基于VSR-VSI的永磁同步电机驱动控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会对能源和环保要求越来越高的背景下,开展对高效、环保的电机驱动控制系统的研究是十分迫切和必要的。电压源型整流器(Voltage Source Rectifier,VSR)具有输入电流正弦、功率因数高、能量可双向流动的优点,近年来一直是研究关注的热点。将VSR与电压源型逆变器(Voltage Source Inverter,VSI)整合为VSR-VSI应用于电机驱动控制系统中,能够实现电机驱动系统的双向可逆运行和能量回馈控制,但该技术目前仍处于研究阶段。为此本文选取基于VSR-VSI的永磁同步电机驱动控制系统作为研究对象,围绕VSR-VSI整合后出现的母线电压可控,能量可双向流动的新特点,对VSR有源前端的控制策略,永磁同步电机的能量回馈控制策略,以及VSR-VSI的整合实现方法及协调控制技术等方面进行深入研究,具有重要的理论意义和工程实用价值。
     论文首先建立VSR-VSI永磁同步电机系统在dq坐标系中的数学模型,推导出d、q轴等效开关函数的取值范围,给出系统可逆运行的定义,为后续的研究奠定理论基础。通过分析VSR-VSI系统单位功率因数可逆运行时母线电压、电网电势、输入电流、负载电流之间的制约关系及电流平衡点的稳定性,指出系统存在双向不对称的运行特点,为后续控制策略的改进提供理论支撑。
     为了解决VSR-VSI变换器应用于永磁同步电机驱动控制系统中,传统单自由度PI电压控制器不能兼顾母线电压设定点镇定和扰动抑制的问题,提出一种二自由度的I-PD电压控制策略。详细给出控制器参数的整定方法,并进行系统性能分析。仿真和实验结果表明,该控制策略能够有效地减小母线电压超调,抑制浪涌电流冲击,减小负载扰动和电网电势波动的影响。
     针对传统串联控制结构的母线电压响应速度慢的问题,在输入—输出反馈线性化控制方法的基础上,提出一种由电压误差和电流误差共同作用输入变量的直接电压控制方法,简化了控制律表达式,减少了计算变量,并能够保证系统的渐进稳定性。利用电压误差方程对系统在不同负载扰动下的动、静态性能进行定量分析,及系统参数存在误差时的影响。仿真和实验结果表明该方法能够提高VSR在大负载扰动范围内的母线电压响应速度。
     采用VSR-VSI驱动拓扑后可实现能量的双向流动,为了更好地控制永磁同步电机制动时的回馈能量,通过磁场定向控制下的制动过程分析,针对永磁同步电机三种典型负载建立恒转矩制动方式下的回馈能量模型。在此基础上,应用瞬时功率理论,提出一种基于饱和电流限制的能量回馈优化控制策略。仿真和实验表明,该策略可有效减小制动回馈时的功率冲击,提高能量回馈效率。
     为了解决VSR与永磁同步电机之间的协调控制问题,提出一种基于瞬时功率计算的系统整合实现方法。采用单片三核数字信号控制器(Tricore DSC),实现VSR-VSI永磁同步电机驱动系统的控制算法整合。完成系统硬件、软件的整合设计,并进行实验验证。实验结果表明,系统能够实现电机四象限、能量双向可逆运行,稳态运行平稳,动态抗扰动性能较好,能够有效降低系统不对称运行的影响。
Within the background of increasing demand for energy and environmental protection of modern society, it is very necessary and urgent to develop high efficiency motor drive control system. Voltage source rectifier (VSR) has constantly been focused recent years, for its advantages of sinusoidal input current, high power factor and bidirectional power flow. Howerver, it still has a long way to apply the voltage source rectifier to voltage source inverter (VSR-VSI) into AC motor drive and control system to attain the four-quadrant operation and energy regeneration. Therefore, the VSR-VSI based permanent magnet synchronous motor (PMSM) drive control system is selected in this dissertation to carrie out a deep research on control strategy of VSR active front end (AFE) and PMSM regeneration, integrated implementation method, coordinative control technology, focused on the new features of controllable DC-bus voltage and energy reversible flowing. It has both important theoretical significance and practical value.
