部分还原MnO_2和改性MnO的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Preparation of Partly Reduced MnO_2 and Modified MnO and Their Electrochemical Performance
  • 作者:张春霞
  • 论文级别:硕士
  • 学科专业名称:物理化学
  • 学位年度:2001
  • 导师:夏熙
  • 学科代码:070304
  • 学位授予单位:新疆大学
摘要
可充碱锰电池以其价格便宜,容量大,贮存性能良好等优点受到普遍
    关注,但其循环寿命低.由于稀土元素可以作为贮氢电极的材料,且我国
    的稀土资源丰富,因此考虑以MH电极代替碱锰电池中的Zn电极,以提
    高其性能.在这方面己经进行的工作证实其是可行的.但MH/MnO_2电池
    存在一个问题,即MH与MnO_2的充放电态不匹配.因此,我们制备了一
    些化合价低于4 的锰氧化物,以期其能与MH 组成电池,以解决充放电
    态不匹配的问题.本文的主要工作:
     1)在水相和有机相中分别用搅拌和超声等不同条件下,对 1.C.No1EMD
    进行部分还原.并对还原产物进行了XRD,TEM,红外光谱等测试以及
    氧化度测定,结果表明,超声在水相还原中具有加快反应速度、引起产物
    晶型改变的作用.
     2)对还原产物进行了充放电,循环伏安,扩散系数的测定等电化学
    性能研究,结果表明:部分还原样以及掺了Ni(OH)_2的部分还原样作为电
    极活性材料,其累积放电容量均高于普通的1.C.No1EMD及其掺Ni(OH)_2
    的累积放电容量.在每一周充放后的质子扩散系数的测定结果证实了采用
    部分还原样以及掺Ni(OH)_2的样品电极在充放过程中,质子扩散系数并不
    减小,电极的可逆性提高,同时也证实了Ni(OH)_2在电极的放电区间内能
    有效抑制Mn_3O_4的形成.
     3)在氮气保护下,对固相合成的 MnC_2O_4及掺杂的 MnC_2O_4和MnCO_3
    进行热分解,以期得到MnO 和改性的MnO.对样品进行了热重/差热,
    XRD,TEM,溶解度等测定,证明产物确为MnO.由固相合成的产物作
    为前驱体热分解得到的样品粒径均匀,团聚较小.溶解度的测定结果表明
    MnO在KOH中的溶解度随碱液浓度的增大而增大.
     I
     4
    
     4)对热分解产物进行了充放电,循环伏安,恒电流极化,Tafe]曲线
    分析,交流阻抗分析,得出未掺杂的MnO直接作为电极活性材料,其电
    化学活性很差,但通过掺BI,Ph进行改性,提高了其可充性,*1 的影
    响主要在于第二电子放电,Ph则可以延长第一电于放电.通过动力学的
    研究发现,在掺Bi的MnO在充电过程,电化学极化为主要的控制步骤.
Alkaline manganese rechargeable batteries are. attractive because of their low cost, high capacity and long shelf life. However, they have the disadvantage of short cycle-life. On the other hand, there is abundant of rare earth in our country that can be used as storing hydrogen materials. Therefore, it is considered that Zn anode is replaced by MH electrode in alkaline manganese battery to improve its performance. Some work have been done and testified its feasibility. However, the main obstacle of investigation of MH/MnO2 batteries is the mismatched states of discharge and charge of cathode and anode, i.e. MnO2 is in the state of charge, while MH is in the state of discharge. Therefore, some manganese oxides were prepared that the valence of manganese is lower than four. It is expected that the obstacle of mismatched state could be overcome by assembling these manganese oxides used as cathode with MH electrode.
    The following items have been done:
    1) I.C.No 1 HMD were partly reduced under different conditions, such as stirring in aqueous and organic environment and ultrasound in aqueous and organic environment respectively. The reduced samples were characterized by oxidation degree analysis, X-ray diffraction, IR spectrum and TEM technique. Some conclusions can be drawn that in aqueous reduction, ultrasound can accelerate the reduction and plays a role as catalyst to change the crystallgraphic form of products.
    2) The electrochemical performance of reduced samples was studied by constant-current charge-discharge, cyclic-voltammetry and potentiastatic
    
