基于电机/电池高效工作的HEV再生制动系统仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生制动(能量回馈制动)对混合动力汽车的燃油经济性、排放性和行驶安全性都有直接影响,是混合动力汽车的重要工作模式,它能在车辆减速或制动过程中,在保证车辆制动性能的条件下,将车辆动能或位能转化为电能储存在电池中,实现能量回收,同时产生车辆所需全部或部分制动力。既实现了车辆的减速和制动,又有效地降低了整车的燃油消耗和污染物排放。
     对于混合动力汽车的镍氢电池来讲,常规的电池充电方法并不适应再生制动的特点。车辆的制动时间一般很短,在这段时间内如果采用常规充电方法充电,系统回收的能量十分有限,没有发挥镍氢电池快速充电的潜力。为进一步提高再生制动过程中能量回收率,有必要对镍氢电池充电过程可接受能力进行研究。再生制动过程中制动能量回收率与电机和电池共同工作状态密切相关,确定再生制动控制策略时应保证电机和电池共同工作的效率为最高。因此研究再生制动过程中两者的联合工作效率特性,并实现两者高效控制,是提高制动能量回收率的重要方法。
     本文以ISG型CVT混合动力长安羚羊轿车为研究对象,对混合动力汽车再生制动系统进行了理论分析与试验研究,取得了如下成果:
     1.在对镍氢电池充电特性、快速充电方法和再生制动工作特点分析基础上,提出一种电池优化充电方法。利用该方法可获取制动(充电)时间内保证电池温升不超过规定值的最大充电电流并确定镍氢电池的可接收充电能力。基于该充电方法建立了电池充电控制策略,进行了电池快速充电的建模与仿真分析,仿真结果表明,采用该充电控制策略,能保证实现最大程度的制动能量回收和电池快速安全充电。
     2.分析了无刷直流电机运行特性,根据混合动力汽车ISG永磁无刷电机性能试验数据,结合无刷直流电机工作原理,建立了无刷直流电机数学模型,进行了在输入特定目标转矩下电机实际转速转矩动态响应的仿真分析,仿真结果验证了电机数学模型的正确性。
     3.根据镍氢电池快速充电特性和ISG电机高效发电特性,分析了电机发电效率与电池充电效率之间的变化规律,建立了电机/电池联合效率模型,并得到了在不同输入条件下电机/电池综合效率曲线图,最终确定了电机/电池联合高效工作优化工作线,为再生制动控制策略和系统性能优化奠定了基础。
     4.在Matlab/Simulink环境下建立了再生制动系统各部件的仿真模型,在典型制动工况和城市驱动循环下,对电机/电池联合高效工作与电机单独高效工作两种情况进行再生制动仿真分析。结果表明,应用本文提出的充电策略和电机控制策略,制动距离和制动时间满足制动安全性的要求,与单独考虑电机高效发电相比,考虑电机/电池的综合效率优化能更进一步提高再生制动能量回收率。
     5.根据ISG型CVT混合动力轿车的系统配置和参数,搭建了再生制动系统硬件在环仿真的软硬件试验平台,并对制动系统进行了控制参数的在线整定,进行了再生制动系统的制动性能实验,试验结果为混合动力再生制动系统的性能优化提供了依据。
Regenerative braking (energy recovery braking) is an important working mode for HEV, which has a direct impact on fuel economy, emission and running security. During deceleration or braking, based on assuring vehicle braking performance, regenerative braking system can turn its electric motor into an electric generator to invert vehicle kinetic energy or potential energy into electrical energy stored into battery for recovering energy, and also supplies the whole braking forces or partial braking forces at the same time. Regenerative braking not only realizes the deceleration and braking, but also reduces fuel consumption and pollutant emission.
     For HEV NiMH battery, the conventional charging means aren’t fit for the characteristic of regenerative braking. Generally speaking, braking time is so short that HEV can only reclaim quite limited energy using the conventional charging means and can’t exert the quick charging potential of NiMH battery. Therefore, it is necessary to research the receptivity of NiMH battery during quick charging process, and offer theoretical basis for improving the energy recovery rate further.
     In regenerative braking process, the braking energy recovery rate have close connection with the working condition of motor/battery. It should be assured that the joint efficiency of motor and battery is maximal in regenerative braking control strategy. So it is important to research the joint efficiency characteristic of motor and battery in regenerative braking process, and control them working efficient for improving braking energy recovery rate.
