机械化修井作业装置液压系统设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据当前油田修井作业的发展需要,提出了一套新型修井井口机械化作业方案。本文以机械化修井作业装置为研究对象,在对其系统方案、主机工作原理及作业流程充分掌握的前提下,提出主机液压系统的设计要求,并对其执行机构的运动及负载进行工况分析。在此基础上,根据计算和相关设计经验,确定主机液压系统参数、拟定液压系统图并选定液压元件,辅以油箱组件及液压泵组的结构设计并合理选择、排布系统管路,直至完成样机液压泵站的搭建。
     提出主钳液压系统动态特性的研究要求,对其研究内容、方法进行阐述,并指出正确推导系统数学模型对其动态特性研究的必要性及意义。对解析建模法进行理论研究,包括系统微分方程、动态方程的拉普拉斯变换及传递函数的意义及研究方法。对主钳液压系统进行分析并将其简化为阀控非对称缸、阀控马达及定量泵—溢流阀等液压单元;基于解析建模法,应用物理学、流体力学、运动学、动力学定律和方程推导其数学模型及传递函数,为仿真试验奠定理论基础。
     基于AMESim软件搭建主钳卡盘(行星爪)系统及刹带制动系统的仿真模型并进行变参数仿真试验。对试验结果进行分析,从而掌握液压系统的动态特性及系统参数随时间的变化情况,并为系统的优化设计提供合理化建议。样机试制完成后,通过现场试验肯定了主机液压系统的设计,并就试验数据与预期之间的误差及其成因进行了相关分析;将试验测得的主钳液压系统的动态特性与仿真结果进行了比较和分析,验证了AMESim仿真模型的正确性以及将其作为系统动态特性研究平台的可行性。
According to the developmental needs of the current well servicing operation,a scheme for the new-type wellhead workover mechanical operation was formulated. In this paper, study on mechanized workover equipment, proposed host hydraulic system design requirements based on fully grasp the system program, host operating principle, structure and workflow, carried out the working conditions analysis of executive mechanism movement and load. On the basis, according to calculation and related design experience, determine the host hydraulic system parameters and develop the hydraulic system diagram and select hydraulic components. Supported by structural design of fuel tank components and hydraulic pump groups, and layout system pipeline by rational choice, until the final completion of prototype structures hydraulic pump station.
     Proposed the research demand of main clamp hydraulic system dynamic characteristics, described its research contents and methods, pointed out the necessity and significance of dynamic characteristics study by the correct derivation of system mathematical model. Carried out theoretical studies on analytical modeling method, including the system differential equations, dynamic equations of the Laplace transform and the significance of transfer function and research methods. Analyze the main clamp hydraulic system and simplified it as valve controlled asymmetric cylinder, valve-controlled motor and quantitative pump - relief valve and other hydraulic units; based on analytical modeling method, applied physics, fluid dynamics, kinematics, dynamics law and equations to derivate mathematical model and transfer function, which lay the theoretical foundation for simulation.
     Build the main clamp Chucks (Jaw) and braking system based on AMESim software to simulate with experiments varying parameters. The test results are analyzed in order to master the dynamic characteristics of hydraulic systems and system parameters changes over time, and propose rationalization suggestion for system optimal design. When Prototype trial is completed, confirmed the host through the hydraulic system design by field test, analyze the causes and error between the test data and expected; Analyzed and compared the main clamp hydraulic system's dynamic characteristics between on-site test and simulation results, which verify the correctness of AMESim simulation model and the feasibility as the dynamic characteristics system platform.
引文
[1]尹永晶,杨汉立.石油修井机[M].北京:石油工业出版社,2003:1-15.
    [2] Don Francis.World-class workover [J].E & P.2006:53 (1) :89-91.
    [3]王俊亮,张天军.井下作业[M].北京:石油工业出版社,2006:1-24.
    [4]刘发群,詹逸伦.井下作业工[M].哈尔滨:黑龙江人民出版社,2001:8-58.
    [5]张阳春,杨志康,郭东.国内外石油钻采设备技术水平分析[M].北京:石油工业出版社,2001:183-211.
    [6]刘常福,宋开利,张振海,等.自动化液压动力大钳[J].石油机械,2002,30 (9):61-62.
    [7] Halse,Helge-Ruben.Method and device for positioning a power tong at a pipe joint [P].World Intellectual Property Organization,Patent,PCT/NO2006/000425,2007-05-31.
    [8]常玉连,詹冠杰,高胜,等.新型修井作业机械化系统设计方案研究[J].石油机械,2008,36(9):188-191.
    [9]杨春会.一种动力钳行星爪双向夹紧机构[P].中国,CN93213627.3,1994.
    [10]华东石油学院矿机教研室.石油钻采机械[M].北京:石油工业出版社,1984.210-225.
    [11]傅永森.刹车带式动力钳钳头制动机构.中国,00261136.8,2001.
