HEV用四端口机电能量变换器耦合问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混合动力电动汽车的发展,一种新型结构的电气式无级变速装置四端口机电能量变换器被提出,该装置具有两个机械端口和两个电气端口,机电能量耦合模式灵活多变,用在汽车传动系统中不仅可取代传统车的机械式变速装置实现高效率的无级变速动力耦合,同时能取代起动/发电机、驱动电机实现复合式混合动力的全部功能,使得整车燃油经济性大大提高,而且动力传动系统结构更为简化,控制也更易实现。不仅如此,该装置也可用于风力发电、水下推进、矿山机械等需要变速和换能的领域,显示出巨大的应用潜力,然而此类装置内部复杂的磁场耦合也为样机的电磁设计和控制提出了挑战。
     本文主要研究面向混合动力电动汽车应用的基于感应电机原理的四端口机电能量变换器的耦合问题,包括对机电能量耦合模式,电磁耦合关系及解耦控制,机械耦合问题及解耦方法进行了研究。
     为分析四端口机电能量变换器取代机械式变速装置并实现混合动力电动汽车功能的可行性,首先分析了面向混合动力电动汽车应用系统时的机电能量耦合模式,提出结合不同功率流的混合动力系统控制方案,针对不同的策略给出确定构成四端口机电能量变换器的两台电机外特性参数的方法,并用CVT功率跟随型轿车和Plug-in城市客车的实例进行仿真分析,根据所得指标设计不同结构和类型的样机,进行比较和优化设计,给出可行的方案。
     四端口机电能量变换器内部具有两个不同的耦合场,为分析两个耦合场之间的耦合关系及其造成的影响,分别用有限元仿真和实验研究了内外耦合场在不同状态下对系统输出特性的影响以及主要参数的变化特点,推导了基于电机定子的T形等效电路及d、q轴的解耦模型;分别建立基于磁路计算的恒定参数的仿真模型和基于有限元分析结果的变化参数模型,通过仿真说明四端口机电能量变换器的电感参数随内外电机的励磁电流及其相角变化明显,基于变参数的模型可获得与实验相对应的正确结果。
     为实现对内电机的矢量控制,需要快速准确地获得转速差值,本文基于磁阻式旋转变压器设计了直接测量转速差的转速解耦方案,该方案减少旋变使用数量,可使用通用的轴角变换电路直接测得双转子电机的转速差,实时性好,困难在于信号的引入引出必须依靠环形变压器或电刷-滑环组,可靠性差;为此提出了间接式双轴转速差的测量方法,可利用坐标变换和锁相环解码技术直接内部解耦,没有外部求差的滞后问题。
     最后,搭建了基于四端口机电能量变换器的混合动力系统测试台架,系统中分别用两台40kW的感应电机模拟发动机和道路负载,而构成四端口机电能量变换器的EM1电机采用转速控制,EM2电机采用转矩控制,整个系统采用MATLAB/Simulink编制上层控制程序,使用dSPACE实时控制软硬件平台实现。使用该台架测算了一体式四端口机电能量变换器的主要参数和外特性,并用分体式样机对比验证了不同控制方案对同一模式的实现,分析了系统功率流及效率。制定多模式切换的自定义循环工况,用分体式四端口机电能量变换器进行测试,验证了利用四端口机电能量变换器实现混合动力功能的可行性和优越性。
With the development of Hybrid Electric Vehicles (HEV), a new structure of the electrical Continuously Variable Transmission (CVT) device - Four Ports Electromechanical Converter which owns two mechanical ports and two electrical ports, thus result in flexible electromechanical energy coupling modes was proposed. When utilized in vehicle's transmission system, it can not only replace traditional mechanical power transmission equipment to achieve efficient power coupling as a continuously variable transmission, but also can substitute for starter/generator and driving motor to achieve all functions of compound hybrid electric vehicle system, the vehicle's fuel efficiency will be improved significantly, while the transmission structure is more simplified and the control system is easier to achieve. Additionally, the device can also be used in other fields need variable speed transmission and energy transformation, such as wind power generation, underwater propulsion and mining equipment, which revealing great application potential. However, the complex coupling within this device has challenged in electromagnetic design and system control.