     First, the mathematical model of VSR-VSI PMSM system is established in the dq coordinate, and the value range of the equivalent switching functions is derived. And then, the definition of reversible operation is given, which lends theoretical foundation for the ensuing research. After that, by analyzing the mutual constraints of DC bus voltage, grid voltage, input current and load current and the stability of current equilibrium point in the unity power factor operating mode, it is pointed out that the whole system has a character of bidirectional asymmetry operation, which supports improvement of the ensuing control strategy theoretically.
     In order to solve the traditional PI control method of VSR AFE used in motor drive failing to meet the bus voltage set point stabilization and disturbance restrain simultaneously, a novel I-PD voltage control strategy is proposed basing on the two degree of freedom (TDOF) control theory. The design method of controller parameters is discussed in details and system performance analysis is given.
     Simulation and experimental results show that this strategy can effectively depress the bus voltage overshoot as well as current surge, and reduce the system influences caused by load disturbance and grid voltage fluctuations.
     In order to speed up the dynamic response of the DC bus voltage under traditional cascade control structure, a new direct voltage control method is proposed, combining voltage error and current error to control input variables following the differential geometry linearization theory. This method can not only effectively simplify the control law expression, reduce calculated variables, but also guarantee the global stability of the entire system. By making use of voltage error equation, quantitative analysis of the steady and dynamic performance under different load disturbance is given, and the impact when the system parameter existing error is analyzed. Simulation and experimental results show that this method can increase the system dynamic response speed even under large load disturbance.
     To improve the control of regeneration energy of PMSM in the VSR-VSI drive, braking procedure of PMSM under flux-oriented-control is analyzed, and the regeneration model is established according to three typical loads of PMSM under constant braking torque mode. Further more, an optimal control strategy of energy regeneration is proposed with saturation current constrain by applied the instantaneous power theory. Simulation and experimental results show that the proposed strategy can effectively reduce regenerative braking power shock, and improve the efficiency of regenerative energy.
     Finally, to solve the problem of coordinate controlling of VSR and PMSM, an instantaneous power calculation based system integrated solution is proposed. And an integrated VSR-VSI PMSM drive control system is implemented basing upon control platform which comprises of single Tricore digital signal controller (DSC), and the integrated implementations of hardware and software are achieved. The experimental results demonstrate that the proposed energy optimization control strategy can achieve four-quadrant operation, energy bidirectional flow, smoothly steady state operation with high dynamic disturbance rejection performance, and can reduce the influence due to asymmetrical operation effectively.
引文
1 B. K. Bose. Energy, Environment, and Advances in Power Electronics. Power Electronics, IEEE Transactions on. 2000, 15(4): 688~701
    2 B. K. Bose. Power Electronics and Motor Drives Recent Progress and Perspective. Industrial Electronics, IEEE Transactions on. 2009, 56(2): 581~588
    3赵争鸣,李崇坚.“十一五”国家十大重点节能工程之一——电机系统节能.电气时代. 2006, (10): 16~18, 20
    4陈荣.永磁同步电机伺服系统研究.南京航空航天大学博士学位论文. 2004
    5 I. Boldea. Control Issues in Adjustable Speed Drives. Industrial Electronics Magazine, IEEE. 2008, 2(3): 32~50
    6 J. R. Rodriguez, J. W. Dixon, J. R. Espinoza, et al. PWM Regenerative Rectifiers: State of the Art. Industrial Electronics, IEEE Transactions on. 2005, 52(1): 5~22
    7 B. Singh, B. N. Singh, A. Chandra, et al. A Review of Three-Phase Improved Power Quality AC-DC Converters. Industrial Electronics, IEEE Transactions on. 2004, 51(3): 641~660
    8孙凯,周大宁,梅杨.矩阵式变换器技术及其应用.机械工业出版社, 2007: 1~16
    9 M. Venturini, A. Alesina, The Generalized Transformer: A New Bidirectional Sinusoidal Waveform Frequency Converter with Continuously Adjustable Input Power Factor. Proc. IEEE PESC’80, 1980: 242~252.
