介观太阳能电池碳对电极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介观(Mesoscopic)是介于宏观与微观之间的一种体系。作为一种典型的介观太阳能电池,自1991年瑞士洛桑联邦理工学院(EPFL) Michael Graetzel教授报道以来,染料敏化太阳能电池(Dye-sensitized solar cell, DSSC)受到广泛关注并获得了飞速的发展。迄今为止,其器件的最高光电转换效率己超过15%。该太阳能电池具有简单的制备工艺、低廉的材料价格、优越的性能等优点,因此被认为是新兴的第三代太阳能电池。世界各国众多科研单位和公司都给予了大规模的资金投入和技术研发,显示出该类太阳能电池所具有的广阔市场前景。
     DSSC由光阳极、电解质及对电极组成。其中对电极是DSSC的重要组成部分,其导电性能和电化学性能将决定DSSC器件的内阻,从而影响器件的最终光电转换效率。目前,铂电极已被广泛研究,但是对于低成本的非铂类对电极材料的研究仍处于起步阶段,特别是对于不同类型的非铂类材料之间制备复合电极的研究尚少,有待进行进一步的研发和优化。
     基于对电极中存在的问题,本论文以廉价碳材料为基础,研究了不同碳材料之间混合比例对于单基板DSSC中介孔碳电极性能的影响,并讨论了痕量铂颗粒修饰对于单基板DSSC碳电极性能的影响。同时,对于非碘电解质,本文采用石墨烯修饰介孔碳材料制备了高效的对电极。此外,本文还研究了导电聚合物对于介孔碳电极性能的影响,并开发了一系列新型的过渡金属-导电聚合物修饰介孔碳材料作为DSSC的对电极。本论文的主要内容为:
     首先,基于单基板DSSC对于对电极材料的特殊要求,采用高催化性的纳米碳黑和高导电性的片状石墨混合制备了高效的电极材料,并通过调节两者之间的比例,使介孔碳电极综合性能达到最优。同时,研究了单基板DSSC电池中Ti02光阳极厚度和导电玻璃基底对于电池器件性能的影响。
     其次,针对高性能单基板DSSC中介孔碳电极催化性能不足的问题,采用热分解含铂前驱液的方法制备了披铂碳电极,并通过对其电化学性能的测试、分析,精细的调整了披铂碳电极中铂含量,达到优化电极催化性能的目的。探讨了不同的对电极厚度对于电极电阻、催化性能以及单基板DSSC器件性能的影响。通过优化,液态单基板DSSC电池器件获得7.61%的转换效率。
     再次,利用化学还原的方法制备了石墨烯材料,并通过静电自组装的方法制备了石墨烯改性的介孔碳电极。通过XRD、拉曼、红外光谱等分析手段表征了石墨烯的还原程度。同时,通过电化学分析,研究了石墨烯改性介孔碳电极对有机硫电解质催化性能的影响。通过优化石墨烯含量,基于有机多硫电解质双基板DSSC的光电转换效率达到6.55%。
     随后在第五章中,采用化学聚合的方法分别将三种导电聚合物(聚苯胺、聚吡咯、聚噻吩)包裹在介孔碳电极表面。通过电化学测试,分析了不同聚合物修饰介孔碳电极催化活性的差异。探讨了聚吡咯的含量对于电极催化性能和DSSC电池性能的影响。
     最后在第六章中,采用化学还原的方法制备一种全新的过渡金属(Fe,Co,Ni)-聚毗咯修饰的介孔碳电极。通过电镜、红外和XPS分析了聚吡咯的聚合状态和过渡金属原子的价态,探讨了过渡金属与吡咯之间的成键结构和催化活性位点。通过电化学测试,分析了不同过渡金属-聚毗咯修饰介孔碳电极之间催化性能的差异,及其对于DSSC电池器件性能的影响。
Mesoscopic is a system between the macro and micro. As one of the typical mesoscopic solar cells, Dye Sensitized Nanocrystalline Solar Cell (DSSC) has obtained a rapid development and the highest efficiency of which has reached to more than15%now, since been reported in1991by Prof. Graetzel. Due to its simple preparation process, inexpensive raw materials and excellent performance, DSSC has been considered as the new third generation solar cell, which should replace the silicon solar cells in the future. Many companies and Scientific Research Institutes have offered large-scale capital investment and technology research on DSSC, which makes this kind of solar cell a broad market prospects.
     DSSC is composed of photoanode, electrolyte and counter electrode. The counter electrode is an essential part within DSSC, which will determine the resistance and efficiency of DSSC. The study on Pt counter electrode has been carried out widely for many years. However, there are only a few studies on the Pt-free counter electrode, especially on the mixture of different Pt-free materials. Hence, the study on the counter electrode is indispensable now.