     This paper researched the coupling problems of induction machine based four ports electromechanical converter for HEV applications, including the mode of energy coupling, relations of electromagnetic coupling and decoupling control, mechanical coupling and decoupling methods..
     To analyze the feasibility of four ports electromechanical converter as a substitution of mechanical transmission device to achieve HEV functions, energy coupling modes was studied for HEV application system firstly, and hybrid power control system with different power flows was proposed. For different control strategies, the method of external characteristic parameters for the two motors which composing four ports electromechanical converter was confirmed, and simulated the instances of passenger car with CVT mode power tracking control strategies and city bus with Plug-in control strategies. Various structures and types of prototypes were designed according to obtained indexes, comparison and optimization design was proceeded to achieve feasible projects.
     Because there are two different coupling fields in the internal four ports electromechanical converter, to analyze the coupling relationships between two fields and its influence, the Finite Element Method (FEM) simulation and experimental methods were employed respectively to study the influence of the system output characteristics in different states of the inner and outer coupling fields as well as the varying characteristics of the main parameters. The stator side based "T"-shaped equivalent circuit and d, q-axis decoupling model was deduced. Constant parameters simulation model based on magnetic circuit calculation and variable parameters model based on finite FEM were established respectively. Simulation results indicated that the inductance parameters of the four ports electromechanical converter changed significantly with excitation currents and phase angle difference between inner and outer motor. The exact results corresponding to experiment were obtained with the model based on variable parameters.
     To achieve vector control of inner motor, the speed difference must be obtained quickly and accurately. This paper designed the speed decoupling method which can directly measuring the speed difference based on variable reluctance resolver, the number of resolvers was reduced with this project, another advantage is it can directly measure the dual rotor's speed difference with a conventional Resolve-to-Digital Converter (RDC) board with excellent real-time property. However, the difficulty is that its lead-in and output signals were depend on annular resolver or brush-slip ring group so was with poor reliability. Therefore, indirect measurement of two shafts' speed difference was proposed, which can directly decouple using coordinate transformation and Phase Lock Loop (PLL) decoding technology, there is no of external difference lag.
     Finally, an HEV system test bench based on four ports electromechanical converter was built. In the system, two 40kW induction motors were used to simulated the engine and road load respectively, Speed control of EM1 and torque control of EM2 were applied on the two motors constitute four ports electromechanical converter. The upper control program was based on MATLAB/ Simulink procedure, and implemented through dSPACE real-time control software and hardware platform. The main parameters and external characteristic of an integrated four ports electromechanical converter was measured on the test bench. Compared with split prototype, different control methods were validated in the same mode, the power flows and efficiencies were analyzed. Multi-mode dynamic switching custom cycle was made, the experiment was proceeded based on split type bench, which validates the feasibility and superiority of using four ports electromechanical converter to achieve HEV's functions.
引文
[1]陈清泉.电动车的现状和发展趋势[J].机械制造与自动化, 2003(1): 1-4, 19.
    [2] Emadi A, Rajashekara K, Williamson S S, et al. Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 763-770.
    [3] Liu S, Stefanopoulou A G. Effects of Control Structure on Performance for an Automotive Powertrain With a Continuously Variable Transmission[J]. IEEE Transactions on Control Systems Technology, 10(5), 2002: 701-708.
    [4] Nordlund E, Sadarangani C. Four-quadrant Energy Transducer for Hybrid Electrical Vehicles Simulation and System Description[C]. EVS-19, Busan, Korea, 2002: 225-234.
    [5]王军,申金升.国内外混合动力电动汽车开发动态及发展趋势[J].公路交通科技, 2000, 17(1): 71-73.
    [6] Kawahashi A. A New-Generation Hybrid Electric Vehicle and its Supporting Power Semiconductor Devices[C]. The 16th International Symposium on Power Semiconductor Devices and ICs, Kitakyushu, Japan, 2004: 23-29.
    [7]范建文,吴彤峰.丰田PRIUS控制策略研究[J].机械制造, 2004, 42(12): 10-12.
    [8] Syed F U, Kuang Ming L, Czubay J, et al. Derivation and Experimental Validation of a Power-Split Hybrid Electric Vehicle Model[J]. IEEE Transactions on Vehicular Technology, 2006, 55(6): 1731-1747.
    [9] Miller J M. Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type[J]. IEEE Transactions on Power Electronics, 2006, 21(3): 756-767.
