. Computational Combustion and Emission Analysis ofHydrogen–Diesel Blends with Experimental Verification[J]. International Journal of HydrogenEnergy,2007,32(13):.2539-2547.
    [108] N. Saravanan, G. Nagarajan, S. Narayanasamy. An Experimental Investigation on DI DieselEngine with Hydrogen Fuel[J]. Renew Energy,2008,33(3):415-421.
    [109] M. Masood, S. Mehdi, P. Reddy. Experimental Investigations on a Hydrogen-Diesel Dual FuelEngine at Different Compression Ratios[J]. Journal of Engineering for Gas Turbines andPower2007,129(4):572-578.
    [110]梁晨,纪常伟,刘达洋,等.混氢对柴油机燃烧及排放影响的试验研究[J].汽车工程,2009,(31)7:669-673
    [111]姜大海,宁智,刘建华,等,预混合氢气/柴油发动机燃烧及排放特性[J],燃烧科学与技术,2010,16(2):149-154
    [112] A. Tsolakis, A. Megaritis, M. Wyszynski. Application of Exhaust Gas Fuel Reforming inCompression Ignition Engines Fueled by Diesel and Biodiesel Fuel Mixtures[J]. Energy andFuels,2003,17(12):1464-1473.
    [113] M. Kumar, A. Ramesh, B. Nagalingam. Use of Hydrogen to Enhance the Performance of aVegetable Oil Fuelled Compression Ignition Engine[J]. International Journal of HydrogenEnergy,2003,28(10):1143-1154.
    [114] Tabata M,Yamamoto T,Fukube T.Improving NOx and Fuel Economy for Mixture InjectedS.I.Engine with EGR.SAE Paper950684,1995.
    [115]郭志东,三菱公司缸内直喷汽油机的废气净化新技术,国外内燃机,1998,30(6):58-60
    [116] S.X.Shi,et al. A Study of Effect of EGR0n Exhaust emissions and Fuel Economy for aFive-Valve SI Engine[C],Proceedings of1999Sino—Korea International Conference onInternal Combustion Engines,August,1999
    [117] Alain Maibcom,Xavier Tauzia,Jean-Francois He’tet.Experimental Study of Various Effectsof Exhaust Gas Recirculation(EGR) Oil Combustion and Emissions of Automotive DirectInjection Diesel En6ne[J].Energy,2008,33(1):22-34.
    [118]房克信,邓康耀,邬静川.EGR温度对涡轮增压柴油机燃烧和排放的影响[J].农业机械学报,2005(6):40-43.
    [119] Hountalasa D T,Mavropoulosa G C,Binder K B.Effect of Exhaust Gas Recirculation(EGR)Temperature for Various EGR Rates on Heavy Duty DI Diesel Engine Performance andEmissions[J].Energy,2008,33(2):272-283.
    [120]杨帅,周毅,邹任玲,等.EGR对柴油机工作过程影响的一维模拟[J].农业机械学报,2008(11):1-5.
    [121] Peng Haiyong,Cui Yi,Shi Lei.Effects of Exhaust Gas Recirculation(EGR) on Combustionand Emissions During Cold Start of Direct Injection(DI) Diesel Engine[J].Energy,2008,33(3):471-479.
    [122]吴君华,黄震,乔信起,等.废气再循环对增压二甲醚发动机性能和排放影响的试验研究[J],内燃机学报,2006,(26)2:147-152
    [123]胡春明,刘娜,李伟,等. EGR对电喷LPG发动机燃烧过程及NOx排放的影响[J],农业机械学报,2009,(40)8:18-22
    [124]孙大伟,刘福水,孙柏刚,等.热EGR对氢内燃机性能及排放影响的试验研究[C],中国国际氢能大会,2008
    [125]于超,肖建华,王建昕,等.EGR率对燃用生物柴油的重型柴油机排放特性影响[J].汽车工程,2008,30(10):871-874.
    [126]张振东.钟玉伟。褚超美.YC4112ZLQ柴油机电控EGR系统的研究[J].内燃机学报,2003,21(5):308—312.