     Focus on the CVT Hybrid Electric Vehicle with ISG, deeply theoretical researching and experiment performance evaluation have been completed in this paper. The main results are shown as follows:
     1. Based on analyzing NiMH battery charging characteristic, quick charging theory and the feature of regenerative braking, an optimal charging means is proposed. Through this mean, the max charge current is obtained, which can assure that the temperature rise of battery don’t exceed the specify value, and the charging receptivity of battery is determined. Based on this charging mean, the regenerative braking control strategy is proposed, finally the quick charging model of battery is modeled and simulated, whose results indicate that it can be assured to recover the braking energy maximally and charge the battery quickly and safely.
     2. The operation characteristic of BLDC is analyzed. According to the performance experiment data of HEV ISG BLDC, combined with the working principle of BLDC, the mathematic model of BLDC is established. The dynamic response curve of BLDC model under specific torque aim signal is simulated and analyzed which verifies the exactitude of this BLDC model.
     3. According to the characteristic of the battery quick charging and ISG motor generating with high efficiency, the changing rules of motor generating and battery charging efficiency are analyzed, and the joint efficiency model of motor/battery is established by which synthesis efficiency curves of battery and motor at different inputs are calculated. Finally the optimal joint working curve of motor/battery is assured which establishes a basis for the regenerative braking control strategy and the performance optimum of regenerative braking system.
     4. Models of the parts of regenerative braking system in Matlab/Simulink environment are built. These models are simulated under the typical braking modes and the typical city driving cycles, while these models are simulated in the condition of motor/battery working together with high efficiency and motor working lonely with high efficiency. The results indicate that the braking distance and the duration of braking, using the regenerative braking control strategy and motor control strategy in this paper, can satisfy with the requirement of vehicle braking safety. Compared with the regenerative braking strategy considering the motor working lonely with high efficiency, the regenerative braking strategy considering motor/battery working together with high efficiency can increase the recovery rate further.
     5. According to the system configuration and parameters of CVT Hybrid Electric Vehicle with ISG, the test platform of HILS for regenerative braking system is built, and control parameters for braking system is adjusted on line. Based on the HILS, braking performance experiment for the test system is done, which establishes a basis for perfection and optimum of hybrid electric regenerative braking system.
引文
[1] 何洪文,祝嘉光,李剑. 混合动力电动汽车技术发展与现状[J].车辆与动力技术. 2004(2).
    [2] 陈清泉,孙逢春,祝嘉光. 现代电动汽车技术. 北京:北京理工大学出版社. 2002
    [3] Frank Wicks, Kyle Donnelly, Steinmetz Hall. Modeling Regenerative Braking and Storage for Vehicles.
    [4] 陈清泉,孙逢春. 混合动力电动汽车基础. 北京:北京理工大学出版社,1993.
    [5] H.Ishitani, Y. Baba, R. Matsuhashi. Evaluation of Energy efficiency of a Commercial HEV, Prius, at City driving, EVS16, 1999.
    [6] Masami Ogura, Yasushi Aoki. The HONDA EV PLUS Regenerative Braking System, EVS14, USA, 1997
    [7] Michael Panagiotidis, George Delagrammatikas,etc. Development and use of a regenerative braking model for a parallel hybrid electric vehicle. SAE 2000-01-0995.
    [8] Lam L , Ozgun H. Pulsed-current charging of lead/acid batteries-a possible means for overcoming premature capacity loss [J]. J Power Sources, 1995,53: 215~228.
    [9] Sung Chul Kim, Won Hi Hong. Fast-charging of a lead-acid cell: effect of rest period and depolarization pulse [J]. J Power Sources, 2000,89:93~101.
    [10] Tomohiko Ikeya, Nobuyuki Sawada, Sakae Takagi, et al. Multi-step constant-current charging methode for electric vehicle valve-regulated leadacid batteries during night time for load-levelling[J]. J Power Sources, 1998, 75: 101~107.
    [11] 陈体衔等.VRLA 蓄电池变电流间歇快速充电方法.蓄电池.1999,1:6~8,42.
    [12] 杜飞龙.电动汽车铅酸蓄电池智能快速充电方法的研究.变流技术与电力牵引.2004,4:34~36.