    [10] Gao Yimin, Ehsani M. A Torque and Speed Coupling Hybrid DrivetrainArchitecture, Control, and Simulation[J]. IEEE Transactions on Power Electronics, 2006, 21(3): 741-748.
    [11] Chau K T, Chan C C. Emerging Energy-Efficient Technologies for Hybrid Electric Vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 821-835.
    [12] Wang Zheng, Wang Fengxiang, Zong Ming. A New Control Strategy by Combining Direct Torque Control with Vector Control for Doubly Fed Machine[C]. International Conference on Power System Technology, Singapore, 2008: 792-295.
    [13] Kim S, You Y, Lipo T A, et al. Design of Grid-Connected to Rotor Type Doubly-Fed Induction Generators for Wind Turbine System[C]. 14th Biennial IEEE Conference on Electromagnetic Field Computation, Chicago, US., 2010: 1.
    [14]邓先明.无刷双馈电机的电磁分析与设计应用[M].北京:机械工业出版社, 1999: 7-13.
    [15]柴凤,崔淑梅,程树康.双定子电机的发展状况及展望[J].微特电机, 2001, (5): 23-26.
    [16] Niu S X, Chau K T, Jiang J Z. Design and Control of a New Double-Stator Cup-Rotor Permanent-Magnet Machine for Wind Power Generation[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2501-2503.
    [17] Chau K T, Jiang J Z, Wang Y. A Novel Stator Doubly Fed Doubly Salient Permanent Magnet Brushless Machine[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3001-3003.
    [18] Chai Feng, Cheng Shukang, Cui Shumei. Study of A Novel Double-stator Permanent-Magnet Electric Machine[C]. IEEE International Electric Machines and Drives Conference, Wisconsin, US, 2003: 1375-1378.
    [19] Ramakrishnan S, Pillai K P. Theory and Performance of the Disk-Type Electromagnetic Particle Clutch under Continuous Slip Service[J]. IEE Proceedings A Physical Science, Measurement and Instrumentation Management and Education-Reviews, 1980, 127(2): 81-88.
    [20] Hoshi N, Yoshimoto K, Kawamura A. Driving Characteristics of Anti-Directional-Twin-Rotary Motor on Electric Vehicle Simulator[C]. Proceedings of the Power Conversion Conference, Nagaoka, Japan, 1997: 19-24.
    [21] Okubora T, Suhama M, Kawamura A. Traction Control Characteristics of 4WD Vehicle with Anti-Directional-Twin-Rotary Motor[C]. IEEE International Electric Machines and Drives Conference, Osaka, Japan, 2002: 588-592.
    [22] Qu Ronghai, Lipo T A. Dual-Rotor, Radial-Flux, Toroidally Wound, Permanent-Magnet Machines [J]. IEEE Transactions on Industry Applications. 2003, 39(6): 1665-1673.
    [23] Qu Ronghai, Lipo T A. Design and Parameter Effect Analysis of Dual-Rotor, Radial-Flux, Toroidally Wound, Permanent-Magnet Machines[J]. IEEE Transactions on Industry Applications, 2004, 40(3): 771-1779.
    [24] Qu R, Aydin M, Lipo T A. Performance Comparison of Dual-Rotor Radial-Flux and Axial-Flux Permanent-Magnet BLDC Machines[C]. IEEE International Electric Machines and Drives Conference, Miami, FL, US, 2003: 1950-1954.
    [25] Hoeijmakers M J. Electromechanical Converter: WO 03/075437 A1[P/OL]. 2003-02-28[2003-12-09]. http://www.emechforce.nl/evt/WO03075437A1.pdf.
    [26] Hoeijmakers M J, Rondel M. The Electrical Variable Transmission in a City Bus[C]. 35th IEEE Power Electronics Specialist Conference, Aachen, Germany, 2004: 2273-2278.
    [27] Hoeijmakers M J, Ferreia J A. The Electrical Variable Transmission[C]. IEEE Industry Applications Conference 39th IAS Annual Meeting, Seattle, Washington,US, 2004: 2770-2777.
    [28] Wilke M, Goraj R, Klopzig M, et al. Numerical Calculations of a Hybrid Power Train for Motor Vehicles [C]. 18th International Conference on Electrical Machines, Vilamoura, Algarve, Portugal, 2008: 1-4.