    10 L. Huber, D. Borojevic. Space Vector Modulated Three-Phase to Three-Phase Matrix Converter with Input Power Factor Correction. Industry Applications, IEEE Transactions on. 1995, 31(6): 1234~1246
    11朱贤龙.三相交-交矩阵式变换器及其在电气传动中应用的研究.上海大学博士学位论文. 2000
    12 M. Ziegler, W. Hofmann. Performance of a Two Steps Commutated Matrix Converter for AC-Variable-Speed Drives. Proc. EPE'99, 1999. CD-ROM
    13穆新华,庄心复,陈怀亚.双电压控制的矩阵变换器的开关状态与仿真分析.电工技术学报. 1998, (2): 47~50
    14 C. L. Neft, C. D. Schauder. Theory and Design of a 30-Hp Matrix Converter. Industry Applications, IEEE Transaction on. 1992, 28: 546~551
    15 L. Zhang, C. Watthanasarn, W. Shepherd. Analysis and Comparison of Control Techniques for AC-AC Matrix Converters. Electric Power Applications, IEE Proceedings. 1998, 145(4): 284~294
    16 M. Hornkamp, M. Loddenkotter, M. Muenzer, et al. Economac the First All-in-One IGBT Module for Matrix Converters. Proc. Drives and Control Conf., London, 2001. CD-ROM
    17 T. F. Podlesak, D. C. Katsis, P. W. Wheeler, et al. A 150-kVA Vector-Controlled Matrix Converter Induction Motor Drive. Industry Applications, IEEE Transactions on. 2005, 41(3): 841~847
    18 H. Kohlmeier, O. Niermeyer, D. F. Schraoder. Highly Dynamic Four-Quadrant AC Motor Drive with Improved Power Factor. IEEE Transactions on Industry Applications. 1987, 23(6): 1001~1009
    19 F. Blaabjerg, J. K. Pedersen. An Integrated High Power Factor Three-Phase AC-DC-AC Converter for AC Machines Implemented in One Microcontroller. IEEE PESC'93, Seattle, USA, 1993. 285~292
    20金丽萍,邱晓燕,张瑞伟.双PWM变换器的发展、现状及应用.中国科技信息. 2008, (10): 123~125, 128
    21 L. Malesani, L. Rossetto, P. Tenti, et al. AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link. Industry Applications, IEEE Transactions on. 1995, 31(2): 287~292
    22 L. Bor-Ren. Analysis and Implementation of a Three-Level PWM Rectifier/Inverter. Aerospace and Electronic Systems, IEEE Transactions on. 2000, 36(3): 948~956
    23 L. Dong-Choon, K. Young-Sin. Control of Single-Phase-to-Three-Phase AC/DC/AC PWM Converters for Induction Motor Drives. Industrial Electronics, IEEE Transactions on. 2007, 54(2): 797~804
    24 A. G. bo-Khalil, L. Dong-Choon. DC-Link Capacitance Estimation in AC/DC/AC PWM Converters Using Voltage Injection. Industry Applications,IEEE Transactions on. 2008, 44(5): 1631~1637
    25 L. Bor-Ren. High Power Factor AC/DC/AC Converter with Random PWM. Aerospace and Electronic Systems, IEEE Transactions on. 1999, 35(3): 935~943
    26 T. G. Habetler. A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters. Power Electronics, IEEE Transactions on. 1993, 8(1): 30~36
    27罗文广,张志学.背靠背四象限变流器控制方法的研究.大功率变流技术. 2009, (06): 14~17
    28李建林,高志刚,胡书举等.并联背靠背PWM变流器在直驱型风力发电系统的应用.电力系统自动化. 2008, (05): 59~62
    29付勋波,郭金东,赵栋利等.直驱式风力发电系统的仿真建模与运行特性研究.电力自动化设备. 2009, (02): 1~5
    30 J. S. Kim, S. K. Sul. New Control Scheme for AC-DC-AC Converter without DC Link Electrolytic Capacitor. Power Electronics Specialists Conference, 1993, 24th Annual IEEE. 300~306
