汽车再生制动稳定性与制动踏板平稳性控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车制动能量至今还是一种未开发利用的能源,在制动过程中大量的动能只能通过摩擦转化为热能耗散掉,且导致汽车制动系统过早地磨损,增加了汽车使用成本。汽车再生制动把制动过程中的部分动能转化为电能回收并进行再利用,提高了汽车能量综合利用率、节约了汽车使用成本,但再生制动系统加入到传统制动系统中会改变原有车辆制动性能,影响制动稳定性及制动踏板平稳性。如何实现再生制动与常规液压制动之间协调,在车辆行驶制动稳定的前提下,如何充分利用电机的再生制动,实现能量回收最大化是再生制动系统急需解决的问题。针对这些问题本文做了如下工作:
     首先,为了达到能量回收的最大化和制动稳定性的统一,实现车辆原有的液压制动系统与再生制动的协调,在液压制动子系统的基础上,设计了一套能够实现根据机电制动力分配控制策略进行自动调节液压前后制动力的压力调节装置;根据再生制动特点及回收约束条件,结合开关磁阻电机的特性,提出双开关磁阻电机前轮制动、复合储能的再生制动系统方案;建立了开关磁阻电机再生制动控制模型;结合复合储能系统简化等效电路模型,采用能量方法建立了复合储能系统的能量流模型。
     其次,建立车辆再生制动动力学模型,提出了基于模糊滑模变结构控制的电机防抱死再生制动控制策略模型与液压防抱死制动协调控制策略;以电机制动效能为车辆制动强度划分依据,建立前后制动力分配控制模型、机电制动力分配策略模型。并建立了基于前轮双电机制动力矩控制的制动稳定性控制策略模型。
     对再生制动系统制动踏板平稳性影响因素进行理论分析,建立了制动踏板模型,设计了再生制动踏板结构,提出了基于轨迹跟踪的制动踏板平稳性控制策略,以实现与原有纯液压制动系统一致制动踏板平稳特性。
     建立了再生制动稳定性集成控制模型,以协调控制器为中心,车辆稳定性控制、再生制动控制、能量回收控制及液压制动控制相互关联制约,实现集成控制。
     最后,采用模块化分层设计的方法建立了再生制动模拟试验平台,并对上述提出的汽车再生制动控制策略进行硬件在环试验验证。
     仿真计算及模拟试验结果表明,本文提出的汽车再生制动相关理论和方法可以有效提高汽车制动能量回收率、实现良好的制动稳定性和制动踏板平稳性。通过对再生制动系统相关控制理论和方法的深入研究,为汽车再生制动系统开发与设计提供了理论依据和新的思路。
     本文的创新点在于:
     1)提出了一种基于双开关磁阻电机前轴再生制动,并以铅酸蓄电池与超级电容并联成复合储能器的汽车再生制动系统;
     2)在原有液压制动子系统的基础上,设计了一套能够实现根据机电制动力分配控制策略进行自动调节液压前后制动力的压力调节装置,从结构上解决了再生制动与液压制动之间协调问题;
     3)根据复合储能系统简化等效电路模型,采用能量方法建立了复合储能系统的能量模型;
     4)提出了一种通过对再生制动开关磁阻电机输入反向防抱死制动电压实现电机防抱死制动控制的方法,并设计了基于模糊滑模变结构控制的电机防抱死控制策略;
     5)建立了再生制动稳定性集成控制模型,以集成控制器为中心,车辆稳定性控制、再生制动控制、能量回收控制及液压制动控制相互关联制约,实现集成控制;
     6)采用模块化分层设计的方法建立了再生制动模拟试验平台,试验平台系统可以满足车辆再生制动方面理论研究需要,并具有良好的可扩展性。
Braking energy of vehicle have not been reclaimed and reused yet. Kinetic energy when braking changes into heat by friction, and brake appraratus are worn prematurely, which increased use cost for auto. Energy regenerative braking converts braking kinetic energy into electric one and reuses it, which improve auto comprehensive utilization of energy. But braking performance of original car with only hydraulic braking system is changed when added regenerative braking system, which deteriorate vehicle stability and braking pedal comfort. How to realize harmony control between regenerative braking and hydraulic one, and how to make full used of motor regenerative braking, to maximize reclaiming energy on the premise of running stability, are problems urgently needed to be solved. Aiming at these problems the paper has done as followed:
     Firstly, a suit of pressure regulating device which can adjust front and rear hydraulic braking force automatically according to strategies of friction and motor braking force distribution is designed. After analyzing characteristic of regenerative braking and constraints of energy reclaiming, with the trait of a switched reluctance motor (SRM), a regenerative braking system scheme based on a double SRM front brake with duplex energy storage is presented. The controlling model of SRM braking is built. With a simplified equivalent circuit of the duplex energy storage, an energy model for storage is established.