    [127]朱瞍,居钰生,王鹏,等.废气再循环在增压中冷柴油机上的应用研究[J].内燃机工程,2005,26(2):40-43.
    [128] Ming Zheng,Graham T, Gary J.Diesel Engine Exhaust Gas Recireulation-a Review onAdvanced and Novel Concepts[J].Energy Conversion and Management,2004t45(6):883-900.
    [129] Saravanan N, Nagarajan G,Kalaiselvan K,et a1.An Experimental Investigation on Hydrogenas a Dual Fuel for Diesel Engine System with Exhaust Gas RecirculationTechnique[J].Renewable Energy,2008,33(3):422-427.
    [130]左承基钱叶剑徐天玉,等. EGR与富氢进气对柴油机性能和排放的影响[J],农业机械学报,2010,(41)4:12-15
    [131] ALLENBY S, CHANG W C,MEGRITIS A,et a1.Hydrogen Enrichment:a Way to MaintainCombustion Stability in a Natural Gas Fuelled Engine with Exhaust Gas Recirculation,thePotential of Fuel Reforming[J].Proceedings of the Institution of Mechanical Engineers,PartD:Journal of Automobile Engineering,2001,215(3):405-418.
    [132]姜雪,胡二江,巩静,等.天然气掺氢配合废气再循环发动机的性能及排放研究[J],西安交通大学学报,2009,(43)5:18-21
    [133] Yukio Matsui, Takeyuki Kamimoto, Shin Matsuoka. A Study on the Time and Space ResolvedMeasurement of Flame Temperature and Soot Concentration in a D.I. Diesel Engine by theTwo-Color Method[C]. SAE Paper79049,1979
    [134] Shiozaki T, Suzuki T, Shimoda M. Observation of Combustion Process in D. I. Diesel Enginevia High Speed Direct and Schlieren Photography[C]. SAE Paper800025,1980
    [135] Kamimoto T, Yokota H, Kobayashi H. Effect of High Pressure Injection on Soot FormationProcesses in a Rapid Compression[C]. SAE Paper871610,1987
    [136] Nakagawa.H,Endo.H,Deguchi.Y. NO Measurement in Diesel Spray Flame Using LaserInduced Fluorescence[C], SAE Paper970874,1997
    [137] H.Zhao, N.Ladommatos. Optical Diagnostics for Soot and Temperature Measurement inDiesel Engines[J].,Energy Combustion,1998,24:221-255
    [138].Rhee K T, Jiany H, Jeong Y I. Two-Color Infrared Digital Imaging for during Compressionand Combustion Periods of a D.I. Diesel Engine[C]. NTIS9216,1992.
    [139].Winterbone D E, Clough E, Rao K K, et al. Combustion in High-Speed Direct InjectionDiesel Engine-a Comprehensive Study[J]. Proc. Instn. Mech. Engrs.,1994,208:223-240.
    [140] Kong S C, Han Z, Reitz R D. The Development and Application of a Diesel Ignition andCombustion Model for Multidimensional Engine Simulation[C]. SAE Paper950278,1995.
    [141] Kong S C, Ricart L M, Reitz R D. In-Cylinder Diesel Flame Imaging Compared withNumerical Computations[C]. SAE Paper950455,1995.
    [142] Moses E, Rao K K, Winterbone D E.3D Modeling and Photographic Investigation ofCombustion in Hydra DI Diesel Engine[C]. SAE Paper960836,1996.
    [143]张惠明,赵奎翰,息树和.直喷式柴油机燃烧室形状对碳粒形成过程影响的实验研究[J].内燃机学报,1996,14(3):286-294
    [144]张惠明,张学颖,李万众,等.直喷式增压柴油机燃烧过程可视化研究[J],燃烧科学与技术,2002,8(3):248-251
    [145]陈硕,刘明安,潘克煜,等.多参数对柴油机缸内局部瞬态火焰温度及碳粒浓度的影响[J].内燃机学报,2001,19(2):.128-132
    [146]何邦全,姚春德,刘增勇,等.三基色测温法在柴油机燃烧温度场测量中的应用研究[J].内燃机学报,2001,19(6):526-530
    [147]刘勇强,左承基,徐天玉.基于可视化温度场分析的柴油机缸内燃烧过程研究[J].小型内燃机与摩托车,2011,40(6):18-21.
