混合动力汽车再生制动与稳定性集成控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车由于其良好的经济性能和低排放性已被人们接受,再生制动功能作为其提高经济性能的一个重要因素现已成为一个研究热点,车辆稳定性控制系统作为一种主动安全技术,可抑制车辆的过多转向及严重不足转向趋势,提高车辆的操纵稳定性,因此在混合动力汽车上装备车辆稳定性系统已成为发展趋势。这就需要混合动力汽车既具有再生制动功能又具有稳定性控制功能,即需要对混合动力汽车再生制动与稳定性集成控制算法进行研究。
     混合动力汽车再生制动与稳定性集成控制研究在国内外尚属前沿,论文结合科技部863专项、国际科技合作及省科技支撑计划重大专项等项目与中国第一汽车集团公司技术中心密切合作,以混合动力轿车为研究对象,围绕混合动力汽车的再生制动与稳定性集成控制算法展开研究。
     本文的研究内容主要涉及到再生制动力分配、车辆稳定性控制及再生制动与车辆稳定性协调控制三个方面。论文的主要内容包括:
     (1)在分析再生制动力分配影响因素的基础上,提出了电机制动力分配优化算法。首先对混合动力汽车的制动能量回收的影响因素进行分析,这些影响因素主要为:车辆的循环工况制动强度、电机发电特性、电池充电特性及发动机拖滞转矩。对电机发电特性及电池充电特性进行分析,依据分析结果限定考虑电机、电池后的最大电机制动转矩。考虑电机电池联合效率对制动能量回收的影响,采用改进的自适应遗传算法求解最大有效电机制动功率所对应的电机制动转矩。依据车辆的制动强度对车辆的前后轴制动力进行分配,结合电机制动力分配优化算法即可实现对电机制动力与液压制动力的分配。
     (2)对车辆制动稳定性控制算法的整体结构进行研究,在此基础上,进行车辆状态估算、车轮与车辆稳定状态判别及横摆力矩控制算法的研究。在车辆的状态估算中,重点研究了基于混和观测器的车辆质心侧偏角估算算法。由状态空间估算、动力学积分及权值计算模块所组成的混和观测器在整个轮胎工作区间内都可保证估算精度。采用车轮加速度、车轮滑移率及附加门限修正量确定车轮的稳定状态。在车辆稳定状态的判别中,运用相平面的方法对影响车辆稳定性的车辆横摆角速度及车辆质心侧偏角进行分析,在此基础上,设计了车辆稳定性控制算法的开启及退出逻辑。在横摆力矩控制算法中,运用灰色预测PID控制对目标横摆力矩进行了研究,可有效减小系统中不确定因素对控制算法的影响。运用线性最优的方法对横摆力矩的分配进行研究,在保证车辆稳定性的前提下,充分利用轮胎附着力。
     (3)对再生制动与稳定性控制集成控制算法的总体结构进行研究,开发再生制动与稳定性协调控制器。再生制动与稳定性协调控制器主要包括液压制动力与电机制动力的协调控制、再生制动与车轮防抱死(ABS)的协调控制、再生制动与稳定性控制(ESP)的协调控制等。考虑驾驶员的制动意图,引入制动踏板行程对电机制动力与液压制动力进行二次分配,可有效保证制动力满足驾驶员的动态制动意图且减少再生制动时ABS触发的几率。针对混合动力轿车制动时再生制动与ABS及ESP频繁切换的问题,依据状态机方法设计再生制动与ABS及ESP的协调控制算法。考虑电机制动力动态响应特性与液压制动力动态响应特性的差异,依据作用于车轮的电机制动力滞后于液压制动力的特性,提出采用液压制动力补偿电机制动力的动态特性,并基于自适应滑模控制方法设计了液压制动力补偿控制算法。采用液压制动力补偿控制后,整车的动态及稳态制动力均可满足驾驶员需求制动力需求,提高了制动过程的平顺性。
     (4)基于Matlab/Simulink平台,建立了混合动力汽车再生制动与稳定性集成控制系统离线仿真平台。仿真平台包括混合动力汽车车辆模型、控制算法模型及用户图形界面三部分。在不同循环工况下对电机制动力分配优化算法进行试验验证,在不同转向工况下对车辆稳定性控制算法进行试验验证,在不同制动强度下对液压制动力补偿控制算法进行试验验证,在转向及直线行驶工况下对再生制动与稳定性控制协调控制算法进行试验验证。试验结果表明本文所开发的电机制动力分配优化算法能有效回收制动能量,提高整车燃油经济性。所开发的车辆稳定性控制算法能够在多种工况下保证车辆的操纵稳定性,所开发的液压制动力补偿控制算法能够在整个制动过程中保证整车的制动力需求,提高了制动过程的平顺性。所开发的再生制动与稳定性协调控制算法能够在保证车辆制动稳定性的前提下尽可能的回收制动能量。
     (5)在离线仿真平台的基础上,基于Matlab/XPC平台建立了混合动力车辆再生制动与稳定性集成控制系统硬件在环试验平台。试验平台主要包括xPc Target实时平台、传感器、数据采集与处理系统、硬件台架及仿真软件,其中硬件台架包括液压制动系统台架、电机台架及操纵台架等三部分。利用硬件在环试验台对开发的再生制动与稳定性集成控制算法在多种工况下进行试验研究,试验结果表明所开发的再生制动与稳定性集成控制算法能够在多种工况下有效回收制动能量、满足驾驶员制动力需求及保证车辆的操纵稳定性。
As the good economic performance and low emissions, hybrid electric vehicles become more and more popular. Regenerative braking improves vehicle economic performance and has become a research topic. As an active safety technology, vehicle stability control system can inhibit the over turning of vehicles and severe understeering tendency, to improve vehicle handling and stability. The hybrid vehicles equipped with the vehicle stability system has become a trendence. This requires a hybrid vehicle have regenerative braking and stability control functions. It needs the study the integrated control algorithm of regenerative braking and stability control for hybrid electric vehicles.