     Secondly, a full vehicle dynamics model for regenerative braking is generated. A control strategy of SRM anti-lock regenerative braking based on fuzzy sliding mode variable structure control and a harmony strategy of SRM brake with hydraulic anti-lock brake are proposed. According to motor braking power, the brake intensities are classified. Strategies of brake force distribution for front rear wheels and for friction motor are established. Also, a car body stability control model based on double motor braking force control is put forward.
     Theoretical analysis of influencing factors of regenerative braking pedal comfortableness is carried out. Brake pedal model and its structure are designed. For achieving the same pedal comfort with original hydraulic braking system, a pedal comfort control strategy based on trajectory tracking is advanced.
     Integrated control of regenerative braking stability is modeled, which take a harmony controller as center, vehicle stability controller, regenerative braking controller, energy reclaiming controller and hydraulic braking controller are interdependent and mutually-restrained, so that integrated controlling is carried out.
     Finally, method of modular hierarchical design is adopted in building of regenerative braking hardware-in-the-loop (HIL) test bench. The above control theories of regenerative braking are validated on the test bench.
     Simulation calculation and test results showed that the theories and methods of auto regenerative braking can improve energy recovery of brake efficiently, realize good braking stability and braking pedal comfortableness. By further study on theories and methods of regenerative braking, this paper provides theoretical basis and new concept for developing and design of auto regenerative braking.
     The major innovations in this paper are as follows:
     1) A kind of regenerative braking system scheme based on a double SRM front brake with duplex energy storage of lead-acid battery paralleling with ultra-capacitor is presented.
     2) Based on original hydraulic braking system, a suit of pressure regulating device which can adjust front and rear hydraulic braking force automatically according to strategies of friction and motor braking force distribution is designed, so that the problem of harmony work between regenerative braking and hydraulic one is solved in structure.
     3) With a simplified equivalent circuit of the duplex energy storage, an energy modeling method for storage is adopted.
     4) A method of inputting reverse voltage to SRM to implementing anti lock braking is put forward. And strategy of SRM anti-lock regenerative braking based on fuzzy sliding mode variable structure control is proposed.
     5) A concept of regenerative braking stability integrated controller is modeled.
     6) Method of modular hierarchical design is adopted in the building of regenerative braking HIL test bench. The test system can not only fulfill the needs of regenerative braking research but also has good expansibility.
引文
[1]何仁.汽车制动再生方法的探讨[J].江苏大学学报(自然科学版),2005(6):1-4.
    [2]何仁,孙龙林,吴明.汽车新型储能动力传动系统节能机理[J].长安大学学报,2002(3):67-71.
    [3]Yimin Gao,Mehrdad Ehsani.Hybrid electric vehicle:overview and state of the art[J].IEEE ISIE,June 2005,pp.307-315.
    [4]Eiji Nakamura,Masayuki Soga,Akira Sakai.Development of Electronically Controlled Brake System for Hybrid Vehicle[J],SAE paper,2002-01-0300.
    [5]陈清泉,孙逢春编译.混合电动车辆基础[M].北京理工出版社,2001.
    [6]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势.公路交通科技.2000(01):71-74.
    [7]C.C.Chan.The State of the Art of Electric and Hybrid Vehicle[J].IEEE,Vol.90,No.2,February 2002,pp.247-275.
    [8]Kenji Morita.Automotive power source in 21~(st)century[J].JSAE Review,2003(24):3-7.