    [148]吕兴才,黄震,张武高,等.用光学可视化方法研究乙醇柴油混合燃料的燃烧特征[J]..中国公路学报,2004,17(2):109-112
    [149]田辛,何邦全,王建昕,等.用双色法研究进气道喷射乙醇柴油引燃时的燃烧过程[J].内燃机学报,2004,22(1):39-44
    [150]何旭,马骁,吴复甲,等,生物柴油碳烟特性的可视化研究[J].内燃机工程,2009,30(2):1-5
    [151]王忠,袁银南,梅德清,等.生物柴油燃烧过程内窥镜高速摄影试验研究[J].内燃机学报,2007,25(2):163-166
    [152]毛功平,王忠,杨殿勇,等.生物柴油自由喷雾特性的数值模拟和试验研究[J].内燃机工程,2008,29(6):45-49
    [153]王金华,黄佐华,苗海燕,等.利用定容燃烧弹研究天然气掺氢混合燃料直喷燃烧循环变动[J].内燃机学报,2008,26(5):410-419
    [154]王丽雯,何旭,王建昕,等.用双色法研究汽油机燃烧火焰的温度分布[J].燃烧科学与技术,2007,13(4):294-298
    [155]安新亮,何旭,王丽雯,等.应用高速纹影法对汽油机燃烧过程的研究[J].内燃机工程,2007,28(2):1-5
    [156] Espey, C., Dec, J. E. Diesel Engine Combustion Studies in a Newly Designed Optical-AcessEngine Using High-Speed Visualization and2-D Laser Imaging[C], SAE Paper930971,1993.
    [157] M. Stoeckli,B. Ineichen. A New Diagnostic Tool for Fuel Spray Visualization in High SpeedPassenger Car DI-Diesel Engines[C],SAE Paper960459,1996
    [158] Hatanaka.H,Yokota.K,Nakahira.T. A Study of Diesel Combustion Process Under theCondition of EGR and High-Pressure Fuel Injection with Gas Sampling Method[C], SAEPaper960030,1996
    [159] Kato.S,Onishi.S,Tanabe.H. Development of OSKA-DH Diesel Engine Using Fuel JetImpingement and Diffusion Investigation of Mixture Formation and Combustion[C], SAEPaper940667,1994
    [160] Zhu.Y,Hu.G,Wei.X. A Study on a New Combustion System for D.I. Diesel—CSCSSystem[C], SAE Paper880429,1988
    [161] Matsuoka.H,Kawarnura.H,Kishiahita.K. Observation Machine[C],COMODIA94,1994:491-496
    [162]袁文华,潘剑峰,李德桃,等.燃烧过程动态可视化装置的研制[J].湖南大学学报(自然科学版),2005,32(3):74-78
    [163]刘增勇,高昌卿,何邦全,等.一种研究发动机燃烧过程的多功能可视化实验装置[J].热科学与技术,2002,1(1):66-70
    [164]刘勇强,左承基,杨绪元.一种柴油机燃烧过程可视化实验装置[J].合肥工业大学学报(自然科学版),2011,34(6):805-808
    [165]熊锐,吴志新,李德桃.发动机温度测试方法介绍[J].小型内燃机与摩托车,1999,28(3):1-7.
    [166]田辛.用双色法研究内燃机燃烧火焰的温度场及碳烟浓度场[D].清华大学硕士学位论文,2004.
    [167]马凡华,许忠厚.内燃机燃烧的光学测试方法[J].车用的发动机,1999,124(6):1-5
    [168]王丽雯,王建昕,何旭,等.双色法在内燃机诊断中的应用[J].小型内燃机与摩托车,2007,36(3):26-29
    [169]程晓舫,周洲.彩色三基色温度测量原理的研究[J].中国科学(E辑),1997,27(4):342-345
    [170]金大鹰.机械制图[M].北京:机械工业出版社,2008.
    [171]合肥工业大学工程图学教研室.机械制图[M].北京:机械工业出版社,2003.