     There are few paper of the research on integrated control of regenerative braking and stability for hybrid vehicles in the domestic and the abroad. This paper combined with 863 projects, international scientific, technological cooperation projects, provincial scientific and technological support projects etc. At the same time, it makes close cooperation with China FAW Group Corporation Technical Center. Hybrid electric vehicles are studied in the paper, and how to integrate the braking regenerative and the stability control algorithm become a main topic.
     This paper mainly includes three aspects, the distribution of regenerative braking force, vehicle stability control and the coordinated control algorithm of regenerative braking and vehicle stability control.
     (1) Base on the analysis of factors related to the distribution of regenerative braking forces of the hybrid vehicles, the author proposed the optimal control algorithm of electric motor braking force distribution. First, it analyzes the factors related to braking energy recovery rate in the hybrid vehicle. These factors mainly include: the vehicle braking strength in the cycle conditions, the characteristics of the electrical power generation, the battery charging characteristics and the engine drag torque hysteresis. It analysis power generating characteristics of the motor and charging characteristics of battery, according to motor maximum braking torque concerned the motor and battery. Considering the motor and the battery efficiency on the braking energy recovery, an improved adaptive genetic algorithm is proposed to calculate the maximum effective motor braking power, corresponding to the motor braking torque. According to the vehicle braking strength and optimal algorithm for electric power distribution system, it makes different braking force to the front and rear axles of vehicles, realizing the distribution of motor and hydraulic braking forces.
     (2) The paper studies the overall structure of control algorithm for vehicle braking stability. It estimates the state of the vehicle, identifies the stable state of the wheel and vehicle and study the yaw moment control algorithm. By estimating the state of the vehicle, dynamics integral and weight calculation module, the author proposes the hybrid observer to insure the estimation accuracy in the tire working range. To identify the stability of the wheel, the author uses the wheel acceleration, wheel slip rate and the threshold correction to determine additional wheel steady state. The method of phase plane was used as steady identifying state in the vehicle. The author analysis the impact of yaw rate and sideslip angle in the stability of vehicle. On this basis, the author also designs trigger and cut-off conditions for stable control algorithm in vehicle. In the yaw moment control algorithm, a gray PID control was used to calculate the target yaw moment in the research. The algorithm can effectively reduce the uncertainty of the control algorithm, using optimal tire force distribution algorithm to determine the yaw moment in the study. To ensure vehicle stability in the premise, the vehicle should make use of tire adhesion as far as possible.
     (3) The overall structure of coordination control algorithm of regenerative braking and stability was carried out in the research. The author develops the controller to coordinate the braking forces. The controller includes the coordination control of hydraulic and electrical power system, the coordination control of regenerative braking and wheel anti-lock braking (ABS), and the coordination control of regenerative braking and electronic stability control (ESP). Considering the driver's braking intention, the brake pedal travel was used to analysis electric power and hydraulic braking system for secondary distribution. The method can effectively guarantee the driver's braking force to meet the intent of the dynamic braking and regenerative braking to reduce the risk of triggering ABS. For the problems of frequent switching on hybrid vehicles among regenerative braking, ABS and ESP systems, the author designs the coordination algorithm of ABS, ESP and regenerative braking with the method of state machine. Considering the dynamic response characteristics between electric power system and the hydraulic braking force system, the author uses braking force to compensate electric hydraulic power system, according to the electric mechanism acting on the wheel driving force with the hydraulic braking force dynamic characteristics. At the same time, based on adaptive self-sliding mode control algorithm, the author designs the method to compensate hydraulic braking force. With the vehicle's dynamic and steady state, driver's braking force can meet the needs of the system power requirements and improve the smoothness of the braking process.