    31 J. Jinhwan, L. Sunkyoung, N. Kwanghee. A Feedback Linearizing Control Scheme for a PWM Converter-Inverter Having a Very Small DC-Link Capacitor. Industry Applications, IEEE Transactions on. 1999, 35(5): 1124~1131
    32李时杰,李耀华,陈睿.背靠背变流系统中优化前馈控制策略的研究.中国电机工程学报. 2006, (22): 74~79
    33姚骏,廖勇,庄凯.永磁直驱风电机组的双PWM变换器协调控制策略.电力系统自动化. 2008, (20): 88~92, 107
    34 D. C. Lee, K. J. Lee, J. K. Seok, et al. Online Capacitance Estimation of DC-Link Electrolytic Capacitors for Three-Phase AC/DC/AC PWM Converters Using Recursive Least Squares Method. Electric Power Applications, IEE Proceedings. 2005, 152(6): 1503~1508
    35 R. Wu, S. B. Dewan, G. R. Slemon. Analysis of an AC-to-DC Voltage Source Converter Using PWM with Phase and Amplitude Control Analysis of an AC-to-DC Voltage Source Converter Using PWM with Phase and Amplitude Control. Industry Applications, IEEE Transactions on. 1991, 27(2): 355~364
    36 C. T. Rim, D. Y. Hu, G. H. Cho. Transformers as Equivalent Circuits forSwitches: General Proofs and D-Q Transformation-Based Analyses. Industry Applications, IEEE Transactions on. 1990, 26(4): 777~785
    37 M. Hengchun, D. Boroyevich, F. C. Y. Lee. Novel Reduced-Order Small-Signal Model of a Three-Phase PWM Rectifier and Its Application in Control Design and System Analysis. Power Electronics, IEEE Transactions on. 1998, 13(3): 511~521
    38 Y. Ye, M. Kazerani, V. H. Quintana. A Novel Modeling and Control Method for Three-Phase PWM Converters. Kazerani, M. Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual: 102~107
    39 R. P. Burgos, E. P. Wiechmann, J. Holtz. Complex State-Space Modeling and Nonlinear Control of Active Front-End Converters. Industrial Electronics, IEEE Transactions on. 2005, 52(2): 363~377
    40张崇巍,张兴. PWM整流器及其控制.机械工业出版社, 2003
    41 M. P. Kazmierkowski, L. Malesani. Current Control Techniques for Three-Phase Voltage-Source PWM Converters: A Survey. Industrial Electronics, IEEE Transactions on. 1998, 45(5): 691~703
    42 R. Wu, S. B. Dewan, G. R. Slemon. A PWM AC-to-DC Converter with Fixed Switching Frequency a PWM AC-to-DC Converter with Fixed Switching Frequency. Industry Applications, IEEE Transactions on. 1990, 26(5): 880~885
    43赵仁德,贺益康. PWM整流器虚拟电网磁链定向矢量控制仿真研究.电力系统及其自动化学报. 2005, (05): 94~98
    44王英,张纯江,陈辉明.三相PWM整流器新型相位幅值控制数学模型及其控制策略.中国电机工程学报. 2003, (11): 85~89
    45 B. R. Lin, T. Y. Yang. Three-Phase High Power Factor AC/DC Converter. Electric Power Applications, IEE Proceedings -. 2005, 152(3): 485~493
    46赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究.中国电机工程学报. 2005, (20): 56~61
    47 L. Juinne-Ching, Y. Sheng-Nian. A Novel Instantaneous Power Control Strategy and Analytic Model for Integrated Rectifier/Inverter Systems. Power Electronics, IEEE Transactions on. 2000, 15(6): 996~1006