     Herein, based on low-cost carbon materials, we investigate the effect of the mixture of different carbon materials on the monolithic DSSC. The mesoscopic platinized carbon was developed as the counter electrode for monolithic DSSC. Meanwhile, the graphene was used as modifier to improve the catalytic activity of carbon electrode towards iodide-free electrolyte. Furthermore, we also investigate the effect of the conductive polymer as the modifier on the carbon electrode and invent a new class of carbon supported transition metal-PPy catalysts for DSSC. The main work is listed as following:
     In the second chapter, based on the special demand of monolithic DSSC, the mixture of carbon black with high catalytic activity and graphite with high conductivity was used as the counter electrode. Through adjusting the ratio between graphite and carbon black, the performance of the counter electrode was optimized. Meanwhile, the effect of the thickness of TiO2and conductive glass on the performance of monolithic DSSC was investigated.
     In the third chapter, due to the insufficient of the catalytic activity of graphite-carbon black electrode, the Pt was used to modify the carbon materials by thermal deposition. According to the electrochemical testing, the amount of the Pt in the platinized carbon electrode was optimized. After adjusting the thickness of platinized carbon electrode, the efficiency of monolithic DSSC has reached to7.61%.
     In the fourth chapter, the graphene sheet was synthesized by chemical reduced graphene oxide, and then the graphene modified carbon electrode was prepared by electrostatic self-assembly. The property of the graphene was analyzed by X-Ray Diffraction (XRD), Raman spectrum and FT-IR. According the electrochemical testing, the amount of graphene was optimized and the efficiency of DSSC based on thiolate/disulfide redox couple reached6.55%.
     In the fifth chapter, the conductive polymer modified carbon electrode was synthesized by chemical polymerization. According to electrochemical testing, the difference of catalytic activity among three conductive polymers was investigated. The affection of the amount of PPy on the catalytic activity of counter electrode and the performance of DSSC was discussed.
     Finally, a new class of carbon supported transition metal-PPy complex catalysts was synthesized by chemical reduced. The polymerization of PPy and the valence of the transition metal were analyzed by Scanning Electron Microscope (SEM), FT-IR and X-ray Photoelectron Spectroscopy (XPS) and the bonding structure was discussed. The catalytic active of transition metal-PPy-C electrode was investigated by electrochemical testing.
引文
[1]Green, M. A.; Emery, K.; Hishikawa, Y, et al., Solar cell efficiency tables (version 37). Progress in Photovoltaics 2011,19 (1):84-92.
    [2]Shah, A.; Torres, P.; Tscharner, R., et al., Photovoltaic technology:The case for thin-film solar cells. Science 1999,285 (5428):692-698.
    [3]Rath, J. K., Low temperature polycrystalline silicon:a review on deposition, physical properties and solar cell applications. Solar Energy Materials and Solar Cells 2003,76 (4):431-487.
    [4]Li, G.; Shrotriya, V.; Huang, J. S., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005,4 (11):864-868.
    [5]Thompson, B. C.; Frechet, J. M. J., Organic photovoltaics-Polymer-fullerene composite solar cells. Angewandte Chemie-International Edition 2008,47 (1): 58-77.
    [6]Peumans, P.; Yakimov, A.; Forrest, S. R., Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics 2003,93 (7):3693-3723.
    [7]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S., et al.,2.5% efficient organic plastic solar cells. Applied Physics Letters 2001,78 (6):841-843.
    [8]Guenes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chemical Reviews 2007,107 (4):1324-1338.
    [9]Gratzel, M., Photoelectrochemical cells. Nature 2001,414 (6861):338-344.
    [10]O'Regan, B.; M.Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 1991,353:737.
    [11]Yella, A.; Lee, H. W.; Tsao, H. N., et al., Porphyrin-Sensitized Solar Cells with Cobalt (Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science 2011, 334 (6056):629-634.
    [12]Goncalves, L. M.; Bermudez, V. d. Z.; Ribeiro, H. A., et al., Dye-sensitized solar cells:A safe bet for the future. Energy & Environmental Science 2008,1 (6): 655-667.
    [13]Dai, S. Y.; Wang, K. J.; Weng, J., et al., Design of DSC panel with efficiency more than 6%. Solar Energy Materials and Solar Cells 2005,85 (3):447-455.
    [14]Deb, S. K., Dye-sensitized TiO2 thin-film solar cell research at the National Renewable Energy Laboratory (NREL). Solar Energy Materials and Solar Cells 2005,88 (1):1-10.
