醌胺聚合物的合成及其电化学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醌胺聚合物(PAQ)是一类新型功能高分子材料。本文在总结了国内外PAQ的研究现状和发展趋势的基础上,对PAQ的溶液聚合法和微波固相合成法及其电化学性能进行了研究。
     应用溶液聚合法由对苯醌与邻苯二胺、对苯二胺、联苯胺和己二胺反应,合成了四种不同结构的PAQ。采用单因素实验和正交实验的方法,考察了原料配比、氧化剂用量、溶剂用量、反应温度和时间对聚合转化率和产物特性粘度的影响,获得了优化的反应条件。如对苯醌与对苯二胺反应的最佳条件为:对苯醌:对苯二胺=3:1(mol),氧化剂FeCl_3用量为3 mol/mol对苯二胺,四氢呋喃溶剂用量为12 mL/0.01mol原料,反应温度70℃,反应时间3 h。在此条件下,转化率达到99.3%。为改善溶液聚合法工艺复杂、成本较高等问题,采用微波辐射的方法进行醌胺固相聚合,研究了微波照射的功率、时间和方式对反应的影响,探讨了聚合反应和微波作用的机理。实验结果表明,对苯醌与对苯二胺进行微波聚合的最佳条件为:对苯醌:对苯二胺=1:1(mol),无氧化剂,490 W功率的微波间歇照射共30 min,间隔时间5 min;在此条件下的反应转化率为82.7%。微波固相聚合工艺可以加快反应速度,省去溶剂和氧化剂,并且后处理简单,为PAQ的合成提供了一条简洁、高效、节能的新途径。对聚合产物的结构采用红外、紫外光谱等手段进行表征,还测试了PAQ的溶解性,用热重和差热分析研究了PAQ的热稳定性,并用电子自旋共振波谱测试其电荷转移性能。
     采用循环伏安法、单电极恒流放电和电池恒流充放电等测试手段,研究了对苯醌—对苯二胺聚合产物的电化学性能。结果表明,循环伏安曲线上出现对称的氧化还原峰,在相同的测试条件下,微波法产物相对于溶液法产物电化学活性更强,接受电荷的容量更大,循环稳定性和产品性能的重现性也更好。这表明微波固相法合成的产物在电化学性能方面优于溶液聚合法的产物。对苯醌—对苯二胺聚合物与金属锂组装成的模拟电池的恒流充放电效率最高达92.7%,比容量约为41 mA·h·g~(-1),比能量约为98 mW·h·g~(-1)。因此,对苯醌—对苯二胺聚合物作为二次电池的电极活性材料具有良好的应用潜力。
The researches and developments of quinone-amine polymer as a new functional polymer material were reviewed. The synthesis of quinone-amine polymers was studied by solution polymerization and novel microwave solid-state polymerization and electrochemical properties of quinone-amine polymers were determined.
    Four quinone-amine polymers were prepared by solution polymerization of p-benzoquinone with o-phenylenediamine, p-phenylenediamine, benzidine and 1,6-hexanediamine respectively. By means of single factor and orthogonal experiments, the influences of reaction conditions such as charge ratio, oxidant amount, solvent amount, reaction temperature and reaction time on the conversion and inherent viscosity of the polymers were investigated, which led to the optimized synthesis conditions. The optimal conditions of the reaction between p-benzoquinone (PBQ) and p-phenylenediamine (p-PDA) were as follows: PBQ : p-PDA =3:1 (mol), oxidant amount was 3 mol/mol p-PDA, solvent amount was 12mL/0.01mol reactant, reaction temperature was 70, reaction time was 3 h. Then the solid-state polymerization of quinone and diamine was studied under microwave irradiation, and the effects of microwave power, irradiation time and irradiation manner on the reaction were discussed. The optimal conditions of microwave solid-state polymeriz
    ation between PBQ and p-PDA were that PBQ : p-PDA =1:1 (mol), no oxidant, irradiation time of 490W microwave was 30 min, intermission time was 5 min. The polymerisates were characterized by infrared spectroscopy, ultraviolet spectroscopy and other analytical methods, which showed that the reaction products obtained from solution and by microwave solid-state polymerization were the same, and the solubilities, thermal stabilities and charge transfer properties of these quinone-amine polymers were also determined.
    The electrochemical properties of the polymer synthesized from PBQ and p-PDA were tested by cyclic voltammetry, constant current discharge of single electrode and charge/discharge of lithium battery. The
    
    
    