    
    
    pulse technique. The accumulative discharge capacity of partly reduced samples and these samples added proper amount of nickel hydroxide are lager than the capacity of I.C.NolEMD added nickel hydroxide. The results of measuring H+ diffusion coefficient of each charge-discharge cycle show that the coefficient of the sample electrode and the sample electrode added Ni(OH)2 do not decrease with the cycles. Therefore, the reversibility of electrode is improved. Meanwhile, it is confirmed that Ni(OH)2 can reduce the formation of inactive Mn3O4.
    3) MnO and modified MnO were prepared under nitrogen atmosphere by thermally decomposition of MnC2O4 and doped MnC2O4 and MnCO3 synthesized by solid-state reaction respectively. Samples were characterized by TG/DTA, X-ray diffraction, TEM and measurement of solubility. The particle size of sample is well distributed and the cluster decreases. The solubility of MnO in KOH increases with the concentration of KOH.
    4) The samples were studied by galvanistatic charge-discharge, cyclic-voltammetry, constant current polarization. The results show that MnO which not be modified can not be use as electrode active materials because of its poor electrochemical activity. Meanwhile, the rechargeabilify of MnO modified by Bi and Pb is improved. Bismuth could prolong the second electron equivalent discharge and Lead could improve the first electron equivalent discharge performance. It is concluded by kinetic study that the electrochemical polarization is the controlled step in the charge process of MnO doped with Bismuth.
引文
1.张翠芳,贾铮,钟潮盛,可充碱锰电池的研制,电池,1998,28;2
    2.Y.F. Yao, N. Gupta, H. S. Wroblowa, Rechargeable Manganese Oxides Part I: Chemically Modified Materials, J. Eiectroanal. Chem., 1987, 223:107
    3.Z. Guo and X. Xia, Performance Improvement of a MH/MnO_2 Rechargeable Battery, J. Appl. Eelectrochem, 1999, 29:1417
    4.X. Xia and Z. Guo, Studies on a Novel Secondary Battery: MH/MnO_2 Rechargeable Battery Ⅱ: Characteristics of the MnO_2 Cathode, J. Electrochem.Soc.,1997, 144 : L213
    5.陈寿椿,重要的无机化学反应,上海:上海科技出版社,1982
    6.北京师范大学等编,无机化学,北京:高等教育出版社,1987
    7.Leblane, Wehner,Z. Physik. Chem.,1933, 29:A168
    8.W.C. Vosburgh, The Manganese Dioxide Electrode, J. Electrochem. Soc.,1959, 106:839
    9.福日雅太郎,电化,1959, 27: 204,
    10.T. E. Moore, Marytinn Ellis and D. W. Selwood, Solid Oxides and Hydroxides of Manganese, J. Am. Chem. Soc., 1950, 72:856
    11.H. S. Taylo and N. Thon, Kinetics of Chemisorption, J. Am. Chem. Soc., 1952,74:4169
    12.小林晴夫,柴田俊夫,触媒,1962,4:81
    13.W. A. Whitesell and T. C. W. Frazer, Manganese Dioxide in the Catalytic Oxidation of Carbon Monoxide, J. Am. Chem. Soc., 1923 , 45:2841
    14.舒东,夏熙,改性电解锰制备及可充性研究,电池,1993,23(2):51,
    15.李伟善,江琳才,Ag(Ⅰ)电解催化Mn(Ⅱ)制备MnO_2的研究(Ⅰ)—产品MnO_2的合成,电池,1988,18(6):23
    