    [29] Backx P W. Prototype Testing of the Electric Variable Transmission[R/OL]. Eindhoven, 2008. http://www.mate.tue.nl/mate/pdfs/9093.pdf.
    [30] B?ckstr?m T, Sadarangni C, ?stlund S. Integrated Energy Transducer Drive for Hybrid Electric Vehicles[C]. 7th European Conference on Power Electronics and Applications, Trondheim, Norway, 1997: 239-243.
    [31] Eriksson S, Sadarangani C. A Four-Quadrant HEV Drive System[C]. IEEE 56th Vehicular Technology Conference, Vancouver, Canada, 2002: 1510-1514.
    [32] Zheng Ping, Thelin P, Nordlund E, et al. Consideration of Skewed Slots in The Performance Calculations of a Four-Quadrant Transducer[C]. IEEE VTS Vehicle Power and Propulsion Symposium, Paris, France, 2004.
    [33] Zheng P, Thelin P, Chen Anyuan, et al. Measurements and Calculations of Inductances of a 4QT Hybrid Electric Vehicle Prototype Machine[C]. IEEE VTS Vehicle Power and Propulsion Symposium, Paris, France, 2004.
    [34] Zheng Ping, Thelin P, Chen Anyuan, et al. Influence of Saturation and Saliency on the Inductance of a Four-Quadrant Transducer Prototype Machine[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1319-1322.
    [35] Zheng P, Nordlund E, Thelin P, et al. Investigation of the Winding Current Distribution in a 4-Quadrant-Transducer Prototype Machine[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1972-1975.
    [36] Nordlund E, Sadarangani C. The Four-Quadrant Energy Transducer[C]. Conference Record of the 37th IAS Annual Meeting, 2002: 390-397.
    [37] Chatelet S. Efficiency Measuring System for Hybrid Electric Vehicle Energy Transducers[C]. IEEE VTS Vehicle Power and Propulsion Symposium, Paris, France, 2004.
    [38] Chatelet S, Sadarangani C. Four-Quadrant Energy Transducer Test Bench[C]. EVS-19, Busan, Korea, 2002: 235-243.
    [39] Chatelet S, Sadarangni C, Thelin P. Test Bench for Electromagnetic Energy Transducer in Hybrid Electric Vehicles[C]. Proceedings of the Nordic Workshop on Power and Industrial Electronics, Stockholm, Sweden, 2002: 1-3.
    [40] Nordlund E, Eriksson S. Test and Verification of A Four-Quadrant Transducer for HEV Applications[C]. IEEE Conference on Vehicle Power and Propulsion, Chicago, IL, US, 2005: 37-41.
    [41] Nordlund E. The Four-Quadrant Transducer System for Hybrid Electric Vehicles[D]. Stockholm: KTH, Royal Institute of Technology, 2005: 116.
    [42] Xu Longya. A New Breed of Electrical Mchines-Basic Analysis andApplications of Dual Mechanical Port Electric Machines[C]. The 8th International Conference on Electrical Machines and Systems, Nanjing, 2005: 24-31.
    [43] Zhao Feng, Wen Xuhui, Gao Jinwen. Modeling of PM-PM Dual Mechanical Ports Electric Machines[C]. The 32nd Annual Conference of the IEEE Industrial Electronics Society, Paris, France 2006: 1251-1256.
    [44]赵峰,温旭辉,刘钧,等.永磁-永磁型双机械端口电机系统建模[J].中国电机工程学报, 2007, 27(21): 60-65.
    [45]温旭辉,赵峰,范涛,等.基于双机械端口电机的新型电力无级变速系统研究[J].电工技术学报, 2007, 22(7): 25-28.
    [46] Xu Longya, Zhang Yuan. Design and Evaluation of a Dual Mechanical Port Machine and System[C]. CES/IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, 2006.
    [47]范涛,赵峰,陈静薇,等.一种双机械端口电机的绕线型内转子:中国, 200610112635.6 [P]. 2006-02-14.
    [48]温旭辉,徐隆亚,赵峰,等.双机械端口电机及其驱动控制系统:中国, 200510130739.5 [P]. 2007-04-11.
