基于电机电池协调控制的混合动力再生制动控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界石油资源的枯竭及人类对环保意识的增强,节能减排已成为当今汽车研究的趋势。再生制动功能作为混合动力汽车提高经济性能的重要因素而成为一个研究热点。混合动力汽车在制动过程中要求在保证驾驶员制动需求及制动安全性的基础上尽可能多的回收制动能量,混合动力汽车的再生制动过程实际上是能量转换并储存的过程,再生制动时的车辆的机械能经永磁同步电机转变为电能,电能充入到电池中后以化学能的形式储存。电机提供再生制动力矩的能力受驾驶员制动需求、电机当前转速等因素的影响,电池回收制动能量受电池荷电状态SOC值、最大充电电流I及电池工作温度T等因素的影响,再生制动系统能量回收效率取决于电机的发电效率及电池的充电效率,即电机、电池工作的联合效率决定了最终的能量回收效果。由于电机、电池工作状态的不同从而导致电机电池不可能同时工作于联合高效率区,从而影响了再生制动能量的回收。
     本文就混合动力汽车再生制动时电机、电池工作效率不匹配的问题展开研究,论文的主要内容包括:
     (1)对混合动力轿车再生制动系统关键部件特性进行研究。再生制动系统关键部件主要指动力电机和车载电池,电机与电池的工作特性之间制约着再生制动系统的性能。对电机工作特性的研究,确定影响电机发电效率的因素,并对混合动力汽车永磁同步电机在制动时的控制方法进行研究;对电池充电特性研究,确定影响电池充电效率的因素;在电机、电池工作特性研究基础上,对双向DC/DC变换器拓扑结构进行选型,并对其工作特性进行研究。
     (2)在考虑电机发电效率和电池充电效率及DC/DC工作特性基础上,以回收有效制动功率最大为控制目标,提出了电机-电池协调控制算法。首先根据制动法规及循环工况对前后轴间制动力及液压制动力和电机制动力进行分配,并确定小强度制动时的制动强度阈值。然后考虑引入DC/DC变换器后电机电池效率对制动能量回收的影响,采用遗传算法求解回收至电池中的有效制动功率最大时对应的电机制动转矩及此时的充电电流期望值。考虑车速、电池荷电状态及温度等因素对再生制动的影响,搭建模糊控制器对电机制动力工作区间进行优化。对根据求取的电池充电电流期望值对双向DC/DC变换器电压期望输出值进行求解,并应用滑模变结构理论对DC/DC进行控制。
     (3)采用正向式、模块化的建模方法,搭建离线仿真平台并仿真验证。在AVLCruise软件中搭建整车模型并设置仿真循环工况,在Matlab/Simulink中建立混合动力汽车整车控制策略模型,其中再生制动控制模型根据本文提出的电机电池协调控制算法搭建,联合仿真建立再生制动系统离线仿真平台。应用该平台对电机电池协调控制算法进行仿真试验验证,试验结果证明本文提出的电机电池协调控制算法能有效的提高制动能量回收率。
With the petroleum being exhausted gradually and the increasing of environmentprotection all over the world, the problem of energy-saving and environmental protection hasbecome the trend of automotive research. To ensure the driver's brake demand and underassurance of braking safety maximizing the recovery of braking energy is focused onregenerative braking research in HEV. The process of regenerative braking of hybrid electricvehicle is actually the process of mechanical and electrical energy conversion and energystorage. The function of Regenerative braking system is to change the kinetic energy of thevehicle to electric energy by the permanent magnet synchronous motor,and the electricenergy is transformated into chemical energy of the active materials in battery and in storageof that format. Motor regenerative braking torque is influenced by the driver braking demand,the motor current speed and so on. Battery recycling braking energy is affected by thebattery state of charge, the maximum charging current and battery current temperature.Regenerative braking energy recovery efficiency depends on the power generation efficiencyof the motor and battery charging efficiency, in other words, combined efficiency of motorand battery determines the final effect of energy recovery. Because of different performanceof the battery and the motor, they can’t work in the high efficiency region at the same time,so the energy recovery of the RBS is affected by that.