    [15]Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A-Chemistry 2004,164 (1-3):3-14.
    [16]Chiba, Y.; Islam, A.; Watanabe, Y, et al., Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, Part 2 2006,45 (24-28): L638-L640.
    [17]Lindstrom, H.; Holmberg, A.; Magnusson, E., et al., A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Letters 2001,1 (2):97-100.
    [18]Lindstrom, H.; Boschloo, G.; Lindquist, S. E., et al., A new method for manufacturing dye-sensitized solar cells on plastic substrates.In Molecules as Components of Electronic Devices,2003; (844):123-132.
    [19]Ito, S.; Ha, N. L. C.; Rothenberger, G, et al., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chemical Communication 2006, (38):4004-4006.
    [20]Durr, M.; Schmid, A.; Obermaier, M., et al., Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nature Materials 2005,4 (8):607-611.
    [21]Peng, W. Q.; Yanagida, M.; Han, L. Y, et al., Controlled fabrication of TiO2 rutile nanorod/anatase nanoparticle composite photoanodes for dye-sensitized solar cell application. Nanotechnology 2011,22 (27):275709.
    [22]Peter, L. M., Dye-sensitized nanocrystalline solar cells. Physical Chemistry Chemical Physics 2007,9 (21):2630-2642.
    [23]Murakami, T. N.; Sakai, N.; Kawashima, N., Effect of TiCl4 Treatment on Porous ZnO Photoelectrodes for Dye-sensitized Solar Cells. Chemistry Letters 2011,40 (2): 162-164.
    [24]Hoshikawa, T.; Yamada, M.; Kikuchi, R., et al., Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. Journal of the Electrochemical Society 2005,152 (2):E68-E73.
    [25]Ho, K. C.; Lee, K. M.; Hsu, Y. C., et al., Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. Journal of Power Sources 2011,196 (4): 2416-2421.
    [26]Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 2005,44 (20):6841-6851.
    [27]Boschloo, G.; Gibson, E. A.; Smeigh, A. L., et al., Cobalt Polypyridyl-Based Electrolytes for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2011,115 (19):9772-9779.
    [28]Le Pleux, L.; Smeigh, A. L.; Gibson, E., et al., Synthesis, photophysical and photovoltaic investigations of acceptor-functionalized perylene monoimide dyes for nickel oxide p-type dye-sensitized solar cells. Energy & Environmental Science 2011,4 (6):2075-2084.
    [29]Murakoshi, K.; Kogure, R.; Wada, Y., et al., Solid state dye-sensitized TiO2 solar cell with polypyrrole as hole transport layer. Chemistry Letters 1997, (5):471-472.
    [30]Bach, U.; Lupo, D.; Comte, P., et al., Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998,395 (6702):583-585.
    [31]Yanagida, S.; Yu, Y. H.; Manseki, K., Iodine/Iodide-Free Dye-Sensitized Solar Cells. Accounts of Chemical Research 2009,42 (11):1827-1838.
    [32]Murakami, T. N.; Graetzel, M., Counter electrodes for DSC:Application of functional materials as catalysts. Inorganica Chimica Acta 2008,361 (3):572-580.
    [33]Fredin, K.; Gorlov, M.; Pettersson, H., et al., On the influence of anions in binary ionic liquid electrolytes for monolithic dye-sensitized solar cells. Journal of Physical Chemistry C 2007,111 (35):13261-13266.
    [34]Chen, J.; Li, K.; Luo, Y, et al., A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 2009,47 (11):2704-2708.
    [35]Papageorgiou, N., Counter-electrode function in nanocrystalline photoelectro- chemical cell configurations. Coordin Chemical Reviews 2004,248 (13-14): 1421-1446.
    [36]Murakami, T. N.; Gratzel, M., Counter electrodes for DSC:Application of functional materials as catalysts. Inorganica Chimica Acta 2008,361 (3):572-580.
    [37]Kay, A.; Gratzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells 1996, (44):99-117.
    [38]Ito, S.; Takahashi, K., Fabrication of Monolithic Dye-Sensitized Solar Cell Using Ionic Liquid Electrolyte. International Journal of Photoenergy 2012.915352.
    [39]Thompson, S. J.; Duffy, N. W.; Bach, U., et al., On the Role of the Spacer Layer in Monolithic Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2010,114 (5):2365-2369.
    [40]Skupien, K.; Putyra, P.; Walter, J., et al., Catalytic Materials Manufactured by the Polyol Process for Monolithic Dye-sensitized Solar Cells. Progress in Photovoltaics 2009,17(1):67-73.