    
    16.李伟善,何兆铭,江琳才,Ag(Ⅰ)电解催化Mn(Ⅱ)制备MnO_2的研究(Ⅰ)—产品Mn02的放电性能,电池,1989,19(1):10
    17.翟庆洲,裘式纶,肖丰收,张宗涛,邵长路,纳米材料的研究进展Ⅰ——纳米材料结构与化学性质,化学研究与进展,1998,10:342
    18.王宝辉,王德军,崔毅;CdS超微粒子薄膜电极的光电化学特性,高等学校化学学报,1995,16:1610
    19.沈耀春,陆祖宏,韦钰,TiO_2超微粒的光电化学特性,科学通报,1994,39:2238
    20.S. Bach and M. Herry, Sol-Gel Synthesis of Manganese Oxides, J. Solid State Chem., 1990, 88:325
    21.门玲,夏熙,溶胶凝胶法制备纳米级MnO_2及其性能,电池,1997,27:205
    22.刘玲,夏熙,纳米电极材料的制备及其电化学性质研究(Ⅲ)—微乳液中通氧气制备MnO_2及其性能,电化学,1998,4:328
    23.夏熙,刘玲,微乳法制备MnO_2及其性能,电池,1998,28:147,
    24.李娟,夏熙,李清文,纳米MnO_2的固相合成及其电化学性能的研究(Ⅰ)—纳米γ-MnO_2的合成及表征,高等学校化学学报,1999,20:1434
    25.李娟,李清文,夏熙,纳米MnO_2的固相合成及其电化学性能的研究(Ⅰ)—纳米α-MnO_2的合成及表征,应用化学,1999,16:103
    26.C. Tsang, J Kin. and A. Manthiram, Synthesis of Manganese Oxides by Reduction of KMnO_4 with KBH_4 in Aqueous Solutions, J. Solid State Chem.,1998, 137:28
    27.尾崎萃,田丸谦二,田部清三,西村重夫编,催化剂手册,北京:化学工业出版社1982,511
    
    
    28. A. Kandelaki, Sh. Loriya, D. Ya, Izv. Vyssh, Vchem, Zared,. Electrical Conductivity of Manganese-ore Catalysts for Petroleum Demetalation, Meft. Gaz., 1982,25:91
    29. Yamanato, Naoichi, Higashi, Shinnosuke, Funtai. Oyobi, Studies on the Formation of Some Oxides of. Manganese in the Mn7+-Mn2+-OH-System with Hydrothermal Method, Funmatsuyakim, 1983, 30: 321
    30. J. A. Tareen, K. Basaralingu, B. J. Kutty, T. R. N. Bhardge, G. T. Boc., Int. Symp. Hyohotherm. Reaction 1st 1982, (pub1983) , 649
    31. 李小玉,牟季美,张立德,纳米MnO的光吸收谱,科学通报,1995,40:1261,
    32. Xi Xia, Hong Zhang and Zhen Hai Chen, The Study of Semiconduction Properties of y-MnO2 with Different Degrees of Reduction, J. Electochem. Soc., 1989, 136:266
    33. W. C. Maskeu, J. E. A Shaw and F. L. Tye, Manganese Dioxide Electrode, Electrochim. Acta, 1981, 26: 1403
    34. J. P. Gabano and B. Morignant, The Electrochemical and Chemical Reduction ofγ-and α-Manganese Dioxide, Eletrochem. Tech., 1967,5: 531
    35. J. P. Gabano, B. Morignat, E.Fialdes, B. Emery and J. F. Laurent, Etude de la Reduction Chimque du Bioxyde de manganese γ , Z. Phys. Chem., 1965,46:359
    36. W. Feiknecht, H. R. Oswald, U. F. Steinmanm, uber Die topochemische einphsige Reduction von γ-MnO2, Helv. Chim. Acta, 1960, 43: 1947
    37. R. Giovanoli, K. Bernhard and W. Feitkeeht, Helv. Chim. Acta, 1968, 51:355
    38. Bode H., A. Schmier and D. Berndt, Z. Electrochem., 1965,68: 106
    39. Giovanol. R., Feitknecht. W. and Fischer. F., Helv. Chim. Acta, 1971, 54: 1112
    40. F. Jean, C. Cachet, L. T. Yu, A.Learf and A. Quivy, Structure Changes Induced
    