     This paper is to study the coordinate control of working efficiency between electricmotor and battery. The following work is studied in the paper:
     (1)The paper study the characteristics of key components of RBS system, includingthe study of motor, battery and DC/DC. Firstly to research on operating characteristics of themotor and to determine the factors of affecting the electrical power generation efficiency,and study how to control the permanent magnet synchronous motor precisely and high efficiently. Then to study charging characteristics of the battery and the charging influencefactors. At last, according to the study of characteristics of motor and battery the rightBi-directional DC/DC converter topology is selected and the operating characteristics arestudied.
     (2)Considering the efficiency of motor operating and battery charging, aimed torecover the more effective braking power in the battery, the Coordinated effiency of ElectricMotor and Battery is proposed. Using genetic algorithm the motor braking torque and theexpectation value of charge current corresponding effective braking power are calculated.Consider the impact of speed, status of charge, and temperature during regenerative braking,a fuzzy controller is built to optimize the dynamic working range of the electric mechanism.According to the expectation charging current, the output voltage value is calculated and thesliding mode variable structure control is applied to follow the DC/DC converter controlsignal.
     (3) With forward modeling method the offline simulation platform for HEVregenerative braking control system is built. Vehicle dynamic model is built based on thesoftware Cruise, and control model for the Vehicle is built based on Matlab/Simulinkplatform. This paper simulates the model to validate the coordination control algorithmoff-line. The result of simulation Coordinated Control of Electric Motor and Batteryalgorithm can recover the braking energy effectively.
引文
[1]大力发展新能源汽车的意义分析, http://www.chinairn.com/doc/70310/427273.html
    [2]清华汽车研究院副院长-新能源目前现实意义,http://0car0.com/News/hydt/2009/0428/19524_7.html
    [3]周磊,罗禹贡,杨殿阁,李克强,连小珉.混联式混合动力车多能源动力控制系统的开发[J].机械工程学报, Vol43No.4,2007.4
    [4]国家“十二五”科学和技术发展规划,306-01-2011-230
    [5]余志生.汽车理论[M].北京:机械工业出版社,2008.4
    [6]王鹏宇.混合动力轿车再生制动系统研究[D].长春:吉林大学,2008
    [7] Yimin Gao, Liping Chen and Mehrdad Ehsani, Investigation of the Effectiveness ofRegenerative Braking for EV and HEV[J].SAE,1999-01-2910
    [8] Yimin Gao, Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness ofRegenerative Braking for EV and HEV. SAE paper1999-01-2910.
    [9]杨阳. CVT混合动力系统再生制动综合控制研究[D].重庆:重庆大学,2008
    [10]崔胜民,韩家军.新能源汽车概论[M].北京:北京大学出版社,2011.5
    [11] Gino Sovran General Motors Company, The impact of Regenerative Braking on thePowertrain Delivered Energy Required for Vehicle Propulsion [J].SAE Paper2011-01-0891
    [12] Yimin Gao et al.Investigation of the Effectiveness of Regenerative Braking for EVand HEV[J].SAE Paper1999-01-2910
    [13]张金柱,混合动力汽车结构、原理与维修[M].北京:化学工业出版社,2008.1
    [14] Masayuki Komatsu and Toshifumi Takaoka Toyota Motor Corporation, Development ofToyota Plug-In Hybrid System[J].SAE Paper2011-01-0874
    [15] Toyota Motor Corporation, Toyota Hybrid System Diagnosis-brake system[M].2004
    [16] Yimin Gao, Liping Chen and Mehrdad Ehsani. Investigation of the Effectiveness ofRegenerative braking for ev and hev.[J].SAE Paper,1999-01-2910
    [17] Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement inConventional Vehicles[J].SAE Paper,2011-01-0345
    [18] Hoon Yeo, Donghyun Kim, Sungho Hwang, Hyunsoo Kim, Regenerative Braking Algorithmfor a HEV with CVT Ratio control during deceleration[J].School of MechanicalEngineering, Sungkyunkwan University,04CVT-41
    [19]舒红,潘文军,袁景敏,蒋勇.轻度混合动力汽车再生制动能量管理策略[J].机械工程学报,2009年01期
    [20]王锋,钟虎,马兹林,冒晓建,卓斌.滑行工况下混合动力系统的再生制动[J].华南理工大学学报(自然科学版),2009年07期
    [21] Hong jiang, Zhang dewang, wang Guangpin, suini, Simulation of a regenerative brakingsystem producing controlled braking force[J]. Advanced Materials ResearchVol.383-390(2012)
    [22]刘明辉,刘东秦,王光平,金启前,杨兴旺. FAW-TMH强混合动力系统平台开发[J].2010中国汽车工程学会年会优秀论文,2010.第7期
    [23](美)爱塞尼等著,倪光正,倪培宏,熊素铭译.现代电动汽车、混合动力电动汽车和燃料电池车——基本原理、理论和设计[M]北京:机械工业出版社,2008.6.2
    [24](日)电气学会,康龙云编.电动汽车最新技术[M].北京:机械工业出版社,2008.8
    [25]崔胜民,韩家军.新能源汽车技术[M].北京:北京大学出版社,2009.9月,第1版
    [26]张洁.基于DSP2812的混合动力车用电机控制系统的研究[D].哈尔滨:哈尔滨理工大学,2009.