    48 G. Escobar, A. M. Stankovic, J. M. Carrasco, et al. Analysis and Design ofDirect Power Control (DPC) for a Three Phase Synchronous Rectifier Via Output Regulation Subspaces. Power Electronics, IEEE Transactions on. 2003, 18(3): 823~830
    49 P. Antoniewicz, M. P. Kazmierkowski. Virtual-Flux-Based Predictive Direct Power Control of AC/DC Converters with Online Inductance Estimation. Industrial Electronics, IEEE Transactions on. 2008, 55(12): 4381~4390
    50 Y. Bo, R. Oruganti, S. K. Panda, et al. An Output-Power-Control Strategy for a Three-Phase PWM Rectifier under Unbalanced Supply Conditions. Industrial Electronics, IEEE Transactions on. 2008, 55(5): 2140~2151
    51王久和,李华德,王立明.电压型PWM整流器直接功率控制系统.中国电机工程学报. 2006, (18): 54~60
    52 H. A. S. R,徐殿国,郎永强.一种PWM整流器直接功率控制方法(英文).中国电机工程学报. 2007, (25): 78~84
    53 M. Malinowski, M. P. Kazmierkowski, A. M. Trzynadlowski. A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. Power Electronics, IEEE Transactions on. 2003, 18(6): 1390~1396
    54朱宏伟.表贴式永磁同步电动机电感和驱动控制策略的研究.哈尔滨工业大学博士学位论文. 2008
    55卢强,梅生伟,孙元章.电力系统非线性控制.清华大学出版社, 2008: 1~19,123~164
    56张涛,蒋静坪,张国宏.交流永磁同步电机伺服系统的线性化控制.中国电机工程学报. 2001, 21(6): 40~43
    57孟昭军,孙昌志,安跃军等.基于状态反馈与微分几何的PMSM控制.沈阳工业大学学报. 2007, 29(4): 418~421, 431
    58刘栋良.永磁同步电机伺服系统非线性控制策略的研究.浙江大学博士学位论文. 2005
    59苏建勇.基于磁链观测器的永磁同步电动机无传感器控制技术研究.哈尔滨工业大学博士学位论文. 2009
    60 K. Kyeong-Hwa, Y. Myung-Joong. A Nonlinear Speed Control for a PM Synchronous Motor Using a Simple Disturbance Estimation Technique. Industrial Electronics, IEEE Transactions on. 2002, 49(3): 524~535
    61 X. Zhuang, M. F. Rahman. An Adaptive Sliding Stator Flux Observer for aDirect-Torque-Controlled IPM Synchronous Motor Drive. Industrial Electronics, IEEE Transactions on. 2007, 54(5): 2398~2406
    62孟昭军,孙昌志,安跃军.基于时间延迟状态反馈线性化的PMSM混沌反控制.电工技术学报. 2007, 22(3): 27~31
    63张波,李宗,毛宗源.永磁同步电动机的混沌模型及其模糊建模.控制理论与应用. 2002, 19(6): 841~844
    64 R. Kennel, A. Linder. Predictive Control of Inverter Supplied Electrical Drives. Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual. 761~766
    65于海生.交流电机的能量成型与非线性控制研究.山东大学博士学位论文. 2006
    66 A. Kaddouri, O. Akhrif, L. Hoang, et al. Nonlinear Feedback Control of a Permanent Magnet Synchronous Motors. Electrical and Computer Engineering, 1994. Conference Proceedings. 1994 Canadian Conference on. 77~80
    67 J. Solsona, M. I. Valla, C. Muravchik. Nonlinear Control of a Permanent Magnet Synchronous Motor with Disturbance Torque Estimation. Energy Conversion, IEEE Transactions on. 2000, 15(2): 163~168
    68 L. Shihua, L. Zhigang. Adaptive Speed Control for Permanent-Magnet Synchronous Motor System with Variations of Load Inertia. Industrial Electronics, IEEE Transactions on. 2009, 56(8): 3050~3059
    69王军,肖建.永磁同步电动机自适应神经网络IP位置控制器.电机与控制学报. 2005, (6): 525~528
    70王军,彭宏.永磁同步电动机模糊直接转矩控制的研究.西南交通大学学报. 2004, (3): 332~336
    71鞠大亮,王庆利.永磁同步电机全数字控制系统的一种优化方法.天津理工学院学报. 2004, (3): 92~95
    72刘日宝,陈荣.正弦波永磁交流伺服系统控制策略的研究中小型电机. 2004, (5): 39~42