    [9]U.Koehler,E.Niggemann.High performance nickle metal hybrid batteries for electric and hybrid vehicles[R].Belgium,Brussels:EVS.15,1998.
    [10]田光宇,彭涛,林成涛,陈全世.混合动力电动汽车关键技术[J].汽车技术,2002(1):8-11.
    [11]程夕明,孙逢春.电动汽车能量存储技术概况[J].电源技术,2001(1):47-52.
    [12]B.J.Amet,L.P.Haines.Combining Ultra.capacitors with Lead.acid Batteries[C],EVS.17,2000.
    [13]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状[J].太阳能学报,2000(4):427-433.
    [14]Morimasa Hayashida,Kazuyuki Narusawa,Yushi Kamiya.Energy Regeneration of City Commuter.car by Ultracapacitor and Battery[C].EVS.16,1999.
    [15]林成涛,陈全世.燃料电池客车动力系统结构分析[J].公路交通科技,2003(5):133-137.
    [16]Thomas Dietrich.UltraCaps.A new Energy Storage Device for Peak Power Applications[C].EVS.18,2001.
    [17]A.F.Burke,M.Miller.Update of Ultracapacitor Technololgy and Hybrid Vehicle Applications:Passenger Cars and Transit Buses[C].EVS.18,2001.
    [18]Jin.Uk Jeong.A Development of an Energy Storage System for Hybrid Electric Vehicles Using Controlled Super Capacitors[C].EVS.20,2004.
    [19]S.R.Cikanek,K.E.Bailey.Regenerative Braking System for a Hybrid Electric Vehicle[C].Proceedings of the American Control Conference Anchorage,AK May 8-10,2002,pp3129-3134.
    [20]Yimin Gao.Investigation of the Effectiveness of Regenerative Braking for EV and HEV[J].SAE paper,1999-01-2910.
    [21]Hoon Yeo.Performance Analysis of Regenerative Braking System for Parallel Hybrid Electric Vehicle Using HILS[C].EVS.19,2003.
    [22]Yimin Gao,Mehrdad Ehsani,Electrinic Braking System of EV and HEV...Integration of Regenerative Braking,Automatic Braking Forces Control and ABS[J],SAE paper,2001-01-2478.
    [23]Niels J.Schouten,Mutasim A.Salman,Naim A.Kheir.Energy management strategies for parallel hybrid vehicles using fuzzy logic[J].Control Engineering Practice,2003,Vol.11,pp.171-177.
    [24]K.T.Chau,Y.S.Wong.Overview of power management in hybrid electric vehicle[J].Energy Conversion and Management,2002,Vol.43,pp.1953:1968.
    [25]Y.Sasaki,A.Otomo,F.Kawahata,A.Matui.Toyota braking system for hybrid vehicle with regenerative system.The 14th International Electric Vehicle Symposium and Exposition.Orlando,USA,1997.
    [26]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势.重庆大学学报,2001,Vol.24(6):28-31.
    [27]张俊智,卢青春,王丽芳.汽车混合动力传动的能量流动与比较.机械科学与技术,2001,Vol.20(9):47-51.
    [28]S.Sasaki,T.Takaoka,H.Matsui,T.Kotani.Toyota newly developed electric-gasoline engine hybrid powertrain system[C].The 14th International Electric Vehicle Symposium and Exposition.Orlando,USA,1997.
    [29]Koichi Fukuo,Akira Fujimura,Masaaki Saito,Kazuhiko Tsunoda.Development of the ultra.low.fuel.consumption hybrid car.INSIGHT[J].JSAE Review,2001,Vol.22,pp.95-103.
    [30]Gunter Gutmann.Hybrid electric vehicles and electrochemical storage system,a technology push.pull couple[J].Journal of Power Sources,1999,Vol.84,pp.275-279.
    [31]Masami Ogura.Development of electric vehicles[J].JSAE Review,1997,vol.18,pp.51-56.
    [32]Wolfram Buschhaus,Larry R.Brandedburg,Ross M.Stuntz.Hybrid electric vehicle development at Ford[C].The 15th International Electric Vehicle Symposium and Exposition.Brussels,Belgium,1998.