     (4) Based on Matlab/Simulink platform, an offline simulation platform for integrated regenerative braking and stability control algorithm is established in hybrid vehicles. The model simulation platform includes three parts, hybrid vehicles model, the controller model and the graphical user interface. Using different driving cycles, the author verifies the effectiveness of regeneration braking force distribution algorithm. On different steering test conditions, the author verifies the effectiveness of vehicle stability control algorithm. To verify the effectiveness of hydraulic braking force compensation control algorithm, the author uses the brake strength in the low and middle intensity. On cornering and straight line conditions, the author verifies the effectiveness of the coordinate control algorithm of stability control with regenerative braking control. The results have shown that the developed regenerative brake force distribution algorithm can effectively improve vehicle fuel economy for the recovery of braking energy. The vehicle stability algorithm can ensure the vehicle handling and stability in a variety of conditions, and the hydraulic braking force compensation control algorithm can ensure the vehicle's braking force needs to improve the braking process as well as to improve vehicle ride performance in the entire braking process. The coordinated control algorithm of regenerative braking and stability designed in the paper can not only guarantee braking stability, but also recover the braking energy as far as possible.
     (5) Based on the off-line simulation platform, a hybrid vehicle integrated regenerative braking and stability control hardware is established by using Matlab /xPC platform in the loop test bench. The test bench includes xPC Target real-time platform, sensors, data acquisition and processing systems, hardware bench and simulation software. And the hardware bench includes three parts, hydraulic braking system test bench, motor test bench, and operate board. The hardware in the loop test bench is used for verifying the effectiveness of the integrated control algorithm of regenerative braking and stability control in a variety of test conditions, the test results show that the developed control algorithm can effectively recover braking energy in a variety of conditions, and at same time, the algorithm can meet the needs of the driver's braking force as well as ensure that the vehicle handling and stability.
引文
[1]杨妙梁.混合动力车与电动汽车制动能量回收控制(一)[J].新能源汽车, 2010, 48(No.5).
    [2]杨妙梁.混合动力车与电动汽车制动能量回收控制(二)[J].新能源汽车, 2010, 5(No.1).
    [3]张毅,杨林,朱建新.电动汽车能量回馈的整车控制[J].汽车工程, 2005(第27卷)第1期.
    [4]李玉芳,林逸,何洪文,陈陆华.电动汽车再生制动控制算法研究[J].汽车工程, 2007(第29卷)第11期.
    [5]王保华,张建武,罗勇革.并联混合动力客车再生制动仿真研究[J].汽车工程, 2005(第27卷)第6期.
    [6] P.Falcone, S.Khoshfetrat Pakazad, and S.Solyom. Predictive approaches to rear axle regenerative braking control in hybrid vehicles[C], Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R.China, December, 16-18,2009.
    [7] LASB Martins, JMO Brito, AMD Rocha, JJG Martins. Regenerative braking potential and energy simulations for a plug-in hybrid electric vehicle under real driving conditions[C]. Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition, November 13-19, Lake Buena Vista, Florida, USA.
    [8] Manbok Park, Sangmook Kim, Leejin Yang, and Kwangil Kim. Development of the control logic of electronically controlled hydraulic brake system for hybrid vehicle[C]. SAE paper, 2009-01-1215.
    [9] Y.Bin, A.Reama, A.Cela, R.Natowicz, H.Abderrahmane. On fast dynamic programming for power splitting control of plug-in hybrid electric vehicles[C]. Proceedings of the ASME 2009 Dynamic Systems and Control Conference, October 12-14, 2009, Hollywood, California, USA.
    [10] Joseph Hartley, Andrew Day, Ioan Campean, Rod GMclellan, John Richmond. Braking system for a full electric vehicle with regenerative braking[C]. SAE Paper, 2010-01-1680.
    [11]张忠伟,张锦龙,沈璟虹.混合动力汽车再生制动的研究[J].科技创新导报, 2008,第34期.
    [12] Falcone, P, Pakazad, S. Khoshfetrat1; Solyom, S. Predictive approaches to rear axle regenerative braking control in hybrid vehicles[C]. Proceedings of the 48th IEEE Conference on Decision and Control held jointly with 2009 28th Chinese Control Conference, CDC/CCC 2009.
    [13] A.M.Walker, M.U.Lamperth and S.Wilkins. On friction braking demand with regenerative braking[C]. SAE Paper, 2002-01-2581.
    [14] Linus Nordholm. Development of validation methods for HEV[D]. Lund University, 2006.
    [15] Manfred Mischke.汽车动力学[M].北京:清华大学出版社, 2009.
    [16] Bosch. Driving safety systems[M]. Society of Automotive Engineers,1999.
    [17] Shuibo Zheng, Houjun Tang, Zhengzhi Han, Yong Zhang. Controller design for vehicle stability enhancement[J]. Control Engineering Practice, 14 (2006) 1413-1421.
    [18] A. T. Van Zanten. VDC– the Bosch vehicle dynamics control system[C]. SAE Paper, 950759.
    [19] A. T. Van. Zanten. Control aspects of the Bosch VDC[C]. AVEC96, pp. 573-608, Aachen, 1996.
    [20] NHTSA. Traffic safety facts 2008 [OL]. June, 2009, http://www.nhtsa.gov.
    [21] Claes Tingvall, Maria Krafft, AndersKullgren, Anders Lie. The Effectiveness of ESP (Electronic Stability Programme) in Reducing Real Life Accidents[C]. Proceedings of. The 18th Experimental Safety of Vehicles Conference, Nagoya, Japan. 19–22 May 2003.