    [41]Pettersson, H.; Gruszecki, T.; Schnetz, C., et al., Parallel-connected monolithic dye-sensitised solar modules. Progress in Photovoltaics 2010,18 (5):340-345.
    [42]Pettersson, H.; Gruszecki, T.; Johansson, L. H., et al., Manufacturing method for monolithic dye-sensitised solar cells permitting long-term stable low-power modules. Solar Energy Materials and Solar Cells 2003,77 (4):405-413.
    [43]Pettersson, H.; Gruszecki, T.; Bernhard, R., et al., The monolithic multicell:A tool for testing material components in dye-sensitized solar cells. Progress in Photovoltaics 2007,15 (2):113-121.
    [44]Ma, H.; Liu, Z.-Y.; Lu, Y.-M., et al., Monolithic Module Design and Behavior Improvement of Large Area Dye-sensitized Solar Cell. Journal of Inorganic Materials 2011,26 (12):1261-1265.
    [45]Xia, J.; Yuan, C.; Yanagida, S., Novel Counter Electrode V2O5/Al for Solid Dye-Sensitized Solar Cells. Acs Applied Materials & Interfaces 2010,2 (7): 2136-2139.
    [46]Wenger, S.; Seyrling, S.; Tiwari, A. N., et al., Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se-2 thin film tandem solar cell. Applied Physics Letters 2009,94 (17):1736-1739.
    [47]Han, H. W.; Bach, U.; Cheng, Y. B., et al., Increased nanopore filling:Effect on monolithic all-solid-state dye-sensitized solar cells. Applied Physics Letters 2007, 90 (21):1477-1479.
    [48]Han, H. W.; Bach, U.; Cheng, Y. B., et al., A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters 2009,94 (10):1897-1901.
    [49]Liu, G.; Wang, H.; Li, X., et al., A mesoscopic platinized graphite/carbon black counter electrode for a highly efficient monolithic dye-sensitized solar cell. Electrochimica Acta 2012, (69):334-339.
    [50]Wang, H.; Liu, G.; Li, X., et al., Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy & Environmental Science 2011,4 (6):2025-2029.
    [51]Xu, M.; Liu, G.; Li, X., et al., Efficient monolithic solid-state dye-sensitized solar cell with a low-cost mesoscopic carbon based screen printable counter electrode. Organic Electronics 2013,14 (2):628-634.
    [52]Rong, Y.; Li, X.; Ku, Z., et al., Monolithic all-solid-state dye-sensitized solar module based on mesoscopic carbon counter electrodes. Solar Energy Materials and Solar Cells 2012, (105):148-152.
    [53]Kroon, J. M.; Bakker, N. J.; Smit, H. J. P., et al., Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics 2007,15 (1): 1-18.
    [54]Han, L. Y.; Koide, N.; Chiba, Y, et al., Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance. Applied Physics Letters 2005,86 (21): 213501-4.
    [55]Koide, N.; Islam, A.; Chiba, Y, et al., Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology A-Chemistry 2006,182 (3):296-305.
    [56]Han, L. Y.; Koide, N.; Chiba, Y, et al., Modeling of an equivalent circuit for dye-sensitized solar cells:improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie 2006,9 (5-6):645-651.
    [57]Wang, M.; Chen, P.; Humphry-Baker, R., et al., The Influence of Charge Transport and Recombination on the Performance of Dye-Sensitized Solar Cells. Chemphyschem 2009,10 (1):290-299.
    [58]Han, L. Y.; Zhang, S. F.; Yanagida, M., et al., Effect of 4-tert-Butylpyridine on the Quasi-Fermi Level of Dye-Sensitized TiO2 Films. Applied Physics Express 2011,4 (43):19310-3.
    [59]Yum, J. H.; Baranoff, E.; Wenger, S., et al., Panchromatic engineering for dye-sensitized solar cells. Energy & Environmental Science 2011,4 (3):842-857.
    [60]Wu, M.; Ma, T., Platinum-Free Catalysts as Counter Electrodes in Dye-Sensitized Solar Cells. Chemsuschem 2012,5 (8):1343-1357.
    [61]Boennemann, H.; Khelashvili, G.; Behrens, S., et al., Role of the platinum nanoclusters in the iodide/triiodide redox system of dye solar cells. Journal of Cluster Science 2007,18 (1):141-155.
    [62]Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001,46 (22): 3457-3466.
    [63]Papageorgiou, N.; Maier, W. F.; Gratzel, M., An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the Electrochemical Society 1997,144 (3):876-884.
    [64]Wang, G Q.; Lin, R. F.; Lin, Y, et al., A novel high-performance counter electrode for dye-sensitized solar cells. Electrochimica Acta 2005,50 (28):5546-5552.