    [33]K.E.Bailey,S.R.Cikanek.Comparison of energy recovery capability of electric vehicle braking systems[C].Proceedings of the AVEC International Symposium of Advanced Vehicle Control,Aachen,Germany,1996.
    [34]Thomas Dietrich.Ultracaps.A new energy storage device for peak power applications [C].EVS.18,2001.
    [35]张金平,张奕黄.电动汽车用开关磁阻电机的DSP控制系统[J].电机电器技术.2002(4): 2-4.
    [36]高金生,唐耀庚,盛义发.功率变换技术及其应用[J].南华大学学报(理工版).2004,18(2):77-81.
    [37]李珍国,魏艳君,阚志忠等.基于四电平功率变换电路的开关磁阻电机瞬时转矩控制[J].电工技术学报.2007,22(8):144-149.
    [38]王双红.混合动力电动车用开关磁阻电机控制系统研究[D].武汉:华中科技大学,2005.
    [39]罗昶.双电机独立驱动电动车稳定性控制研究与试验车设计[D].北京:中国科学院电1:研究所,2004.
    [40]李春生.双轮独立驱动电动车驱动系统研究[D].杭州:浙江大学,2003.
    [41]吴建华.开关磁阻电机设计与应用[M].北京:机械工业出版社,2000.
    [42]雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997.
    [43]Ge Baoming,Anibal T.de Almeida,Fernando J.T.E.Ferreira.Supercapacitor.based optimum switched reluctance drive for advanced electric vehicles[J].Electrical Machines and systems.2005.ICEMS 2005,Vol.1,pp.822-827.
    [44]Erek J.Cegnar,Herb L.Hess,Brian K.Johnson.A purely ultracapacitor energy storage system for hybrid electric vehicles utilizing a microcontroller.based dc-dc boost converter[J].IEEE,vol.2,2004,pp.1160-1164.
    [45]Martin Schrnidt,Rolf Isermann,Bernd Lenzen.Potential of regenerative braking using an ntegrated starter alternator[J].SAE paper,2000-01-1020.
    [46]Sungwook Jang,Hoon Yeo,Chulsoo Kim et al..A study on regenerative braking for a parallel hybrid electric vehicle[J].KSME international.Journal,Vol.15(11),pp.1490.1498.
    [47]A.M.Walker,M.U.Lamperth,S.Wilkins.On friction braking demand with regenerative braking[J].SAE paper,2002-01-2581.
    [48]Andrew C.Balsden,Ali Emadi,Advisor.based model of a battery and an ultra.capacitor energy source for hybrid electric vehicles[J].IEEE Transactions on vehicular technology,Vol.53(1),2004,pp.199-205.
    [49]Michael Panagiotidis,George Delagrammatikas,Dennis Assanis.Development and use of a regenerative braking model for a parallel hybrid electric vehicle[J].SAE paper,2000.01.0995.
    [50]王古林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [51]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [52]Shin.ichiro Sakai,Hedeo Sado,Yoichi Hori.Anti skid control with motor in electric vehicle[J].IEEE AMC2000,pp.317-321.
    [53]Susan R.Cikanek,Wixom Mich.Electfic vehicle regenerative antiskid braking and traction control system[P].USA.Patent Number:5450324,Sep.12,1995.[54]Min.Hung Hsiao,Chien.Hen Lin.Antilock braking control of electric vehicles with electric brake[J].SAE paper,2005-01-1581.
    [55]Chunting Mi,Hui Lin,Yi Zhang.Iterative learning control of antilock braking of electric and hybrid vehicles[J].IEEE Transactions on vehicular technology,vol.54(2),2005,pp.486-494.
    [56]Donghyun Kim,Hyunsoo Kim.Vehicle stability control with regenerative braking and electronic brake force distribution for a four.wheel drive hybrid electric vehicle[J].IMechE 2006,vol.220 Part D:Automobile Engineering,pp.683-692
    [57]Chih.Min Lin,Chun.Fei Hsu.Neural.network hybrid control for antilock braking systems[J].IEEE 2003,vol.14(2),pp.351-359.