    73刘贤兴,卜言柱,胡育文等.基于精确线性化解耦的永磁同步电机空间矢量调制系统.中国电机工程学报. 2007, 27(30): 55~59
    74 C. John. Modeling and High-Performance Control of Electric Machines. IEEE Press, 2005: 591~640
    75 M. Bodson, J. N. Chiasson, R. T. Novotnak, et al. High-Performance Nonlinear Feedback Control of a Permanent Magnet Stepper Motor. Control Systems Technology, IEEE Transactions on. 1993, 1(1): 5~14
    76张纯明,郭庆鼎.基于反馈线性化的交流直线永磁同步伺服电动机速度跟踪控制.电工技术学报. 2003, (03): 5~9
    77张润和,刘永和,崔丽丽.永磁同步电动机伺服系统的直接反馈线性化控制.微特电机. 2006, (12): 26~28
    78 P. Liutanakul, S. Pierfederici, F. Meibody-Tabar. Application of Smc with I/O Feedback Linearization to the Control of the Cascade Controlled-Rectifier/Inverter-Motor Drive System with Small Dc-Link Capacitor. Power Electronics, IEEE Transactions on. 2008, 23(5): 2489~2499
    79张翊诚,唐小琦,陈吉红等.交流永磁同步电机的反馈线性化位置控制.华中科技大学学报(自然科学版). 2008, (11): 95~98
    80 A. Gensior, H. Sira-Ramirez, J. Rudolph, et al. On Some Nonlinear Current Controllers for Three-Phase Boost Rectifiers. Industrial Electronics, IEEE Transactions on. 2009, 56(2): 360~370
    81 P. Cortes, M. P. Kazmierkowski, R. M. Kennel, et al. Predictive Control in Power Electronics and Drives. Industrial Electronics, IEEE Transactions on. 2008, 55(12): 4312~4324
    82 D. C. Lee. Advanced Nonlinear Control of Three-Phase PWM Rectifiers. Electric Power Applications, IEE Proceedings. 2000, 147(5): 361~366
    83王久和.电压型PWM整流器的非线性控制.机械工业出版社, 2008
    84 H. Komurcugil, O. Kukrer. Lyapunov-Based Control for Three-Phase PWM AC/DC Voltage-Source Converters. Power Electronics, IEEE Transactions on. 1998, 13(5): 801~813
    85 L. Tzann-Shin. Lagrangian Modeling and Passivity-Based Control of Three-Phase AC/DC Voltage-Source Converters. Industrial Electronics, IEEE Transactions on. 2004, 51(4): 892~902
    86王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制.中国电机工程学报. 2008, (21): 20~25
    87 J.-J. E. Slotine, W. Li [Eds.].应用非线性控制.机械工业出版社, 2006
    88 L. Tzann-Shin. Input-Output Linearization and Zero-Dynamics Control ofThree-Phase AC/DC Voltage-Source Converters. Power Electronics, IEEE Transactions on. 2003, 18(1): 11~22
    89邓卫华,张波,丘东元等.三相电压型PWM整流器状态反馈精确线性化解耦控制研究.中国电机工程学报. 2005, (07): 97~103
    90杨培志,张晓华,陈宏钧.三相电压型PWM整流器模型准线性化.电工技术学报. 2007, (08): 28~35
    91帅定新,谢运祥,王晓刚.三相PWM整流器混合非线性控制研究.中国电机工程学报. 2009, (12): 30~35
    92 A. Mituhiko, T. Hidefumi. Two-Degree-of-Freedom PID Controllers. International Journal of Control, Automation and Systems. 2003, 1(4): 401~411
    93 V. M. Alfaro, R. Vilanova, O. Arrieta. Two-Degree-of-Freedom PI/PID Tuning Approach for Smooth Control on Cascade Control Systems. Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. 5680~5685
    94黄斐梨,王耀明,姜新建等.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究.电工技术学报. 1995, (03): 28~32, 36
    95孙立志,陆永平,邓召春.永磁同步电动机再生制动状态的分析与仿真.微特电机. 1997, (06): 8~10, 22
    96 T. A. Haskew, E. M. Hill. Regeneration Mechanisms in a DC Motor with an H-Bridge Inverter. Electric Machines and Drives, 1999. International Conference IEMD '99. 531~533