    [65]Ikegami, M.; Miyoshi, K.; Miyasaka, T., et al., Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells. Applied Physics Letters 2007,90 (15):153122-5.
    [66]Choi, J. Y.; Hong, J. T.; Seo, H., et al., Optimal series-parallel connection method of dye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system. Thin Solid Films 2008,517 (2):963-966.
    [67]Kim, S. S.; Nah, Y C.; Noh, Y Y, et al., Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells. Electrochimica Acta 2006,51 (18):3814-3819.
    [68]Tsekouras, G.; Mozer, A. J.; Wallace, G. G, Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes. Journal of the Electrochemical Society 2008,155 (7):K124-K128.
    [69]Khelashvili, G.; Behrens, S.; Weidenthaler, C., et al., Catalytic platinum layers for dye solar cells:A comparative study. Thin Solid Films 2006, (511):342-348.
    [70]Chen, L.; Tan, W.; Zhang, J., et al., Fabrication of high performance Pt counter electrodes on conductive plastic substrate for flexible dye-sensitized solar cells. Electrochimica Acta 2010,55 (11):3721-3726.
    [71]Fang, X. M.; Ma, T. L.; Guan, G Q., et al., Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell. Journal of Electroanalytical Chemistry 2004,570 (2):257-263.
    [72]Olsen, E.; Hagen, G.; Lindquist, S. E., Dissolution of platinum in methoxy propionitrile containing LiI/I-2. Solar Energy Materials and Solar Cells 2000,63 (3): 267-273.
    [73]Jun, Y.; Kim, J.; Kang, M. G, A study of stainless steel-based dye-sensitized solar cells and modules. Solar Energy Materials and Solar Cells 2007,91 (9):779-784.
    [74]Zhu, H.; Wei, J.; Wang, K., et al., Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells 2009,93 (9):1461-1470.
    [75]Imoto, K.; Takahashi, K.; Yamaguchi, T., et al., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79 (4):459-469.
    [76]Murakami, T. N.; Ito, S.; Wang, Q., et al., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. Journal of the Electrochemical Society 2006,153 (12):A2255-A2261.
    [77]Wang, G.; Xing, W.; Zhuo, S., Application of mesoporous carbon to counter electrode for dye-sensitized solar cells. Journal of Power Sources 2009,194 (1): 568-573.
    [78]Ramasamy, E.; Lee, J., Ferrocene-derivatized ordered mesoporous carbon as high performance counter electrodes for dye-sensitized solar cells. Carbon 2010,48 (13): 3715-3720.
    [79]Ramasamy, E.; Lee, W. J.; Lee, D. Y, et al., Nanocarbon counterelectrode for dye sensitized solar cells. Applied Physics Letters 2007,90 (17):173103-6.
    [80]Fan, S. S.; Chapline, M. G.; Franklin, N. R., et al., Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999,283 (5401): 512-514.
    [81]Zhu, H.; Zeng, H.; Subramanian, V., et al., Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology 2008,19 (46): 465204.
    [82]Tans, S. J.; Devoret, M. H.; Dai, H. J., et al., Individual single-wall carbon nanotubes as quantum wires. Nature 1997,386 (6624):474-477.
    [83]Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A., et al., Storage of hydrogen in single-walled carbon nanotubes. Nature 1997,386 (6623):377-379.
    [84]Suzuki, K.; Yamaguchi, M.; Kumagai, M., et al., Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chemistry Letters 2003,32 (1): 28-29.
    [85]Lee, W. J.; Ramasamy, E.; Lee, D. Y., et al., Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. Acs Applied Materials & Interfaces 2009,1 (6):1145-1149.
    [86]Nam, J. G.; Park, Y. J.; Kim, B. S., et al., Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scripta Materialia 2010,62 (3):148-150.
    [87]Ramasamy, E.; Lee, W. J.; Lee, D. Y., et al., Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells. Electrochemistry Communications 2008,10 (7):1087-1089.
    [88]Stankovich, S.; Dikin, D. A.; Dommett, G H. B., et al., Graphene-based composite materials. Nature 2006,442 (7100):282-286.
    [89]Ferrari, A. C.; Meyer, J. C.; Scardaci, V., et al., Raman spectrum of graphene and graphene layers. Physical Review Letters 2006,97 (18):187401-4.
    [90]Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007,6 (3): 183-191.
    [91]Wang, X.; Zhi, L.; Muellen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters 2008,8 (1):323-327.
    [92]Choi, H.; Kim, H.; Hwang, S., et al., Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Materials Chemistry 2011,21 (21):7548-7551.