    [49] Zhao Feng, Guo Xinhua, Cong Wei, et al. Research on the Electrical Variable Transmission Based on Dual Mechanical Port Electric Machines[C]. The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, 2010.
    [50] Liu Ranran, Zheng Ping, Zhao hui, et al. Investigation of a Compound-structure Permanent-magnet Synchronous Machine Used for HEVs[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-5.
    [51] Liu Ranran, Zhao Hui, Tong Chengde, et al. Experimental Evaluation of a Radial-Radial-Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs[J]. IEEE Transactions on Magnetics, 2009, 45(1): 645-649.
    [52] Zheng Ping, Zhao Jing, Liu Ranran, et al. Magnetic Characteristics Investigation of an Axial-Axial Flux Compound-Structure PMSM Used for HEVs[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2191-2194.
    [53] Zhao Jing, Zheng Ping, Tong Chengde, et al. Design and Experiment of an Axial-Axial Flux Compound-Structure PMSM Used for HEVs[C]. IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010: 1-5.
    [54] Zheng Ping, Wu Qian, Bai Jingang, et al. Analysis and Optimization of a Novel Brushless Compound-Structure Permanent-Magnet Synchronous Machine[C]. IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010: 1-5.
    [55]罗玉涛,周斯加,赵克刚,等.电磁耦合无级变速传动系统[J].机械工程学报, 2006, 42(8): 35-39.
    [56] Fu Xingfeng, Luo Yutao. Hybrid Excitation Timing System of Electromagnetic Continuously Variable Transmissio[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-6.
    [57] Li Jun, Luo Yutao, Zhao Kegang, et al. Performance Analysis of Electromagnetic Continuously Variable Transmission[J]. Journal of System Simulation, 2008, 20(3): 771-776.
    [58]罗玉涛,喻皓,赵克刚. EMCVT的功率流分析与应用仿真[C]//2007年APC联合学术年会论文集.天津: [出版者不详], 2007: 322-330.
    [59]李毓洲,罗玉涛,赵克刚,等.电磁耦合无级变速系统的结构及仿真[J].华南理工大学学报(自然科学版), 2007, 35(2): 37-42.
    [60]罗玉涛,张桂连,旷鹏,等.基于电磁耦合无级变速器的混合动力车传动控制[J].机械工程学报, 2010, 46(8): 88-97.
    [61]黄向东,罗玉涛,赵克刚,等.电磁耦合无级变速器:中国, 200520055188.6 [P]. 2006-12-06.
    [62]罗玉涛,喻皓.电磁耦合无级变速器的调磁及效率分析[J].中国机械工程, 2008, 19(9): 1103-1107.
    [63]阚超豪,王雪帆.双转子电动机工作原理及数学模型[J].微电机, 2008, 41(5): 1-4.
    [64]庞珽,黄声华,黄晓辉.双转子电机及其典型应用[J].微电机, 2007, 40(2): 66-69.
    [65]万山明,陈骁,黄声华.无刷双机械端口电机原理[J].微电机, 2009, 42(7): 5-8, 20.
    [66]陈骁,黄声华,万山明,庞珽.无刷双馈双机械端口电机原理及数学模型[J].微电机, 2009, 42(12): 5-8, 33.
    [67] Chen Xiao, Huang Shenghua, Pang Ting, et al. The Principle and Mathematic Model of the Brushless Doubly-Fed Electrical Variable Transmission[C]. IEEE International Conference on Electrical Machines and Systems, Wuhan, 2008: 3617-3621.
    [68]黄声华,万山明,庞珽.无刷双机械端口电机:中国, 200720087223.1 [P]. 2008-06-18.
    [69]陈骁,黄声华,万山明,等.一种轴向磁场的无刷双馈双机械端口电机:中国, 200820193571.1 [P]. 2009-10-07.
    [70]万山明,黄声华,陈骁,等.一种径向磁场的无刷双馈双机械端口电机:中国, 200820193574.5 [P]. 2009-10-07.
    [71]陈骁,黄声华,万山明,等.一种无刷单馈双机械端口电机:中国, 200820193573.0 [P]. 2009-10-07.
    [72]黄苏融,刘行,张琪,等.双转轴混合磁路能量变换器及其冷却结构研究[J].微特电机, 2006, (9): 1-2, 17.