    [22] A brief history of electronic stability controls and their applications. http://www.safetyresearch.net.
    [23] Masami Ogura and Yasushi Aoki. The HONDA EV plus regenerative braking system[C]. EVS14.
    [24] Joel R.Anstrom. Model development for hybrid electric vehicle stability assist systems[D]. Pennsylvania State University, 2002.
    [25] Jonas Fredriksson, Johan Andreasson and Leo Laine. Wheel force distribution for improved handling in a hybrid electric vehicle using nonlinear control[C]. 43rd IEEE Conference on Decision and Control, December, 14-17, 2004, Atlantis, Paradise Island, Bahamas.
    [26] D-H Kim, J-M Kim, S-H Hwang, and H-S Kim. Optimal brake torque distribution for a four–wheel–drive Hybrid electric vehicle stability enhancement[J]. Automobile Engineering, Proc. IMechE Vol. 221 Part D:J, 2007.
    [27] Donghyun Kim, Sungho Hwang, and Hyunsoo Kim. Vehicle stability enhancement of four–wheel–drive hybrid electric vehicle using rear motor control[C]. IEEE Transactions on vehicular technology, Vol. 57. No. 2, March 2008.
    [28] Hancock, Matthew1 ; Assadian, Francis1. Impact of regenerative braking on vehicle stability[C]. IET Hybrid Vehicle Conference 2006.
    [29]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程, 2008(第30卷)第4期.
    [30]王鹏宇,王庆年,胡安平,于远彬.基于Simulink-AMESim联合仿真的混合动力客车再生制动分析[J].吉林大学学报(工学版), 2008年2月第38卷增刊.
    [31]郑伟. HEV再生制动系统与ABS协调控制建模与仿真的研究[D].武汉:武汉理工大学, 2006.
    [32] Roy I.Davis, Ypsilanti, Mich. Adaptive controller for regenerative and friction braking system[P]. US.4962969.
    [33] A.Sakai, Y.Sasaki, A.Otomo, F.Kawahata, A.Matui. Toyota braking system for hybrid vehicle with regenerative system[C]. EVS14.
    [34] Tsukasa Fukasawa, Aichi-ken, Akira Sakai. Vehicle braking system having frictional and regenerative braking devices[P]. US.6231134B1.
    [35] Yimin Gao and Mehrdad Ehsani. Electronic braking system of EV and HEV– integration of regenerative braking, automatic braking force control and ABS[C]. SAE Paper, 2001-01-2478.
    [36] Masayuki Soga, Michihito Shi mada, Jyun-ichi Sakamoto and Akihiro Otomo. Development of vehicle dynamics management system for hybrid vehicles– ECB system for improved environmental and vehicle dynamic performance[C]. SAE Paper, 2002-01-1586.
    [37] Eiji Nakamura, Masayuki Soga, Akira Sakai, Akihiro Otomo and Toshikazu Kobayashi. Development of electronically controlled brake system for hybrid vehicle[C]. SAE Paper, 2002-01-0300.
    [38] Ahu E. Hartavi, Ismail M.C.Uygan, Volkan Sezer and Levent Guvenc. Electric regenerative power assisted brake algorithm for a front and rear wheel drive parallel hybrid electric commercialvan[C]. SAE Paper, 2008-01-2606.
    [39] S.R.Cikanek, K.E.Bailey. Regenerative braking system for a hybrid electric vehicle[C]. Proceedings of the American Control Conference, Anchorage, AK May 8-10, 2002.
    [40] TRW. Electronic stability control-regenerative (ESC-R)[OL]. 2011, http://www.trw.com.
    [41] John William Miller. Design a single axle regenerative brake system for a 2005 Thru-the-road hybrid electric Chevrolet Equinox[D]. The University of Tennessee, Knoxville, 2006.
    [42] Christian von Albrichsfeld and Jean Karner. Braking system for hybrid electric vehicles[C]. SAE Paper, 2009-01-1217.
    [43]朱余清,雷克萨斯GS430 VDIM系统浅析. http://www.chebrake.com.
    [44]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学, 2008.
    [45]陈庆樟.汽车再生制动稳定性与制动踏板平稳性控制研究[D].镇江:江苏大学, 2008.
    [46]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学, 2007.
    [47]张俊智,薛俊亮,陆欣,李波,张鹏君.混合动力城市客车串联式制动能量回馈技术[J].机械工程学报, 2009年06期.
    [48] Zhang Junzhi, Lu Xin, Chen Shanglou, Zhang Pengjun. Coordinated control for regenerative braking system[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China.
    [49] M.Canale, L.Fagiano, M.Milanese, P.Borodani. Robust vehicle yaw control using an active differential and IMC techniques[J]. Control Engineering Practice 15 (2007) 923-941.