    [93]Castro Neto, A. H.; Guinea, F.; Peres, N. M. R., et al., The electronic properties of graphene. Reviews of Modern Physics 2009,81 (1):109-162.
    [94]Novoselov, K. S.; Geim, A. K.; Morozov, S. V., et al., Electric field effect in atomically thin carbon films. Science 2004,306 (5696):666-669.
    [95]Sun, Z.; Yan, Z.; Yao, J., et al., Growth of graphene from solid carbon sources. Nature 2010,468 (7323):549-552.
    [96]Novoselov, K. S.; Geim, A. K.; Morozov, S. V., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438 (7065):197-200.
    [97]Berger, C.; Song, Z.; Li, X., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006,312 (5777):1191-1196.
    [98]Kavan, L.; Yum, J. H.; Graetzel, M., Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets. ACS NANO 2011,5 (1):165-172.
    [99]Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C., et al., Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS NANO 2010,4 (10):6203-6211.
    [100]Wu, M.; Lin, X.; Wang, T., et al., Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy & Environmental Science 2011,4 (6): 2308-2315.
    [101]Hu, H.; Chen, B.-L.; Bu, C.-H., et al., Stability study of carbon-based counter electrodes in dye-sensitized solar cells. Electrochimica Acta 2011,56 (24): 8463-8466.
    [102]Biallozor, S.; Kupniewska, A., Study on poly(3,4-ethylenedioxythiophene) behaviour in I-/I-2 solution. Electrochemistry Communications 2000,2 (7): 480-486.
    [103]Hong, W.; Xu, Y.; Lu, G., et al., Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communi-cations 2008,10 (10):1555-1558.
    [104]Yang, L.; Wu, L.; Wu, M., et al., High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique. Electrochemistry Communications 2010,12(7):1000-1003.
    [105]Yohannes, T.; Inganas, O., Photoelectrochemical studies of the junction between poly 3-(4-octylphenyl)thiophene and a redox polymer electrolyte. Solar Energy Materials and Solar Cells 1998,51 (2):193-202.
    [106]Kanciurzewska, A.; Dobruchowska, E.; Baranzahi, A., et al., Study on Poly (3,4-ethylene dioxythiophene)-Poly(styrenesulfonate) as a plastic counter electrode in dye sensitized solar cells. Journal of Optoelectron and Advanced Materials 2007, 9 (4):1052-1059.
    [107]Chen, Y.; Kang, K. S.; Han, K. J., et al., Enhanced optical and electrical properties of PEDOT:PSS films by the addition of MWCNT-sorbitol. Synthetic Metals 2009, 159(17-18):1701-1704.
    [108]Saito, Y.; Kubo, W.; Kitamura, T., et al., I-/I-3(-) redox reaction behavior on poly (3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A-Chemistry 2004,164 (1-3):153-157.
    [109]Gregg, B. A.; Pichot, F.; Ferrere, S., et al., Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. Journal of Physical Chemistry B 2001,105 (7):1422-1429.
    [110]Xia, J.; Masaki, N.; Jiang, K., et al., The influence of doping ions on poly(3,4-ethylenedioxythiophene) as a counter electrode of a dye-sensitized solar cell. Journal of Materials Chemistry 2007,17 (27):2845-2850.
    [111]Lee, K. M.; Hsu, C. Y.; Chen, P.-Y, et al., Highly porous PProDOT-Et-2 film as counter electrode for plastic dye-sensitized solar cells. Physical Chemistry Chemical Physics 2009,11 (18):3375-3379.
    [112]Lee, K.-M.; Chen, P.-Y.; Hsu, C.-Y., et al., A high-performance counter electrode based on poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells. Journal of Power Sources 2009,188 (1):313-318.
    [113]Shibata, Y.; Kato, T.; Kado, T., et al., Quasi-solid dye sensitised solar cells filled with ionic liquid-increase in efficiencies by specific interaction between conductive polymers and gelators. Chemical Communication 2003, (21): 2730-2731.
    [114]Chen, J. G.; Wei, H. Y.; Ho, K. C., Using modified poly(3,4-ethylene dioxy- thiophene):Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2007,91 (15-16):1472-1477.
    [115]Pringle, J. M.; Armel, V.; MacFarlane, D. R., Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chemical Communication 2010,46 (29): 5367-5369.
    [116]Li, Q.; Wu, J.; Tang, Q., et al., Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications 2008,10 (9):1299-1302.
    [117]Tai, Q.; Chen, B.; Guo, F., et al., In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells. ACS NANO 2011,5 (5): 3795-3799.