    [73] Shi Wei, Zhang Zhouyun, Huang Surong, et al. Analyze of Dual-Axle Four Quadrant Transducer Motor Operation Mode [C]. IEEE International Conference on Electrical Machines and Systems, Wuhan, 2008: 3568-3571.
    [74]史广奎,赵航,冯琦.双转子混合动力系统研究[J].汽车工程, 2007, 29(2): 97-100.
    [75]李练兵,陈鹏,史广奎,等.混合动力汽车用双转子电机的建模与仿真[J].电机与控制学报, 2008, 12(4): 403-408, 414.
    [76] Li Lianbing, Zhao Qingyun, Shi Guangkui, et al. Analysis of Feasibility of Double-Rotor Motor Applied to Hybrid Electric Vehicle[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, 2008:1-5.
    [77] Sun Xikai, Cheng Ming, Xu Longya, et al. A Novel Dual Power Flow Wind Power Generation System[C]. IEEE International Conference on Electrical Machines and Systems, Wuhan, 2008: 2573-2578.
    [78] Sun Xikai, Cheng Ming, Hua Wei, et al. Optimal Design of Double-Layer Permanent Magnet Dual Mechanical Port Machine for Wind Power Application[J]. IEEE Transactions on Magnetics, 2009(45): 4613-4616.
    [79] Wang Yubin, Cheng Ming, Fan Ying, et al. A Double-Stator Permanent Magnet Brushless Machine System for Electric Variable Transmission in Hybrid Electric Vehicles[C]. IEEE Vehicle Power and Propulsion Conference, Lille, France, 2010, 1-5.
    [80]赵航,史广奎,黄苏融,等.双转子混合动力复合永磁电机:中国, 200510014393.2 [P]. 2006-02-22.
    [81]程明,花为.电气无级变速双功率流风力发电机组:中国, 200720033191.7 [P]. 2008-01-30.
    [82]程明,孙西凯.机电混合式无级变速风力发电装置:中国, 200810100747.9 [P]. 2008-09-24.
    [83]程明,孙西凯.一种无耦合电气无级变速器电机本体拓扑结构:中国, 200810124193.6 [P]. 2008-11-05.
    [84]程明,孙西凯.无级变速恒频运行风力发电机:中国, 200820116054.4 [P]. 2009-03-25.
    [85] Cui Shumei, Cheng Yuan, Chan C C. A Basic Study of Electrical Variable Transmission and Its Application in Hybrid Electric Vehicle [C]. IEEE Vehicle Power and Propulsion Conference, Windsor, United Kingdom, 2006: 1-4.
    [86]韩守亮.用于传动系统的开关磁阻式双转子电机的基础研究[D].哈尔滨:哈尔滨工业大学电气工程学科硕士学位论文. 2007: 52-56.
    [87] Cui Shumei, Yuan Yongjie, Wang Tie cheng. Research on Switched Reluctance Double-rotor Motor Used for Hybrid Electric Vehicle[C]. IEEE International Conference on Electrical Machines and Systems, Wuhan, 2008: 1-4.
    [88] Zheng Ping, Liu Ranran, Fan Weiguang, et al. Research on the Control of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine Used for HEVs[C]. 14th Symposium on Electromagnetic Launch Technology, Victoria, Canada, 2008: 640-645.
    [89] TNO Automotive. ADVANCE 1.0: Intelligent and Integrated Chassis and Powertrain Control Systems Development[DB/OL]. http://www.baisi.net/ attachpage.php?tid=747185&aid=236453.
    [90] Guo Xinhua, Wen Xuhui, Chen Jingwei, et al. Simulation of an Electrical Variable Transmission Based on Dual Mechanical Ports Electric Machine with Clutch[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, 2008: 1-5.
    [91] Chen Keyu, Cheng Yuan, Bouscayrol A, Chan C C, et al. Inversion-Based Control of a Hybrid Electric Vehicle Using a Split Electric Variable Transmission[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, 2008:1-6.
    [92] Cheng Yuan, Chen Keyu, Chan C C, et al. Global Modeling and Control Strategy Simulation for a Hybrid Electric Vehicle Using Electrical Variable Transmission[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, 2008: 1-5.
    [93] Ehsani M, Gao Yimin, Emadi A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design[M]. 2nd Ed. New York: CRC Press, Taylor & Francis Group, 2010: 4, 131-143.