    [12]崔旭明,孟繁志.修井作业油管自动拉排机的结构与参数设计[J].石油机械,2002,30(9):14-16.
    [13]崔时光.油田修井自动作业装置[P].中国专利:200410036305.4,2005-04-27.
    [14]张宝增,王瑞和.修井作业用新型管柱起下装置[J].石油机械,2006,34(10):49-51.
    [15] (美)豪格(Haug E J)著,刘兴祥,李吉蓉,林梅等译.机械系统的计算机辅助运动学和动力学[M].北京:高等教育出版社,1996:1-140.
    [16]陈奎生.液压与气压传动[M].武汉:武汉理工大学出版社,2007.107-118.
    [17] Engelhard J.Thermal simulation of an aircraft fluid power system with hydraulic-electrical power conversion units.Proc.of 1st FPNI-PhD Symp [C].2000:435-448.
    [18]许贤良,王传礼.液压传动[M].北京:国防工业出版社,2006.276-277.
    [19]明仁雄,万会雄.液压与气压传动[M].北京:国防工业出版社,2003.182-185.
    [20]张利平.液压传动系统及设计[M].北京:化学工业出版社,2005.103.
    [21]智润芳.液压系统开式油箱的设计及结构改进[J].机械工程与自动化,2005(6),106-107.
    [22]游善兰.开式液压油箱设计方法[J].液压·液力,2002(2),28-29.
    [23]井夫宣,刘虎,田敬刚,等.液压系统储备油箱的设计与应用[J].液压与气动,2007(4),68.
    [24]张冬,孟凡刚.泵、马达液压实验台中油箱的设计[J].煤矿现代化,2003(5),28.
    [25]李红船,冯钟绪,李飞舟.液压系统开式油箱设计[J].起重运输机械,2007(12),58-61.
    [26]曹小忠,孟海忠.液压泵站设计与使用中一些问题的分析[J].液压与气动,2006(8),71-72.
    [27]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西北工业大学,2006.
    [28]缪雄.混凝土泵液压系统动态建模与仿真[J].系统仿真学报,2001,12(5):129-134.
    [29]张传才.液压动力系统建模与实验研究[D].西安建筑科技大学,2008.
    [30] Pobedza J.Fluid aeration as an essential problem in modeling of hydraulic systems.In:Garbacik A,Stecki J (Editors) .Developments in Fluid Power Control of Machinery and Manipulators.Cracow:Fluid Power Net Publication 2000.
    [31]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007.14-28.
    [32]杨典作.LG660挖掘机液压传动系统研究[D].吉林大学,2009.
    [33]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.6-32.
    [34]李成功,和彦淼.液压系统建模与仿真分析[M].北京:航空工业出版社,2008.14-28.
    [35] Li C G,Jiao Z X.Thermal-hydraulic Modeling and Simulation of Piston Pump.航空学报,2006.
    [36]杨叔子,杨克冲.机械工程控制基础[M].武汉:华中科技大学出版社,2002.26-55.
    [37] Torben O A,Michael R H.Fluid Power Systems,Modeling and Analysis.Aalborg University.2nd Edition,March 2003.
    [38] Peter K.Modeling and Simulation of Heterogenous Engineering Systems.Depatment of Mechanical Engineering.Linkoping University,Linkoping,Sweden,2002.
    [39]徐家蓓,控制系统数字仿真[M].北京:北京理工大学出版社,1998.25 -26.
    [40]颜庆津.数值分析[M].北京:北京航空航天大学出版社,2000.12-14.
    [41] Murrenhoff H.Grundlagen der Fluidtechnik.Teil 1:Hydrsulik.2.Aufl,Aachen:Verlag Mainz 1998.
    [42] Iliff K W.Parameter estimation for flight vehicle.Guidance and Control,1989,12 (5) :609-622.
    [43]肖岱宗.AMESim仿真技术及其在液压元件设计和性能分析中的应用[J].舰船科学技术,2007,29 (1).142-145.
    [44]林躜,黄方平.AMESim/Matlab的仿真及其在单向阀优化设计中的应用[J].液压气动与密封,2006(2):15-16.
    [45]付永领,祁晓野.AMESim系统建模和仿真——从入门到精通[M].北京:北京航空航天大学出版社,2005.18-44.
    [46]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-31.
    [47]郭军,吴亚峰.AMESim仿真技术在飞机液压系统中的应用[J].计算机辅助工程,2006(2):42-45.
    [48]多学科领域复杂系统仿真平台——AMESIM软件功能简介[J].CAD/CAM与制造业信息化,2005(12):56-59.
    [49]王瑜,林立,姜建胜.基于AMESim液压盘式刹车系统建模与仿真研究[J].石油机械,2008(9):31-35.
    [50]杨非,雷金柱.基于AMESim的工程车辆液压悬架系统仿真[J].液压气动与密封,2008,28 (2):31-34.
    [51]赵航.蓄能器减小液压驱动系统液压冲击的试验研究[D].长安大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700