    [50] Ossama Mokhiamar and Masato Abe. Combined lateral force and yaw moment control to maximize stability as well as vehicle responsiveness during evasive maneuvering for active vehicle handling safety[J]. Vehicle System Dynamics, Supplement 37 (2002), pp.246-256.
    [51] Hoon Yeo, Sungho Hwang, and Hyunsoo Kim. Regenerative braking algorithm for a hybrid electric vehicle with CVT ratio control[J]. Automobile Engineering, Proc. IMechE Vol. 220 Part D:J, 2006.
    [52] Sohel Anwar. Generalized predictive control of yaw dynamics of a hybrid brake-by–wireequipped vehicle[J]. Mechatronics 15(2005), 1089-1108.
    [53] M. Mirzaei. A new strategy for minimum usage of external yaw moment in vehicle dynamic control system[J]. Transportation Research Part C, 2009.
    [54] E. Esmailzadeh, A. Goodarzi, G. R. Vossoughi. Optimal yaw moment control law for improved vehicle handing[J]. Mechatronics 13 (2003) 659-675.
    [55] Jin–Oh Hahn, Jae–Woong Hur, Kyongsu Yi, Soojoon Kang and Kyo Lee. Nonlinear vehicle stability control using disturbance observer[C]. Proceedings of the 2002 IEEE International Conference on Control Applications September 18-20, 2002, Glasgow, Scotland, UK.
    [56] Evan S.Boberg, Hazel Park, Mich. Braking blending strategy for a hybrid vehicle[P]. US.6155365.
    [57] Yutaka Taga, Aichi-ken, Ryuji Ibaraki. Regenerative braking controller for controlling value of regenerative braking torque simulation engine braking torque[P]. US.5915801.
    [58] Jonas Hellgren. Maximization of brake energy regeneration in a hybrid electric parallel car[J]. Int. J. Electric and Hybrid Vehicles, Vol. 1, No. 1, 2007.
    [59] J.Andreasson and T.Bunte. Global chassis control based on inverse vehicle dynamics models[J]. Vehicle System Dynamics, Vol. 44, Supplement, 2006, 321-328.
    [60] Jong Hyeon Park and Woo Sung Ahn. H? yaw-moment control with brakes for improving driving performance and stability[C]. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2004.
    [61] Luca Piancastelli and Giuseppe Sarubbi. An ESP fuzzy control system for the recovery of the initial direction after an initial spin[C]. XII ADM International Conference. 2001.
    [62] Akihiko SHIMURA and Kazuo YOSHIDA. Rule extraction with connection forgetting from neural network DYC controller[C]. International Symposium on Advanced Vehicle Control, 2002.
    [63] Yimin Gao, Liping Chen, and Mehrdad. Investigation of the effectiveness of regenerative braking for EV and HEV[C]. SAE Paper, 1999-01-2910.
    [64] Yimin Gao,Liping Chen and Mehrdad Ehsani. Investigation of the effectiveness of regenerative braking for EV and HEV[C]. SAE Paper1999-01-2910.
    [65] A.M.Walker, M.U.Lamperth and S.Wilkins. On friction braking demand with regenerative braking[C]. SAE Paper, 2002-01-2581.
    [66] Sangtarash, Farhad; Esfahanian, Vahid; Nehzati, Hassan; Haddadi, Samaneh; Bavanpour, Meisam Amiri; Haghpanah, Babak. Effect of different regenerative braking strategies on braking performance and fuel economy in a hybrid electric bus employing cruise vehicle simulation[C]. SAE International Journal of Fuels and Lubricants, v 1, n 1, p 828-837, April 2009 ISSN: 19463952.
    [67] Mukhitdinov, A.A. ; Ruzimov, S.K. Optimal control strategies for CVT of the HEV during a regenerative process[C]. 2006 IEEE Conference on Electric and Hybrid Vehicles, ICEHV.
    [68] Enrico Cacciatori, Baptiste Bonnet and Nicholas D.Vaughan. Regenerative braking strategies for a parallel hybrid powertrain with torque controlled IVT[C]. SAE Paper, 2005-01-3826.
    [69] Chiaki Hamada, Katsumi Fukatani, and Katsuyuki Yamaguchi. Development of vehicle dynamics integrated management[C]. SAE Paper, 2006-01-0922.
    [70] Kazuya Kitajima, Huei Peng. H∞control for integrated side–slip, roll, and yaw controls for ground vehicles[C]. Proceedings of AVEC 2000 5th Int’l Symoposium on Advanced Vehicle Control, August 22-24, 2000, Ann Arbor, Michigan.
    [71] Ossama Mokhiamar, Masato Abe. Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control[J]. Journal of Dynamic Systems, Measurement, and Control, December 2004, Vol, 126/753.
    [72] Youseok Kou, Wanil Kim, SangHo Yoon, JeongWoo Lee and Dongshin Kim. Integration chassis control (ICC) systems of Mando[C]. SAE Paper, 2004-01-2044.
    [73] William F. Powers, Paul R.Nicastri. Automotive vehicle control challenges in the 21st century[J]. Control Engineering Practice 8 (2000) 6-5-618.