    by Chemical Reduction of Various MnO2 species, J. Appl. Electrochem., 1997, 27:635
    41. S. Donne, R. Fredlein, G. Lawance, D. A. J. Swinkds and F. L. Tye, Chemical Reduction and Characterization of 6-MnO2, Prog. Batteries & Battery Mater., 1994,13: 113,
    42. E. D. Gehain, D. C. Piequet, C. J. Spears and F. L. Tye, Progress H-insertion into Cryptomelane, Batteries & Battery Mater., 1994,13: 62
    43. T. Ohzuku and T. Hirai, XRD and IR Studies on MnO2/MnOOH Systems, Proc. of the Symp On Manganese Dioxide Electrode Theory and Practice for Eletrochem Application. Eds. Sehumm. B. Tr. Etal. Pennington: The Electrochem. Soc., 1985, 85-4: 141
    44. N. C. Cahoon and M. P. Korve, The Cathodic Reduction of Manganese Dioxide in Alkaline Electrolyte, J. Electochem. Soc, 1959,106: 745
    45. A. Kozawa. J.F.Yeager., The Cathodic Reduction of Electrolytic Manganese Dioxide in Alkaline Electrode, J. Electochem. Soc., 1965, 112: 959
    46. A. Kozawa. and R. A. Powers, The Manganese Dioxide Electrode in Alkaline Electrolyte: The Electron Proton Mechanism for the Discharge Process from MnO2to MnO1. 5, J. Electochem. Soc., 1966 , 113: 870
    47. G. S. Bell and R. Huber, On the Cathodic Reduction of Manganese Dioxide in Alkaline Electrolyte, J. Electrochem. Soc., 1964, 111:1
    48. A. Kozana and J. F. Yeager, Cathodic Reduction Mechanism of MnOOH to in Alkaline Electrolyte, J. Electrochem. Soc., 1968, 115: 1003
    49. J. Mebreen, The XRD and Cyclic Voltammetry studies on the Reduction of MnO2, J. Power Sources, 15, 525, 1974
    50. J. Mebreen, The Electrochemistry of bbbbbb-MnO2 and γ-MnO2 in Alkaline
    
    Electrolyte, Electrochim. Acta., 1975, 20:22
    51.J. Mebreen and W. E.O. Grady, J. Power Soures, 1988, 22:323
    52.Do Kun Cha and Su- Moon Park, Electrochemical Oxidation of Mn(OH)_2 in Alkaline Media, J. Electrochem. Soc., 1997, 144:2573
    53.W. Scott, Donne, A. Geoffrey, Laurance, A. J. Swinkels, Redox Processes of the Manganese Dioxide Electrode Ⅱ. Slow-Scan Cyclic Voltammetry, J.Electrochem. Soc., 1997, 144:2954
    54.W. Scott, Donne, A. Geoffrey, Laurance, A. J, Swinkels, Redox Processes of the Manganese Dioxide Electrode Ⅲ. Detection of Soluble and Solid Intermediates During Reduction, J. Electrochem. Soc., 1997, 144:2961
    55.张胜利,宋文顺,夏同驰,电解二氧化锰在碱液中的可逆性,电池,1992,22:9
    56.刘澧甫,于爱琼,可充碱锰电池进展,电池,1991,21:1
    57.M. Bode, C. Cachet, S. Bach, J. P. Pereira. Ramos, J. C. Ginoux and L. T. Yu, Rechargeability of MnO_2 in KOH Media Produced by Decomposition of Dissolved KMnO_4 and Bi(NO_3)_3 MixturesⅠ. Mn-Bi Complex, J. Electrochem.Soc., 1997, 144:792
    58.L.T. Yu, Rechargeability of MnO_2 in KOH Media Produced by Decomposition of Dissolved KMnO_4 and Bi(NO_3)_3 MixturesⅡ. A Reaction Viewpoint on the Role of Bi, J. Electrochem. Soc., 1997, 144:802
    59.W. Scott, Donne, A. L. Geoffrey, and A. Dom, J. Swinkels, Redox Process at the Manganese Dioxide ElectrodeⅠ. Constant-Current Intermittent Discharge,J. Electrochem. Soc., 1997, 144:2949
    60.D. Y. Qu, B. E. Conway, L. Bai, Y. H. Zhou and W. A. Adams, Role of Dissolution of Mn(Ⅲ) species in Discharge and Recharge of Chemically-Modified MnO_2 Battery Cathode Materials, J.Appl. Eletrochem, 1993, 23:693
    