    [27] A. Radun, Generating with the switched-reluctance motor [J].IEEE APEC94, pp.41–47,1994
    [28]张洁,基于DSP2812的混合动力车用电机控制系统的研究[D].哈尔滨:哈尔滨理工大学,2009.
    [29] Chandra S. Namuduri, Balarama V. Murty, high power density electric drive for anhybrid electric vehicle[J].IEEE,0-7803-4340-9/98
    [30]谷峪,电动汽车用永磁同步电机控制系统研究与设计[D].武汉:哈尔滨理工大学,2007.4
    [31] Taizo Sakamoto, Kuniaki Hirukawa, Tsutomu Ohmae. Cooperative Control of FullElectric Braking System With Independently Driven Four Wheels[J].IEEE,0-7803-9511-5/06
    [32]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社.2002
    [33]郭雯方,镍氢电池充电电源控制模式的研究[D].哈尔滨:哈尔滨工业大学,2007
    [34]崔胜民.新能源汽车技术[M].北京:北京大学出版社,2009.9,第1版
    [35]桂长青.动力电池[M].北京:机械工业出版社,第1版,2009.4
    [36]尚明利.混合动力汽车再生制动与稳定性集成控制算法研究[D],长春:吉林大学,2011.12
    [37]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D],长春:吉林大学,2007.10
    [38]杨阳.CVT混合动力系统再生制动综合控制研究[D],重庆:重庆大学,2008
    [39]钱健编译,快速充电——马斯三定理[M].机部七院.
    [40]郭熠.电动汽车双向DC/DC变换器的研究[D].天津:天津大学,2004,12
    [41]严迎光.双向直流变换器.南京:江苏科学技术出版社,第1版,2004.1
    [42]柯海天,车载复合电源用DC_DC的模型设计及试验验证[D].长春:吉林大学,2008.4
    [43] A. Lidozzi, L. Solero. Power balance control of multiple-input DC-DC power converterfor hybrid vehicles[J]. IEEE,0-7803-8305-2/04
    [44] M.K Yoong, Y.H Gan, G.D Gan, C.K Leong, Z.Y Phuan, B.K Cheah. K.W Chew. Studies ofregenerative braking in electric vehicle[J]. IEEE,978-1-4244-7503-2110
    [45]王兆安.电力电子技术[M].北京:机械工业出版社,第5版,2009.5
    [46]赵岩.并联式混合动力汽车制动系统建模和仿真研究[D].长春:吉林大学,2009.5
    [47]吕廷秀.混合动力轿车再生制动与防抱死集成控制系统研究[D].长春:吉林大学,2009
    [48] Yasushi Aoki, Kenji Suzuki, Hiroshi Nakano and Kohei Akamine. Development ofHydraulic Servo Brake System for Cooperative Control with RegenerativeBrake[J].SAE Paper2007-01-0868
    [49] A.M.Walker, M.U.Lamperth and S.Wilkins. On friction braking demand with regenerativebraking[C].SAE Paper,2002-01-2581
    [50] Yimin Gao,Liping Chen and Mehrdad Ehsani. Investigation of the effectiveness ofregenerative braking for EV and HEV[C].SAE Paper1999-01-2910
    [51]陈庆樟.汽车再生制动稳定性与制动踏板平稳性控制研究[D].镇江:江苏大学,2008
    [52]刘博,基于纯电动汽车的制动能量回收系统的研究与实现[D].北京:清华大学,2004.5.