    [58]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [59]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [60]李果,王新力.电动车安全性控制系统研究[J].系统仿真学报,2007,19(5),1082-1085.
    [61]李果,余达太.电动车制动防抱死自适应鲁棒控制系统[J].自动化学报,2006,32(3),444-449.
    [62]何平,王鸿绪.模糊控制器的设计及应用[M].科学出版社1997.
    [63]李君,喻凡.基于道路自动识别的ABS模糊控制系统的研究[J].农业机械学报,2001,32(5):26-29.
    [64]莫友生,朱荣,李思恩等.汽车ABS模糊神经网络控制[J].上海交通大学学报,1999,33(5):570-573.
    [65]许美坤.模糊控制在汽车防抱死制动系统中的应用研究[D].华中科技大学,2002.
    [66]韩宗奇,余志生,万嘉璜.汽车转弯制动性能的模拟计算[J].汽车工程,1991,13(1):23-34.
    [67]何渝生.汽车控制理论基础及应用[M].重庆大学出版社,1995.
    [68]宋传学,周云山,李幼德.防抱制动系统控制算法的仿真研究[J],汽车工程,1998,20(1):24-30
    [69]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1998.
    [70]李士勇.模糊控制·神经控制和智能控制[M].哈尔滨工业大学出版社,1998.
    [71]Georg EMauer,A Fuzzy Logic Controller for an ABS Braking System[J],IEEE Transaction on Fuzzy System,1995,Vol.3(4).
    [72]E.Bakker,H.B.Pacejka,L.Lidner.A new tire model with application in vehicle dynamics studies[J].SAE paper,890087.
    [73]Sohel Anwar.Yaw stability control of an automotive vehicle via generalized predictive algorithm[C].American Control Conference 2005,pp.430-440.
    [74]Yoshiyuki Yasui,Kenji Tozu,Noria Hattori.Improvement of vehicle directional stability for transient steering maneuvers using active brake control[J].SAE paper960485.
    [75]Ken Koibuchi,Masaki Yamamoto,Yoshiki Fukada.Vehicle stability control in limit cornering by active brake[J].SAE paper,960487.
    [76]王德平,郭孔辉.车辆动力学稳定性控制的控制原理与控制策略研究[J].机械工程学报, 2000,36(3):97-99.
    [77]汪泽润,周汽一.关于汽车制动方向稳定性的探讨[J].汽车技术,1995(1):15-19.
    [78]裴锦华.汽车ESP控制系统研究[D].重庆大学,2005.
    [79]李卫华.汽车转弯过程中的防抱死制动系统的研究[D].燕山大学,2006.
    [80]涂志祥.基于模糊控制的汽车动力学稳定性控制(VDC)研究[D].长沙理工大学,2004.
    [81]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程,2006,28(9):844-848.
    [82]唐国元,宾鸿赞.对开路面制动车辆稳定性的控制方法仿真[J].计算机仿真,2007,24(3):254-256.
    [83]耿聪,堀洋一,青木良文.电动汽车稳定性控制中的车体侧偏角观测器研究[J].河北工业大学学报,2007,36(1):13-18.
    [84]E.Esmailzadeh,A.Goodarzi,G.R.Vossoughi.Optimal yaw moment control law for improveing vehicle handling[J].Mechatronics,2003,13(7),pp.659-675.
    [85]H.J.Park,W.S.Ahn.H-infinity yaw-moment control with brakes for improving driving performance and stability[C].Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,1999.
    [86]Y.Furukawa,M.Abe.Direct yaw moment control with estimateing side.slip angle by using on.board.tire.model.AVEC` 98,1998.
    [87]M.Nagai,M.Shino,F.Gao.Study on integrated control of active front steer angle and direct yaw moment[J].JSAE Review,2002,23,pp.309-315.
    [88]S.Horiuchi,K.Okada,S.Nohtomi.Improvement of vehicle handling by nonlinear integrated control of four wheel steering and four wheel torque[J].JSAE Review,1999,20,pp.459-464.