    [118]Xia, J.; Chen, L.; Yanagida, S., Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry 2011,21 (12): 4644-4649.
    [119]Wu, J.; Li, Q.; Fan, L., et al., High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. Journal of Power Sources 2008,181 (1): 172-176.
    [120]Jeon, S. S.; Kim, C.; Ko, J., et al., Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry 2011,21 (22):8146-8151.
    [121]Wang, M.; Anghel, A. M.; Marsan, B., et al., CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009,131 (44):15976.
    [122]Lin, J.-Y.; Liao, J.-H.; Wei, T.-C., Honeycomb-like CoS Counter Electrodes for Transparent Dye-Sensitized Solar Cells. Electrochemical and Solid State Letters 2011,14(4):D41-D44.
    [123]Jiang, Q. W.; Li, G. R.; Gao, X. P., Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. Chemical Communication 2009, (44): 6720-6722.
    [124]Yoo, B.; Kim, K.-J.; Kim, Y. H., et al., Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell. Journal of Materials Chemistry 2011, 21 (9):3077-3084.
    [125]Ko, A. R.; Oh, J.-K.; Lee, Y.-W., et al., Characterizations of tungsten carbide as a non-Pt counter electrode in dye-sensitized solar cells. Materials Letters 2011,65 (14):2220-2223.
    [126]Levy, R. B.; Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973,181 (4099):547-549.
    [127]Jang, J. S.; Ham, D. J.; Ramasamy, E., et al., Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells. Chemical Communication 2010,46 (45):8600-8602.
    [128]Wu, M.; Lin, X.; Hagfeldt, A., et al., Low-Cost Molybdenum Carbide and Tungsten Carbide Counter Electrodes for Dye-Sensitized Solar Cells. Angew Chemime International Edition 2011,50 (15):3520-3524.
    [129]Wu, M.; Zhang, Q.; Xiao, J., et al., Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells. Journal of Materials Chemistry 2011,21 (29):10761-10766.
    [130]Wang, L.; Wu, M.; Gao, Y., et al., Highly catalytic counter electrodes for organic redox couple of thiolate/disulfide in dye-sensitized solar cells. Applied Physics Letters2011,98 (22):221102-5.
    [131]Zion, T.; Menny, S.; Idan, H., et al., PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. Journal of Physical Chemistry C 2011, 115 (13):6162-6166.
    [132]Zhang, Q.; Zhang, Y.; Huang, S., et al., Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communinations 2010,12 (2):327-330.
    [133]Gratzel, M., Recent advances in mesoscopic solar cells. Wuhan, China,2013,04,24
    [134]Rhee, S. W.; Veerappan, G.; Bojan, K., Sub-micrometer-sized Graphite As a Conducting and Catalytic Counter Electrode for Dye-sensitized Solar Cells. Acs Applied Materials & Interfaces 2011,3 (3):857-862.
    [135]Hagfeldt, A.; Boschloo, G.; Sun, L., et al., Dye-Sensitized Solar Cells. Chemical Reviews 2010,110 (11):6595-6663.
    [136]Han, L.; Koide, N.; Chiba, Y, et al., Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters2004,84 (13):2433-2435.
    [137]Li, G S.; Li, L. P.; Boerio-Goates, J., et al., High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. Journal of the American Chemical Society 2005,127 (24):8659-8666.
    [138]Pozio, A.; De Francesco, M.; Cemmi, A., et al., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources 2002,105 (1):13-19.
    [139]Fournier, J.; Faubert, G.; Tilquin, J. Y., et al., High-performance, low Pt content catalysts for the electrorecluction of oxygen in polymer-electrolyte fuel cells. Journal of Electrochemical Society 1997,144 (146):145-154.
    [140]Zoltowski, P., On the electrical capacitance of interfaces exhibiting constant phase element behaviour. Journal of Electroanalytical Chemistry 1998,443 (1):149-154.
    [141]Perez, J.; Gonzalez, E. R.; Ticianelli, E. A., Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochimica Acta 1998,44 (1329): 1329-1339.
    [142]Ticianelli, E. A.; Beery, J. G.; Srinivasan, S., Dependence of performance of solid polymer electrolyte full-cells with low platinum loading on morphological-characteristics of the electrodes. Journal of Applied Electrochemistry 1991,21 (597):597-605.
    [143]Daeneke, T.; Kwon, T. H.; Holmes, A. B., et al., High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chemistry 2011,3 (3): 211-215.
    [144]Hamann, T. W.; Ondersma, J. W., Dye-sensitized solar cell redox shuttles. Energy & Environmental Science 2011,4 (2):370-381.