    [74] Van Zanten, A.T., et al. VDC system development and perspective[C]. SAE980235, 1998.
    [75] A. T. Van. Zanten. Bosch ESP system: 5 year of experience[C]. SAE Paper, 2000-01-1633.
    [76] M. Mirzaei. A new strategy for minimum usage of external yaw moment in vehicle dynamiccontrol system[C]. Transportation Research Part C: Emerging Technologies, Volume 18, Issue 2, April 2010, Pages 213-224.
    [77] Hattori Y、Koibuchi K and Yokoyama T. Force and moment control with nonlinear optimum distribution for vehicle dynamics[C]. Proceedings of AVEC02, Hiroshima, Japan.
    [78] Ossama Mokhiamar, Masato Abe. How the four wheels should share forces in an optimum cooperative chassis control[C]. Control Engineering Practice 14 (2006) 295-304.
    [79] Kihong Park, Seung-Jin Heo, Inho Bae. Controller design for improving lateral vehicle dynamic stability[C]. JSAE Review, Volume 22, Issue 4, October 2001, Pages 481-486.
    [80] Yimin Gao, Mehrdad. Electronic braking system of EV and HEV– Integration of regenerative braking, automatic braking force control and ABS[C].SAE Paper 1999-01-2910.
    [81] Kim, Donghyun; Kim, Chulsoo; Hwang, Sung-Ho; Kim, Hyunsoo. Hardware in the loop simulation of vehicle stability control using regenerative braking and electro[C]. Proceedings of the 17th World Congress, International Federation of Automatic Control, IFAC.
    [82] Kim, Donghyun1; Kim, Hyunsoo1. Vehicle stability control with regenerative braking and electronic brake force distribution for a four-wheel drive hybrid electric vehicle[C]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering.
    [83] Masayuki Soga, Michihito Shimada, Jyun-ichi Sakamoto and Akihiro Otomo. Development of vehicle dynamic management system for hybrid vehicles– ECB system for improved environmental and vehicle dynamic performance[C]. SAE paper 2002-01-1586.
    [84]林志煌.基于电机/电池高效工作的HEV再生制动系统仿真研究[D].重庆:重庆大学, 2007.
    [85]李孟海,罗禹贡,李克强.基于模型匹配控制的PHEV动态协调控制方法[J].汽车工程, 2007(第29卷)第3期.
    [86]杨阳. CVT混合动力系统再生制动综合控制研究[D].重庆:重庆大学,2008.
    [87]张京明,崔胜民,宋宝玉,孙刚.一种改进的再生制动控制策略优化[J].江苏大学学报(自然科学版), 2009年03期.
    [88]舒红,秦大同,胡明辉,杨亚联,叶明.轻度混合动力汽车再生制动能量管理策略[J].机械工程学报,2009年01期.
    [89]王峰,钟虎,马兹林,冒哓建,卓斌.滑行工况下混合动力系统的再生制动[J].华南理工大学学报(自然科学版), 2009年07期.
    [90]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学, 2003.
    [91]张勇.基于主动制动的汽车稳定性控制系统开发研究[D].上海:上海交通大学, 2006.
    [92]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学, 2007.
    [93]邓利,赵又群.基于相平面的汽车动力学稳定性协调控制研究[C].第八届全国动力学与控制学术会议论文集, 2008年.
    [94] Mehrdad Ehsani, Yinmin Gao, Sebastien E. Gay, Ali Emadi. Modern electric, hybrid electric, and fuel cell vehicles: Fundamentals, theory, and design[M]. Florida: CRC Press, 2005.
    [95] John M. Miller. Propulsion systems for hybrid vehicles[M]. London: IET Press,2008.
    [96] Liang Chu, Mingli Shang, Yong Fang, Jianhua Guo, Feikun Zhou. Braking force distribution strategy for HEV based on braking strength[C]. 2010 International Conference on Measuring Technology and Mechatronics Automation, March 13-14,2010, Changsha, China.
    [97] Martin Schmidt and Rolf Isermann. Potential of regenerative braking using an integrated starter alternator[C]. SAE Paper, 2000-01-1020.
    [98] Tao Sun, Byeong-Woo Kim, Jung-Ho Lee, and Jung-Pyo Hong. Determination of parameters of motor simulation module employed in ADVISOR[J]. IEEE Transactions on magnetic, Vol. 44, No. 6, June 2008.
    [99] Sung Chul Oh. Evaluation of motor charactristics for hybrid electric vehicles using the hardware–in–the–loop concept[C]. IEEE Transactions on Vehicular Technology, VOL, 54 ,NO, 3, MAY, 2005.
    [100] Dirk Uwe Sauer, Eckhard Karden, Birger Fricke. Charging performance of automotive batteries– An underestimated factor influencing lifetime and reliable battery operation[J]. Journal of Power Sources, 168 (2007) 22-30.
    [101] Yi-Fu Yang. Measurement of the maximum charge and discharge powers of a nickel/mentalhybrid for hybrid electric vehicles[J]. Journal of Power Sources, 75 (1998) 19-27.