    [172]孙江宏.计算机辅助设计:AutoCAD2009实用教程[M].北京:中国水利水电出版社,2009.
    [173]胡仁喜. AutoCAD2009中文版标准实例教程[M].北京:机械工业出版社,2009.
    [174] Michael Freeman.新编35MM摄影技术大全[M].上海,上海科学技术出版社,1988.
    [175]葛新石,王义方。郭宽良.传热的基本原理[M].合肥,安徽教育出版社,1985.
    [176]陈俊.彩色测温方法的实验研究[D].中国科学技术大学硕士学位论文,2005.
    [177]徐新宇.彩色三基色温度测量系统的原理与设计[D].中国科学技术大学硕士学位论文,2005.
    [178]周新伦,柳健,刘华志.数字图像处理[M].北京。国防工业出版社,1990.
    [179]周世生.印刷色彩学[M].北京,印刷工业出版社,2008.
    [180] Wood, W.D, H.W.Deem, C.F.Lucks. Thermal Radiative Properties[C]. Plenum Press, NewYork,1964.
    [181] Touloukiam,Y. S. Thermophysical Properties of High Tempreture Solid Matterials[C].Macmillam,,New York,1967.
    [182] Touloukian, Y.S, D.P.Dewit. Thermal Radiative Propertives. Volumes7,8and9, fromThermophysical Properties of Matter, TTRC Data Series, Y.S. Touloukian and C.Y. Ho, Ed,IFI Plenum,New York,1970-1972.
    [183] C ARCOUMANIS. Effect of EGR on Combustion Development in a1.9L DI Diesel OpticalEngine[C]. SAE Paper950850,1995.
    [184] M.S. Newkirk, J.L. Abel. The Boston Reformed Fuel Car[C]. SAE Paper72067081,1972.
    [185] M.D. Martin. Gaseous Automotive Fuels from Steam Reformed Liquid Hydrocarbons[C].SAE Paper780457,1978.
    [186] A. Tsolakis, A. Megaritis. Catalytic Exhaust Gas Fuel Reforming for Diesel Engines—Effectsof Water Addition on Hydrogen Production and Fuel Conversion Efficiency[J]. InternationalJournal of Hydrogen Energy,2004,29(13):1409-1419.
    [187] A. Tsolakis, A. Megaritis. Exhaust Gas Assisted Reforming of Rapeseed Methylester forReduced Exhaust Emissions of CI Engines[J]. Biomass and Bioenergy,2004,27(5):493-505.
    [188] C. J. SUNG, Y. HUANG, J. A. ENG. Effects of Reformer Gas Addition on the Laminar FlameSpeeds and Flammability Limits of n-Butane and iso-Butane Flames[J]. Combustion andFlame,2001,126(3):1699-1713.
    [189] Y. JAMAL, T. WAGNER, M. L. WYSZYNSKI. Exhaust Gas Reforming of Gasoline atModerate Temperatures[J]. International Journal of Hydrogen Energy,1996,21(6):507-519.
    [190] A. Tsolakis, A. Megaritis, M.L.Wyszynski. Low Temperature Exhaust Gas Fuel Reforming ofDiesel Fuel[J]. Fuel,2004,83(13):1837-1845.
    [191] M. Mariagiovanna. On-board Fuel Processor Modeling for Hydrogen-enriched GasolineFuelled Engine[J]. International Journal of Hydrogen Energy,2005,30(13):1483-1490.
    [192] A. Tsolakis, A. Megaritis. Partially Premixed Charge Compression Ignition Engine withon-board H2Production by Exhaust Gas Fuel Reforming of Diesel and Biodiesel[J].International Journal of Hydrogen Energy,2005,30(7):731-745.
    [193] A. Tsolakis, A Megaritis, M.L.Wyszynski. Application of Exhaust Gas Fuel Reforming inCompression Ignition Engines Fuelled by Diesel and Biodiesel Fuel Mixtures[J]. Energy fuels,2003,17(6):1464-1473.
    [194] E.L.Andrew, W.B.Robert, B.Leslie et al. Thermodynamic Analysis of Hydrogen Production byPartial Oxidation Reforming[J]. International Journal of Hydrogen Energy,2004,29(8):809-816.