    
    61.D. Y. Qu, L. Bai, C. G. Castledine, B. E. Conuay and W. A. Adaws, Spectro-electrochemical Studies on Production and Role of Soluble Mn(Ⅲ) species in Discharge and Recharge of Various MnO_2 Cathode Materials, J. Electroanai.Chem., 1994, 365:247
    62.Xi Xia and Qing Wen Li, Study of the Reaction Mechanism of Physically Modified Rechargeable MnO_2 Electrode, Progress in Batteries & Battery Mater., 1993,12:36
    63.李清文,新疆大学硕士论文
    64.夏定同,汪夏燕,刘涛,二氧化锰掺杂改性的EXAFS研究,化学学报,2000,58:795
    65.G. S. Bell and R. Huber, The Cathodic Reduction of Manganese Dioxide in Alkaline Solution, Electrochim. Acta, 1965, 10:509
    66.K. Kordesch, J. Gsellmann, M. Peri, K. Tomantschger and R. Chemelli, The Rechargeability of Manganese Dioxide in Alkaline Electrolyte, Electrochim. Acta, 1981, 26:1495
    67.D. Boden, C. J. Venuto, D. Wisler and R. B. Wylie, The Alkaline Manganese Dioxide Electrode, J. Electrochem Soc., 1967, 114:415
    68.N.C. Ghoon, Primary Batteries. Vol Ⅱ, John-Wiley,68, 1976
    69.S.B. Kanungo, K. M. Parda and B. R. Sant, Studies on MnO_2-Ⅱ Relationship Between Physicochemical Properties and Electrochemical Activity of Some Synthetic of Different Crystallographic Form, Electrochim. Acta, 1981, 26:1147
    70.B.Julio, Fernandes, D. B. Desai and V. N. Kamat Dalai, Electrochim. Acta,1983, 28:187
    
    
    71. Qi Fang, Hirofumi Kanoh and kento Ooi, Synthesis of Hollandite-type Manganese Dioxide With H+ Form for Lithium Rechargeable Battery, J. Electrochem. Soc., 1994, 141: L135
    72. C. S. Johnson, M. F. Mansuetto and M. M. Thackeray, Stabilized Alpha-MnO2 Electrodes for Rechargeable Lithium Batteries, J. Electrochem. Soc., 1997, 144:2279
    73. T. Ohzuku, M. Kitagwa, K. Sawai and T. Hirai Topotactu, Reaction of Alpha-Manganese (Di)oxide in Nonaqueous Lithium Cells, J. Electrochem. Soc., 1991, 138:360
    74. A. Kozawa and W. C. Vosbugn, The Relation of the Conditions of Electrodeposition of Manganese Dioxide to the Discharge Characteristics, J. Electrochem. Soc., 1959, 106: 839
    75. A. Trarusko, Investigation of Manganese Dioxide I . Water Content, J. Electrochem Soc., 1964, 111: 125
    76. K. Huber and A. Schmier, Electrochim. Acta, 1960, 3:127
    77. K.V.Kordesch 主编,夏熙等译,电池组 第一卷:二氧化锰,北京:轻 工业出版社,1981
    78. R. Ilangova, Tran. Saest.. 22, 68, 1981
    79. H. Y. Kang and C. C. Liang, On the Rechargeability of the Manganese Dioxide Electrode, Electrochim. Acta, 1968, 13:277
    80. A. Kozawa, T. Kalnoki-Kis and J. F. Yeager, The Solubility of Oxygen in Molten Carbonates, J. Electrochem. Soc., 1966, 113: 405
    81. K. Kordesch, Proc. Elctrochem. Soc., 1984, 84-14:323
    82. B. Sajdc, K. Micka and P. Kvtii, Study of the Rechargeable Manganese Dioxide Electrode, Electrochim. Acta, 1995, 40:2005
    