    97 C. H. D. III. Mechanisms and Modeling of Refeneration in an Inverter Driven Permanent Magnet Synchronous Machine. the University of Alabama Doctor Dissertation. 2004
    98赵辉.哈尔滨工业大学博士学位论文. 1999
    99赵辉,李铁才,孙立志等.电池供电的永磁电动机系统的再生制动.电机与控制学报. 1999, (04): 207~210, 218
    100赵航飞,张舟云,沈祥林等.永磁无刷电动机能量回馈制动调制方式比较.微特电机. 2005, (09): 21~24, 27
    101刘博,杜继宏,齐国光.电动汽车制动能量回收控制策略的研究.电子技术应用. 2004, (01): 34~36
    102陈荣,邓智泉,严仰光.基于转子磁场定向控制的永磁同步电机制动过程分析.电工技术学报. 2004, (09): 30~36
    103肖强,杨贵杰,胡开埂.永磁同步电动机能量回馈机理分析与研究.微特电机. 2008, (10): 4~7, 21
    104王素杰,张奕黄,杨岳峰.用于电动车辆的开关磁阻电机四象限运行分析.电力电子技术. 2007, (05): 6~8
    105黄宇淇,姜新建,邱阿瑞.飞轮储能能量回馈控制方法.清华大学学报(自然科学版)网络.预览. 2008, (07): 1085~1088
    106张建成.飞轮储能系统及其运行控制技术研究.华北电力大学博士学位论文. 2000
    107任洪莹.船舶电力推进永磁同步电动机制动过程的研究.大连海事大学硕士学位论文. 2009
    108季小尹,宋保维,严卫生.电梯拖动用永磁无刷直流电动机的四象限运行控制.微特电机. 2007, (03): 23~25, 38
    109李晓丽,李军科,许秀芳. ACS800四象限变频器在采煤机上的应用.陕西煤炭. 2009, (01): 85~86
    110王梅生,许长山.一种低装机容量、节能、廉价的起重机变频回馈系统.变频器世界. 2009, (09): 56~57, 96
    111胡开埂.基于DSP的永磁同步电机四象限驱动控制系统的研究.哈尔滨工业大学硕士学位论文. 2007
    112刘刚,陈涛,严干贵等.背靠背四象限变流器的控制系统设计.电力电子技术. 2007, (11): 1~3, 8
    113钱照明,张军明,吕征宇.我国电力电子与电力传动面临的挑战与机遇.电工技术学报. 2004, 19(8): 10~22
    114 S. Saggini, M. Ghioni, A. Geraci. An Innovative Digital Control Architecture for Low-Voltage, High-Current DC-DC Converters with Tight Voltage Regulation. IEEE Transactions on Power Electronics. 2004, 19(1): 210~218
    115周兆勇,李铁才,高桥敏男.基于矢量控制的高性能交流电机速度伺服控制器的FPGA实现.中国电机工程学报. 2004, 24(5): 168~173
    116 L. Bascetta, G. Magnani, P. Rocco. Velocity Estimation: Assessing the Performance of Non-Model-Based Techniques. Control Systems Technology, IEEE Transactions on. 2009, 17(2): 424~433
    117 K. Jezernik, M. Rodic. High Precision Motion Control of Servo Drives.Industrial Electronics, IEEE Transactions on. 2009, 56(10): 3810~3816
    118赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究.电工技术学报. 2004, (08): 67~72
    119郎永强,徐殿国,马洪飞.三相电压型PWM整流器的一种改进前馈控制策略.电机与控制学报. 2006, 10(2): 166~170
    120李时杰.基于Back-to-Back变流技术的调速系统的研究.中国科学院研究生院(电工研究所)博士论文. 2006
    121 Y. Yang, M. Kazerani, V. H. Quintana. Modeling, Control and Implementation of Three-Phase PWM Converters. Power Electronics, IEEE Transactions on. 2003, 18(3): 857~864
    122杨贵杰,孙力,崔乃政等.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001, 21(05): 79~83
    123于海生,赵克友,王海亮等.基于负载观测器的永磁同步电机能量成型控制.系统工程与电子技术. 2006, (11): 132~134, 157
    124 K. Jezernik, M. Rodic. High Precision Motion Control of Servo Drives. Industrial Electronics, IEEE Transactions on. 2009, 56(10): 3810-3816
    125曹炳君.飞轮储能系统中的能量转换环节.电工电能新技术. 1997, (4): 33~35, 23
    126 Z. P. Fang, L. Jih-Sheng. Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. IEEE Transactions on Instrumentation and Measurement. 1996, 45(1): 293~297
    127王兆安,刘进军.瞬时无功功率与传统功率理论的统一数学描述及物理意义.电工技术学报. 1998, 13(6): 6~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700