    [89]A.El Hajjaji,S.Bentalba.Fuzzy path tracking control for automatic steering of vehicles[J].Robotics and Autonomous Syst.,2003,43,pp.203-213.
    [90]K.Park,S.J.Heo,I.Baek.Controller design for improving lateral vehicle dynamic stability[J].JSAE Review,2001,22,pp.481-486.
    [91]J.Guldner,V.I.Utkin.The chattering problem in sliding mode systems[C].Proceedings of 14~(th)International Symposium on Mathematical Theory of Networks and Systems(MTNS'00),2000.
    [92]O.Mokhiamar,M.Abe.Effects of model response on model following type of combined lateral force and yaw moment control performance for active vehicle handling safety[J].JSAE,2002,23,pp.473-480.
    [93]H.Dugoff,C.Fancher,L.Segel.An analysis of tire traction properties and their influence on vehicle dynamic pefformance[J].SAE paper,700377.
    [94]M.Sugeno.On stability of fuzzy systems expressed by fuzzy rules with a singleton consequents[J].IEEE Transactions Fuzzy System,1999,7(2),pp.201-244.
    [95]James W.Zehnder Ⅱ,Shekhar S.Kanetkar,Craig A.Osterday.Variable rate pedal feel emulator designs for a brake.by.wire system[J].SAE paper,1999-01-0481.
    [96]A.Hildebrandt,O.Sawodny,R.Trutschel,et al..Nonlinear control design for implementation of specific pedal feeling in brake.by.wire car design concepts[C].Proceeding of the American Control Conference,Boston,2004,pp.1463-1468.
    [97]金伟明.汽车踏板力传感器设计[J].传感技术学报,2001(3):237-240.
    [98]钟诗清,侯玉英,余席桂.汽车制动踏板力.行程检查仪及其标定[J].武汉汽车工业大学学报,1998,vol.20(2):18-21.
    [99]林志轩,高晓杰.制动踏板感觉研究现状[J].农业装备与车辆工程,2007(6):4-7.
    [100]Joaquim A.De Arruda Pereira.New fiesta:Brake pedal feeling development to improve customer satisfaction[J].SAE paper,2003-01-3598.
    [101]王霞.汽车防抱死制动与主动前轮转向系统协调控制研究[D].合肥工业大学,2007.
    [102]李人厚.复杂大系统的集成控制[J].控制理论与应用,1994,vol.11(2):222-225.
    [103]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].2007,vol.29(5):420-425.
    [104]吴利军,崔海峰,马岳峰.汽车ABS/ASR/ACC集成控制系统设计[J].液压与气动,2006(9):3-5.
    [105]吕廷秀.混合动力轿车再生制动与防抱死集成控制系统研究[D].吉林大学.2007.
    [106]詹迅,秦大同,杨阳.轻度混合动力汽车再生制动控制策略与仿真研究[J].中国机械工程,2006(3):321-324.
    [107]周磊,罗禹贡,杨殿阁等.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报,2007(4):125-131.
    [108]PENG Dong,YIN Cheng-liang,ZHANG Jian-Wu.An investingation into regenerative braking system control strategy for hybrid electric vehicle[J].Journal of Shanghai Jiaotong University(Science),2005(4):407-412.
    [109]M.Soga,M.Shimada,J.I.Sakamoto.Development of vehicle dynamics management system for hybrid vehicles:ECB system for improved environmental and vehicle dynamic performance[J].JSAE Review,2002,Vol.23(4):459-464.
    [110]Valerie H.Johnson,Keith B.Wipke.HEV control strategy for real.time optimization of fuel economy and emission[J].SAE Paper,2000-01-1543.
    [111]Joseph Beretta.New tools for energy efficiency evaluation on hybrid architecture.The 18th International Eleetic Vehicle Symposium and Exposition.Berlin,Germany,2001.
    [112]Terry D.Day,Sydney G.Roberts.A simulation model for vehicle braking systems fitted with ABS[J].SAE Paper,2002-01-0559.
    [113]刘溧.汽车ABS仿真试验台的开发与液压系统动态特性的研究[D].吉林工业大学。2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700