    [13] 李海晨,田光宇等.电动车用 MH/NI 电池的充放电特性.电池.2002,32(5):282~284.
    [14] Braun D H, Gilmore T P,MaslowskiW A. Regenerative Converter for PWM AC Drives, IEEE Trans. on Ind. App l. , 1994,30 (5) : 1176 1184.
    [15] SAHA S, et al. A modified approach of feeding regenerative energy to the main [J]. IEEE Trans on IE, 1996, 43(4): 510~514.
    [16] BRAUN D H, et al. Regenerative converter for PWM AC drive [J]. IEEE trans on IA, 1994,30(5):1176~1184.
    [17] Hongwei Gao, Yimin Gao and Mehrdad Ehsani. A Neural Network Based SRM Drive Control Strategy for Regenerative Braking in EV and HEV.
    [18] Jingsheng Jiang, et. An Efficient Braking Method for Controlled AC Drives With a DiodeRectifier Front End. IEEE Trans on IA, 2001,37(5): 1299~1307.
    [19] 赵辉,李铁才,孙立志,陆永平等.电池供电的永磁电动机系统的再生制动,电机与控制学报.1999, 3(4): 207~211.
    [20] 黄斐梨,王耀明,姜新建等.电动汽车永磁无刷直流电机驱动系统低速能量回馈制动的研究.电工技术学报.1995,3:28~31,36.
    [21] 宋小庆,郑幕桥等.电动装甲车无刷直流电机驱动系统的再生制动.微电机.2001,34(1):27~30.
    [22] 张哓光,万淑芸,严青,王离九.直流脉宽调速系统中回馈能量的研究及泵升电路的设计.电工技术学报.1996,11(1):34~37.
    [23] 罗玉涛等.EV6600 电动客车能量反馈系统设计.公路交通科技.2003,20(3):167~169.
    [24] 季小尹, 符向荣. 混合电动汽车用永磁无刷直流电机的电动和发电复合控制. 测控技术. 2004,23(3):33~35.
    [25] 徐曼珍. 新型蓄电池原理与应用[M], 人民邮电出版社, 2005.
    [26] 胡明辉,秦大同,舒红.混合动力汽车蓄电池的快速充电方法, 重庆大学学报, 2004, 27(11):1~3.
    [27] 林成涛, 陈全世, 王军平等. 用改进的安时计量法估计电动汽车动力电池 SOC, 清华大学学报(自然科学版). 2006, 46(2): 247~251.
    [28] 麻良友, 陈全世, 朱元. 变电流下的电池荷电状态定义方法探讨. 电池. 2001, 31(1): 7~9.
    [29] 胡明辉. 混合动力汽车 NiMH 蓄电池能量管理系统研究 [学位论文] 重庆大学. 2003.
    [30] ADVISOR V3.2 Documentation.1~50.
    [31] 王益全. 电动机原理与实用技术.北京:科学出版社,2005
    [32] 孙忠献. 电机技术及应用.福建: 福建科学技术出版社,2004
    [33] 詹讯,秦大同,杨阳,杨亚联,胡建军.轻度混合动力汽车再生制动控制策略与仿真研究,中国机械工程,2003.
    [34] 詹讯.轻度混合动力汽车建模与仿真[学位论文].重庆, 重庆大学, 2005. 1~60.
    [35] 谭强俊.CVT 混合动力汽车再生制动系统性能仿真与试验研究[学位论文].重庆,重庆大学,2006. 1~50.
    [36] 颜静.CVT 混合动力再生制动控制策略与仿真研究[学位论文].重庆,重庆大学, 2006.1~70
    [37] dSPACE 产品介绍. 北京: 北京九州恒润科技有限公司 2003.
    [38] dSPACE GmbH, Install and Configeration Documents for Release 4.0. Germany: dSPACE Gnbh. 2003.
    [39] dSPACE GmbH, Implementation Guide Documents for Release 4.0. Germany: dSPACE Gnbh. 2003.
    [40] dSPACE GmbH, Experiment Guide Documents for Release 4.0. Germany: dSPACE Gnbh.2003.
    [41] 徐永康. 汽车制动器.汽车实用技术, 2004(1): 48~49.
    [42] 余志生. 汽车理论, 北京: 机械工业出版社, 2000.
    [43] 吴光登. 金属带无级变速器液压系统功率匹配控制与仿真研究 [学位论文] 重庆大学. 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700