    [94]余志生.汽车理论(第5版) [M].北京:机械工业出版社, 2009: 2-16.
    [95] Wirasingha S G, Emadi A. Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 111-122.
    [96] Cheng Yuan, Cui Shumei, Song Liwei, et al. The Study of the Operation Modes and Control Strategies of an Advanced Electromechanical Converter for Automobiles [J]. IEEE Transactions on Magnetics, 2007, 43(1): 430-433.
    [97]刘冉冉.混合动力车用径向-径向磁通复合结构永磁同步电机的研究[D].哈尔滨:哈尔滨工业大学电气工程学科博士学位论文, 2009: 1-20.
    [98] Fan Tao, Wen Xuhui. Xue Shan, et al. A Unified Field Permanent Magnet Dual Mechanical Port Machine with Spoke Type PM Arrangement[C]. IEEEVehicle Power and Propulsion Conference, Harbin, 2008: 1-5.
    [99] Guo Xizheng, Wen Xuhui, Zhao Feng, et al. Comparison of Two Different Structure of Permanent Magnet Dual Mechanical Port Machine[C]. IEEE Vehicle Power and Propulsion Conference, Harbin, 2008: 1-5.
    [100] Guo Xizheng, Fan Tao, Wen Xuhui, et al. Electromagnetic Coupling Analysis of Uniform Magnetic-Filed Permanent Magnet Dual Mechanical Port Machine[C]. IEEE International Conference on Electrical Machines and Systems, Wuhan, 2008: 3181-3184.
    [101]汤蕴璆,罗应力,梁艳萍.电机学(第3版) [M].北京:机械工业出版社, 2008: 372-374.
    [102] Fitzgerald A E, Kingsley C, Jr., Umans S D. Electric Machinery [M]. 6th ed. New York. McGraw-Hill Higher Education, 2003: 313-318.
    [103]汤蕴璆,梁艳萍.双鼠笼感应电动机的瞬态模型[J].电机与控制学报, 1999, 3(4): 197-202.
    [104]高里辛卡V,凯利D H.机电能量转换[M].沈富根,向树雄,译.沈公惠,王泰钟,校.北京:国防工业出版社, 1982: 188-208.
    [105]崔军,温旭辉,张立伟.新型永磁同步电机控制用旋转变压器/数字转换器及其应用[J].电气传动,2005, 35(11): 11-14.
    [106]李文韬,黄苏融.车用电机系统磁阻式旋变转子设计与分析[J].电机与控制应用. 2008, 35(5): 6-10.
    [107]姜燕平.多摩川旋转变压器原理及其解码[J].伺服控制. 2007(1): 66-67.
    [108]强曼君.磁阻式多极旋转变压器[J].微特电机, 1978(4): 20-44.
    [109] Sun Lizhi, Lu Yongping. Rotor-position Sensing System Based on One Type of Variable-Reluctance Resolver[C]. The 32nd Annual Conference of the IEEE Industrial Electronics Society, Paris, 2006: 1162-1165.
    [110]孙立志,陆永平.适于一体化电机系统的新结构磁阻旋转变压器的研究[J].电工技术学报, 1999, 14(1): 35-39.
    [111] Magarkatti A, Lordo R E, Kind B. Harmonically Graded Airgap Reluctance-type Rotationg Electric Resolver: US, 4,631,510[P/OL]. 1985-09-03[1986-12-23]. http://www.patentstorm.us/patents/4631510.html.
    [112] Kobayashi M, Kujirai H, Koyama T, et al. Variable Reluctance Resolver: US, 2005/0023921 A1[P/OL]. 2004-04-12[2005-02-03]. http://www.patentstorm. us/patents/7005771/claims.html.
    [113] Analog Device. AD2S1200: 12-Bit R/D Converter with Reference Oscillator [DB/OL]. 2003 ed. http://www.analog.com/static/imported-files/data_sheets/ AD2S1200.pdf.
    [114] Analog Device. EVAL-AD2S1200/AD2S1205: Evaluation Board for 12-BitR/D Converter with Reference Oscillator [DB/OL]. 2007 ed. http://www. analog.com/static/imported-files/eval_boards/302570705EVAL_AD2S1200_1205CBZ.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700