    [102] Meisam Amiri, Mohsen Esfahanian, Mohammad Reza Hairi-Yazdi, Vahid Esfahanian. Minimization of power losses in hybrid electric vehicles in view of the prolonging of battery life[J]. Journal of Power Sources 190 (2009) 372-379.
    [103]王鑫,蹇小平.纯电动汽车动力蓄电池性能测试方法研究[J].新能源汽车,2011, 5(No.1).
    [104] R. P. Kepner. Hydraulic power assist– A demonstration of hydraulic hybrid vehicle regenerative braking in a road vehicle application[C]. SAE Paper, 2002-01-3128.
    [105] Ye Min, Bai Zhifeng and Cao Binggang. Robust H2/H∞control for regenerative braking of electric vehicles[C]. 2007 IEEE International Conference on Control and Automation, Guangzhou, China, May 30 to June 1, 2007.
    [106]赵国柱,魏民祥,杨正林.基于制动稳定性要求的ADVISOR制动模块的开发[J].机械与电子, 2007(6).
    [107] Farhad Sangtarash, Vahid Esfahanian, Hassan Nehzati, Samaneh Haddadi, Meisam Amiri Bavanpour and Babak Haghpanah. Effect of different regenerative braking strategies on braking performance and fuel economy in a hybrid electric bus employing CRUISE vehicle simulation[C]. SAE Paper, 2008-01-1561.
    [108] F Wang and B Zhuo. Regenerative braking strategy for hybrid electric vehicles based on regenerative torque optimization control[J]. Proc. IMechE, Vol. 222 Part D: J. Automobile Engineering, 2008.
    [109] Morteza Montazeri-Gh_, Amir Poursamad, Babak Ghalichi. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles[J]. Journal of the Franklin Institute, 343 (2006) 420–435.
    [110] Laura V. P′erez, Guillermo R. Bossio, Diego Moitre, Guillermo O. Garcia. Optimization of power management in an hybrid electric vehicle using dynamic programming[J]. Mathematics and Computers in Simulation, 73 (2006) 244–254.
    [111]玄光男,程润伟,遗传算法与工程优化[M].北京:清华大学出版社, 2004.
    [112]雷英杰, MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2006.
    [113] M. Tanelli, L. Piroddi, S. M. S.avaresi. Real-time identification of tire-road friction conditions[J]. IET Control Theory, Appl., 2009, Vol, 3, Iss. 7, pp. 891-906.
    [114] Chang-Sei Kim, Keum-Shik Hong, Wan-Suk Yoo, and Yong-Woon Park. Tire-road friction estimation for enhancing the autonomy of wheel-driven vehicles[C]. International Conference on Control, Automation and Systems 2007.
    [115] Chia Shang Liu and Huei Peng. Road friction coefficient estimation for vehicle path prediction[J]. Vehicle System Dynamics, Vol.25 Suppl, 1996, pp.413-425.
    [116]魏春源.汽车安全性与舒适性系统[M].北京:北京理工大学出版社, 2007.
    [117] Guillaume Baffet, Ali Charara and Joanny Stephant. Side slip angle, lateral tire force and road friction estimation in simulations and experiments[C]. Proceedings of the 2006 IEEE International Conference on Control Applications Munich, Germany, October 4-6, 2006.
    [118] N.Sivashiankar, A.G.Ulsoy. Yaw rate estimation for vehicle control applications, Journal of Dynamic Systems[J]. Measurement, and control, June 1998, Vol.120/267.
    [119] J.Stephant, A.Charara, D.Meizel. Evaluation of a sliding mode observer for vehicle sideslip angle[J]. Control Engineering Practice, 15 (2007) 803-812.
    [120] Mingli Shang, Liang Chu, Jianhua Guo, Yong Fang. Estimation of vehicle side slip angle using hybrid observer[C]. Proceedings of the 29th Chinese Control Conference, July 29-31, 2010, Beijing, China.
    [121] Thomas D. Gillespie.车辆动力学基础[M].北京:清华大学出版社, 2006.
    [122]胡寿松.自动控制原理[M].北京:科学出版社, 2007.
    [123]李士勇.模糊控制·神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社, 2006.
    [124]高晓杰,余卓平,张立军.基于车辆状态识别的AFS与ESP协调控制研究[J].汽车工程, 2007(第29卷)第4期.
    [125] John Samsundar and Jeffrey C.Huston. Estimating lateral stability region of a nonliner 2 degree-of–freedom vehicle[C]. SAE Paper 981172.
    [126] E. Ono, S. Hosoe, H. D. Tuan, and S. Doi. Bifurcation in vehicle dynamics and robust front wheel steering control[C]. IEEE Trans. Control Systems Technology, Vol. 6, No. 3, pp. 412-420, 1998.
    [127] L. Dai, Q, Han. Stability and Hopf bifurcation of a nonlinear model for a four-wheel-steering vehicle system[J]. Communications in Nonlinear Science and Numerical Simulation, 9 (2004) 331-341.