    
    83.P. Ruetschi, R. Giovanoli, Cation Vancancies in MnO_2 and Their Influence on Electrochemical Reactivity, J. Electrochem. Soc., 1988, 135:2663
    84.P. Ruetschi, S. A. Loclande J., Influence of Cation Vacancies on the Electrode Potential of MnO_2, Electrochem. Soc., 1988, 135:2657
    85.A. Kozawa and W. C. Vosbargh, The Solubility of the Conditions of Electrodeposition of Manganese Dioxide to the Discharge Characteristics, J.Electrochem. Soc., 1958, 105:59
    86.H. S.Wroblowa and N. Gupta, Rechargeable Manganese Oxide Electrodes Part Ⅱ. Physically Modified Materials, J. Electroanal. Chem., 1987, 238:93
    87.N. A.Dzieeiuch, N. Gupta and H. S. Wroblowa, Rechargeable Cells With Modified MnO_2 Cathodes, J. Electrochem. Soc., 1988,135:2416
    88.C. G.Casthedine and B. E. Connway, Effects of Electrochemically incorporated Bismuth on the Discharge and Recharge of Electrodeposited Manganese Dioxide Films in 9M Aqueous KOH, J. Appl. Electrochem.,1995, 25:707
    89.袁国辉,褚德威,申日辉,潘宏伟,张翠芬,改性电解二氧化锰,电化学,1995,1:446
    90.夏熙,可充碱锰电池发展与展望,电池,1994,24:78
    91.Andersen and M Janet. Berry, Use of Hydroquinone to Precondition Manganese Dioxide for use in Rechargeable Electrochemical Cells, C. S. Pat, 5, 312, 457
    92.马永敬,锂锰电池的现状和改进意见,电池,1992,22:25
    93.K.Kordesch,沈玉伟,碱性锌锰可充电池技术进展,电池,1995,25:1
    94.郭再萍,刘洪涛,夏熙,粘结剂对可充二氧化锰电极性能影响电池,1998,28:195
    
    
    95.W. T. Richards and A. L. Loomis, The Chemical Effects of High Frequency Sound Waves I. A Preliminary Survey, J. Am. Chem. Soc., 1927, 49:3086
    96.冯若,超声手册,南京:南京大学出版社,1999
    97.T.J. Mason J. P. Walton and D. J. Lorimer, Ultrasonics, 1990, 28:333
    98.T.J. mason J. P. Walton and D. J. Lorimer, Ultrasonics, 1990, 28:251
    99.K. S. Swslick and D. A. Hammerton. The Sonochemical Hot Spot, J. Am. Chem. Soc., 1986, 108:5641
    100.D. J. Donaldson, M. D. Farrington and Kruus D. Cavitation., Induced Polymerization of Nitrobenzene, J. Phys. Chem., 1979, 83:3130
    101.E. J. Hart, Ch-H Fischer and A. Hengltin, Isotopic Exchange in the Sonolysis of Aqueous Solutions Contaning (14.14)~N_2 and (15.15)~N_2, J. Phys. Chem., 1986, 90:5989
    102.F. O. Schmitt, C. H. Johnson and R. A. Olgon, Oxidations Promoted by Ultrasonic Radiation, J. Am. Chem. Soc., 1929, 51:370
    103.P. Riesz, D. Berdahl and C. L. Christaman Envion.. Health Perspect, 1985, 61: 233
    104.K. S. Suslick, P. F. Schubert and J. W. Goodale, Sonochemistry and Sonocatalysis of lron Carbonyls, J. Am. Chem. Soc., 1981, 103:7342
    105.K. S. Suslick, S. B. Choe, A. A. Chichavlas and M. W. Griustaff, Nature, 1991, 353:414
    106.D. Y. Qu, The Feasibility of Using a Rechargeable MnO_2 Cathod With a Metal Hydride Anode, J. Appl. Electrochem., 1999, 29:511
    107.藤屿昭,相泽益男,井上微著,陈震,姚建年泽,电化学测定方法,北京:北京大学出版社,1995
    108.刘永辉,电化学测试技术,北京:北京航空学院出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700