    [195] E.L.Andrew, W.B.Robert, O.K.Jay et al. Thermodynamic Analysis of Hydrogen Production bySteam Reforming[J]. International Journal of Hydrogen Energy,2003,28(2):159-167.
    [196] A.Tsolakis, A.Megaritis, S.E.Golunski. Reaction Profiles during Exhaust-Assisted Reformingof Diesel Engine Fuels[J]. Energy and Fuels,2005,19(3):744-752.
    [197] Hongming Xu, W. Trevor, R. Steve Richardson, et.al. Extension of the Boundary of HCCICombustion Using Fuel Reforming Technology[C]. JSAE Paper20045468,2004.
    [198] S. Peucheret, M.L.Wyszynski, R.S. Lehrle,et al. Use of Catalytic Reforming to Aid NaturalGas HCCI Combustion in Engines: Experimental and Modeling Results of Open-loop FuelReforming[J]. International Journal of Hydrogen Energy,2005,30(15):1583-1594.
    [199] Inyong Kang, Joongmyeon Bae. Autothermal Reforming Study of Diesel for Fuel CellApplication[J], Journal of Power Sources,20061591283–1290
    [200] Inyong Kang, Joongmyeon Bae, Gyujong Bae. Performance Comparison of AutothermalReforming for Liquid Hydrocarbons, Gasoline and Diesel for Fuel Cell Applications[J],Journal of Power Sources,2006,163:538–546
    [201]王超,龚景松,傅维标.催化重整反应对柴油掺水燃烧中着火的影响[J].热能动力工程,2004,19(1):56-58.
    [202]卢小丰,侯凌云,傅维标.催化重整反应在乳化油着火过程中的研究[J].推进技术,2006,5:399-403
    [203]张国强,曲延涛.废热裂解甲醇内燃机复合循环研究[J].节能,2005,5:14-16.
    [204]曲延涛,张国强.废热重整甲醇内燃机-涡轮复合循环[J].节能技术,2005,3:198-201.
    [205]许元默,帅石金,王燕军,等.发动机缸内数值模拟现状及发展方向[J].小型内燃机与摩托车,2002,31(15):36-41.
    [206]周重光. LPG发动机三维燃烧模拟计算与试验研究[D].浙江大学博士学位论文,2003
    [207]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[D].华中科技大学博士学位论文,2004
    [208]赵骆伟.基于化学反应动力学的天然气-柴油电控双燃料发动机燃烧模型的研究[D].浙江大学博士学位论文,2001.
    [209]王忠恕.边界条件对柴油机瞬态工况下燃烧的影响及数值模拟[D].吉林大学博士论文,2006.
    [210]虞育松,李国岫,刘建英.燃烧室形状对直喷柴油机燃烧性能影响的三维数值模拟[J].北京交通大学学报,2007,31(4):115-119.
    [211]魏强,尹必峰,刘胜吉,等.小缸径直喷柴油机喷雾与燃烧三维数值模拟[J].拖拉机与农用运输车,2007,34(3):46-49.
    [212] P. Rourke. Collective Drop Effects on Vaporizing Liquid Sprays[D]. Princeton: New JerseyPrinceton University,1981.
    [213] R. Reitz. Mechanism of Atomization Process in High-pressure Vaporizing Sprays[J].Atomization and Spray Technology,1987,3(10):309-337.
    [214] O. Hardenburg, F. Hase. An Empirical Formula for Computing the Pressure rise Delay of aFuel from its Cetane Number and from the Relevant Parameters of Direct Injection DieselEngine[C]. SAE Paper790493,1979.
    [215] V. Yakhot, S. Orszag. Renormalization Group Analysis of Turbulence: Basic Theory[J].Journal of Scientific Computing,1986,1(1):1-51.
    [216] W. Tang, R. Reitz. Three Dimensional Computations of Combustion in Premixed Charge andDirect Injection Two-stroke Engines[C]. SAE Paper920425,1992
    [217]张全长,雒婧,尧命发,等.进气成分对柴油机低温燃烧影响的试验和数值模拟[J].内燃机学报,2011,29(6):481-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700