    [128] Eiichi Ono, Shigeyuki Hosoe, Hoang D. Tuan. Bifurcation in vehicle dynamics and robust front wheel steering control[C], IEEE Transactions on Control Systems Technology, Vol. 6, No. 3, May 1998.
    [129] Vincent Nguyen, Gregory Schultz, Balakumar Balachandran. Lateral load transfer effects on bifurcation behavior of four-wheel vehicle system[J], Journal of Computational and Nonlinear Dynamics, October 2009, Vol, 4/041007-1.
    [130] Carlo Miano, Massimiliano Gobbi, Giampiero Mastinu. Multi-objective optimization of the handling performances of a road vehicle: a fundamental study on tire selection[J]. Journal of Mechanical Design, July 2004, Vol. 126/687.
    [131] Shoji Inagaki, Ikuo Kshiro, Masaki Yamamoto. Analysis on vehicle stability in critical cornering using phase-plane method[C]. AVEC’94(1994 10), 9438411.
    [132] Marcus Borner, Rolf Isermann. Model-based detection of critical driving situations with fuzzy logic decision making[J]. Control Engineering Practice, 14 (2006) 527-536.
    [133]余卓平,高晓杰,张立军.用于车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程, 2006(第28卷)第9期.
    [134] K. Koibuchi. Vehicle stability control in limit cornering by active brake[C]. SAE Paper, 960487.
    [135]熊和金,徐华中.灰色控制[M].北京:国防工业出版社, 2005.
    [136] Junmin Wang, Javier M. Solis, Raul G. Longoria. On the control allocation for coordinated ground vehicle dynamics control systems[C]. Proceedings of the 2007 American Control Conference, USA, July 11-13, 2007.
    [137]胡寿松,最优控制理论与系统[M].北京:科学出版社, 2010.
    [138]晏蔚光,陈全世.一种基于前馈-反馈复合控制方式的制动稳定性控制方法[J].信息与控制, 2005(第34卷)第1期.
    [139]董毅,并联式混合动力系统动态协调控制问题的研究[D].北京:清华大学, 2004.
    [140] Mauricio Blanco Infantini, Joao Francisco Fleck Heck Britto, Eduardo Perondi. Model of an ABS pneumatic regenerative braking system[C]. SAE Paper, 2005-01-4033.
    [141] P. Khatun, C. M. Bingham and P. H. Mellor. Comparison of control methods for electric vehicle antilock braking/traction control systems[C]. SAE Paper, 2001-01-0596.
    [142] Jeongwoo Lee. Rotating Inertia impact on propulsion and regenerative braking for electric motor driven vehicles[D]. Virginia Polytechnic Institute and State University, 2005.
    [143] Z.Rahman, M.Ehsani and K.L.Butler. An investigation of electric motor drive characteristics for EV and HEV propulsion systems[C]. SAE Paper, 2000-01-3062.
    [144]刘锦波,张承慧.电机与拖动[M].北京:清华大学出版社, 2010.
    [145] Katsuhiro Asano, Shigenobu Okada, and Norio Iwama. Vibration suppression of induction-motor-driven hybrid vehicle using wheel torque observer[C]. IEEE Transactions on industry applications, Vol.28, NO.2, March/April 1992.
    [146] Mingli Shang, Liang Chu, Jianhua Guo, Yong Fang. Hydraulic braking force compensation control for hybrid electric vehicles[C]. 2010 International Conference on Computer, Mechatronics, Contrd and Electronic Engineering(CMCE2010), August 24-26,2010, Changchun, China.
    [147] Mingli Shang ,Liang Chu, Jianhua Guo, Yong Fang, Feikun Zhou. Braking force dynamic coordinated control for hybrid electric vehicles[C]. 2nd International conference on advanced computer control, 2010, March 27-29,2010, Shenyang, China.
    [148]刘金琨,滑模变结构控制MATLAB仿真[M].北京:清华大学出版社, 2005.
    [149] Michael Panagiotidis, George Delagrammatikas and Dennis Assanis. Development and use of a regenerative braking model for a parallel hybrid electric vehicle[C]. SAE Paper, 2000-01-0995.
    [150] Michael Panagiotidis, George Delagrammatikas and Dennis Assanis. Development and use of aregenerative braking model for a parallel hybrid electric vehicle[C]. SAE Paper, 2000-01-0995.
    [151]李亮,宋健,余良耀,汽车动力学稳定性控制系统仿真平台研究[J].系统仿真学报, 2007(第19卷)第7期.
    [152]郭孔辉,付皓,丁海涛.车辆电子稳定性控制试验与评价方法的仿真应用[J].汽车技术, 2008年第10期.
    [153]谢伯元,朱西产, ESC试验方法研究[J].天津汽车, 2007年第6期.
    [154]李战龙.混合动力汽车试验台架的研究与开发[D].长春:吉林大学, 2004.
    [155] Kihong Park and Seung-Jin Heo. Development of hardware-in-the-loop simulation system for use in design and validation of VDC logics[J]. International Journal of the Korean Society of Precision Engineering, Vol. 4, No. 3, May, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700