    [145]Wang, M.; Chamberland, N.; Breau, L., et al., An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry 2010,2 (5): 385-389.
    [146]Li, D.; Li, H.; Luo, Y., et al., Non-Corrosive, Non-Absorbing Organic Redox Couple for Dye-Sensitized Solar Cells. Advanced Functional Matererials 2010,20 (19):3358-3365.
    [147]Tian, H.; Yu, Z.; Hagfeldt, A., et al., Organic Redox Couples and Organic Counter Electrode for Efficient Organic Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2011,133 (24):9413-9422.
    [148]Tian, H.; Gabrielsson, E.; Yu, Z., et al., A thiolate/disulfide ionic liquid electrolyte for organic dye-sensitized solar cells based on Pt-free counter electrodes. Chemical Communication 2011,47 (36):10124-10126.
    [149]Tian, H.; Jiang, X.; Yu, Z., et al., Efficient Organic-Dye-Sensitized Solar Cells Based on an Iodine-Free Electrolyte. Angew Chemime International Edition 2010, 49 (40):7328-7331.
    [150]Wu, M.; Lin, X.; Wang, Y, et al., Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2012,134 (7):3419-3428.
    [151]Wu, H.; Lv, Z.; Chu, Z., et al., Graphite and platinum's catalytic selectivity for disulfide/thiolate (T2-/T-) and triiodide/iodide (I3-/I). Journal of Materials Chemistry 2011,21 (38):14815-14820.
    [152]Lu, P.; Feng, Y. Y.; Zhang, X. Q., et al., Recent progresses in application of functionalized graphene sheets. Science China Technological Sciences 2010,53 (9): 2311-2319.
    [153]Acik, M.; Lee, G.; Mattevi, C., et al., Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nature Materials 2010,9 (10):840-845.
    [154]Liu, L.; Ryu, S.; Tomasik, M. R., et al., Graphene oxidation:Thickness-dependent etching and strong chemical doping. Nano Letters 2008,8 (7):1965-1970.
    [155]Xia, Y N.; Yang, P. D.; Sun, Y. G, et al., One-dimensional nanostructures:Synthesis, characterization, and applications. Advanced Materials 2003,15 (5):353-389.
    [156]Vickery, J. L.; Patil, A. J.; Mann, S., Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures. Advanced Materials 2009,21 (21):2180-2183.
    [157]Zhan, D.; Ni, Z.; Chen, W, et al., Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011,49 (4):1362-1366.
    [158]Matyba, P.; Yamaguchi, H.; Eda, G, et al., Graphene and Mobile Ions:The Key to All-Plastic, Solution-Processed Light-Emitting Devices. ACS NANO 2010,4 (2): 637-642.
    [159]Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochimica Acta 2001, (46): 3457-3466.
    [160]Wang, X.; Xu, J.; Zhang, B., et al., Signature of intrinsic high-temperature ferromagnetism in cobalt-doped zinc oxide nanocrystals. Advanced Materials 2006, 18 (18):2476-2479.
    [161]Bezerra, C. W. B.; Zhang, L.; Lee, K., et al., A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochimica Acta 2008,53 (15): 4937-4951.
    [162]Qin, H. Y.; Liu, Z. X.; Yin, W. X., et al., A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell. Journal of Power Sources 2008,185 (2): 909-912.
    [163]Gasteiger, H. A.; Markovic, N. M., Just a Dream-or Future Reality? Science 2009, 324 (5923):48-49.
    [164]Lee, K.; Zhang, L.; Lui, H., et al., Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. Electrochimica Acta 2009,54 (20):4704-4711.
    [165]Millan, W. M.; Smit, M. A., Study of Electrocatalysts for Oxygen Reduction Based on Electroconducting Polymer and Nickel. Journal of Applied Polymer Science 2009,112 (5):2959-2967.
    [166]Bashyam, R.; Zelenay, P., A class of non-precious metal composite catalysts for fuel cells. Nature 2006,443 (7107):63-66.
    [167]Millan, W. M.; Thompson, T. T.; Arriaga, L. G., et al., Characterization of composite materials of electroconductive polymer and cobalt as electrocatalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy 2009,34 (2):694-702.
    [168]Shi, Z.; Liu, H.; Lee, K., et al., Theoretical Study of Possible Active Site Structures in Cobalt-Polypyrrole Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C 2011,115 (33):16672-16680.
    [169]Wu, G.; More, K. L.; Johnston, C. M., et al., High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011,332 (6028):443-447.
    [170]Ito, S.; Murakami, T. N.; Comte, P., et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008,516 (14):4613-4619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700