    [53]林志煌.基于电机_电池高效工作的HEV再生制动系统仿真研究[D].重庆:重庆大学,2007.4.
    [54]尚明利.混合动力汽车再生制动与稳定性集成控制算法研究[D].长春:吉林大学,2011.12
    [55] FWang, BZhuo. Regenerative braking strategy for hybrid electric vehicles based onregenerative torque optimization[C].Journal of Automobile Engineering2008222:499.
    [56]舒红,秦大同,胡明辉,杨亚联,叶明.轻度混合动力汽车再生制动能量管理策略[J].机械工程学报,2009年01期
    [57]师黎等.智能控制理论及应用[M].北京:清华大学出版社,2009.4
    [58] Louis Gosselin, MaximeTye-Gingras, Fran ois Mathieu-Potvin, Review of utilizationof genetic algorith ms in heat transfer problems[J].International Journal of Heatand Mass Transfer,52(2009)2169–2188
    [59]唐文艳,结构优化中的遗传算法研究和应用[D].大连:大连理工大学,2002
    [60] Mojtaba Dorri and Amir H. Shamekhi K.N.Toosi Univ. of Technology, Design of anOptimal Control Strategy in a Parallel Hybrid Vehicle in Order to SimultaneouslyReduce Fuel Consumption and Emissions[J].SAE.2011-01-0894
    [61] Morteza Montazeri-Gh, Amir Poursamad, Babak Ghalichi. Application of geneticalgorithm for optimization of control strategy in parallel hybrid electricvehicles[J]. Journal of the Franklin Institute343(2006)420–435
    [62] Eric Krueger, Kevin Kidston, Adam Busack, General Motors Company. ReducingDisturbances Caused by Reductions in Regenerative Brake Torque[J].SAE.2011-01-0972
    [63]张德丰.Matlab/Simulink建模与仿真实例精讲[M].北京:机械工业出版社,2010.1
    [64]夏良梁,基于模糊控制的再生制动系统关键技术研究[D].哈尔滨:哈尔滨工业大学,2010.6
    [65] John Paterson, Mike Ramsay,Electric Vehicle Braking by Fuzzy Logic Control[J].IEEE,0-7803-1462
    [66] SunHui a, JiangJi-haib, WangXin. Torque control strategy for a parallel hydraulichybrid vehicle[C].JournalofTerramechanics46(2009)259–265
    [67] Guoqing Xu, Weimin Li, Kun Xu and Zhibin Song, An Intelligent Regenerative BrakingStrategy for Electric Vehicles[J].Energies2011,4,1461-1477
    [68]周宇飞, DC-DC开关变换器的滑模变结构控制方法及混沌状态研究[D].广州:华南理工大学,2001.4
    [69]混合动力汽车正向建模与仿真[J].汽车工程,2005(Vol.27) No.4
    [70]张翔,赵韩,钱立军,张炳力. ADVISOR软件的混合仿真方法[J].计算机仿真,第22卷第2期
    [71]王庆年,于永涛,曾小华,于远彬.基于CRUISE软件的混合动力汽车正向仿真平台的开发[J].吉林大学学报(工学版), Vol.39No.6, Nov.2009
    [72]李斯特技术中心(上海)有限公司,AVL整车性能模拟分析软件能力介绍.
    [73]罗禹贡,陈涛,周磊,周国强,李克强.奔腾智能混合动力电动轿车[J].机械工程学报,2010,3. Vol.46, No.6
    [74] G L Berta, E Durelli, I Nymann, Simulation models for hybrid buses[C].Journal ofAutomobile Engineering,1998212:59.
    [75]姚亮.混合动力轿车再生制动与液压制动协调控制策略研究[D],长春:吉林大学,2009,5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700