    polymer obtained by microwave irradiation showed better electrochemical activity, capacity, stability and recurrence than the polymer obtained by solution polymerization did on the same test condition. In addition, the constant current charge/discharge performance and cyclic reversibility of simulative battery composed of the polymer anode and lithium cathode were good. The charge/discharge efficiency was 92.7%, and specific capacity and specific energy were about 41 mA ?h ?g and 98 mW ?h ?g respectively. These make quinone-amine polymer a likely candidate for active electrode material of secondary battery.
引文
[1] Erhan S. Quinone-Diamine Polymers. In: Salamone J C eds. Polymeric Materials Encyclopedia. Boca Raton, Florida: CRC Press, 1996.7311~7321
    [2] Erhan S. Method for Metallization of Plastics Using Poly-diamine-quinone Polymers as a Binder. US, 5284683, 1994-2-8
    [3] Komabashiri T, Tsujinaka M, Mitani T. Method of Preventing Polymer Scale Deposition. US, 4970278, 1990-11-13
    [4] Kaleem K, Chertok F, Erhan S. A Novel Coating Based on Poly(etheramine- quinone) Polymers. Progress in Organic Coatings, 1987, 15:63~71
    [5] Ueda M, Sakai N, Imai Y. Synthesis of Polyaminoquinones by Vinylogous Nucleophilic Substitution Polymerization of 2,5-Disubstituted p-Benzoquinones with Diamines. Makromol Chem, 1979, 180:2813~2818
    [6] Ethan S, Nithianandam V S. Methods for The Preparation of Inherently Metal Binding Poly-amine-quinone Polymers. US, 5606010, 1997-2-25
    [7] Nithianandam V S, Erhan S. Quinone-Amine Polymers:10.Use of Calcium Hypochlorite in the Syntheses of Polyamine-quinone (PAQ) Polymers. Polymer, 1991, 32 (6): 1146~1149
    [8] Schofer W, Aguado A, Sezer U. Oxidative Aminierung von Hydrochinonen. Angew Chem, 1971, 83:441~443
    [9] Nithianandam V S, Erhan S. Quinone-Amine Polymers:18 A Novel Method for the Synthesis of Poly(alkyl aminoquinone)s. Polymer, 1998, 39 (17): 4095~4098
    [10] Nithianandam V S, Erhan S. Quinone Amine Polymers. Ⅸ .Attempts to Synthesize Polyamine-Benzoquinone Polymers Using Air and Oxygen as Oxidizing Agents. Journal of Applied Polymer Science, 1991, 42 (9): 2385~2389
    [11] Nithianandam V S, Kaleem K, Chertok F, et al. Quinone-Amine Polymers. V .Syntheses and Solubilities of Several Diamine-p-Benzoquinone Oligomers (PAQ). Journal of Applied Polymer Science, 1991, 42 (11): 2893~2897
    [12] Reddy T A, Macaione D, Erhan S. Quinone-Amine Polymers.ⅩⅤ. Syntheses and Characterization of High-Temperature Resistant Poly(arylamino-quinone)s.
    
    Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32:1977~1982
    [13] Reddy T A, Erhan S. Quinone-Amine Polymers.Ⅻ. Synthesis and Characterization of Novel Polymers from 2-Phenylbenzoquinone and Aliphatic Diamines. Journal of Polymer Science, Part A: Polymer Chemistry, 1994, 32: 557~565
    [14] Colletti R F, Stewart M J, Taylor A E, et al. 2,5-Dimethoxy- and 2,5-Di-n-Butoxy-1,4-Benzoquinone Reactions and Polymerization with 1,6-Hexane-diamine. Journal of Polymer Science, Part A: Polymer Chemistry, 1991, 29: 1633~1638
    [15] 高南,胡和丰,陆雪芳,等.可溶性醌胺聚合物的合成.应用化学,1998,15(1):50~52
    [16] Singh N B, Singh R J. Solid-State Reaction between p-Phenylenediamine and p-Benzoquinone. Journal of Solid State Chemistry, 1988, 76:375~390
    [17] Phani K L N, Pitchumani S, Muralidharan S, et al. Electrosynthesis of Polyamino-benzoquinone (PAQ) Polymers. J Electroanal Chem, 1993, 353: 315~322
    [18] 吴虹,高南.醌胺聚合反应动力学研究.上海大学学报(自然科学版),1997,3(1):37~43
    [19] Nithianandam V S, Chertok F, Erhan S. Quinone-Amine Polymers.Ⅵ. Syntheses and Solubilities of Several Cooligomers (PAQs) Produced by Reacting Two Diamines with p-Benzoquinone. Journal of Applied Polymer Science, 1991, 42 (11): 2899~2901
    [20] 高南,陆雪芳.含硅醌胺聚合物合成、结构与性能.应用科学学报,1998,16(2):243~248
    [21] Prane J W. Water-displacing Polymers. Adhesives Age, 1994, 37 (8): 59~59
    [22] Mó O, Yáez M, Fernández-Alonso J I. Theoretical Study of Charge-Transfer Complexes. The Journal of Physical Chemistry, 1975, 79 (2): 137~142
    [23] Bie H, Han M, Helms A B, et al. Amine-Quinone Polymers: A New Class of Corrosion Resistant Coatings. Polymer Preprints, 2000, 41 (2): 1780~1781
    [24] Hu Y, Nikles D E, Warren G W. Inhibition of Iron Corrosion by Amine-Quinone and Sulfur-Quinone Polyurethanes. Polymer Preprints, 1999, 40 (2): 691~692
    
    
    [25] Han M, Nikles D E. Amine-Quinone Polyimides. Polymer Preprints, 1999, 40 (2): 849~850
    [26] Nithianandam V S, Chertok F, Erhan S. Quinone-Amine Polymers Ⅷ: Curing Studies on Jeffamine D-400-p-Benzoquinone Polymer. Journal of Coatings Technology, 1991, 63 (796): 47~50
    [27] Nithianandam V S, Chertok F, Erhan S. Quinone-Amine Polymers Ⅶ: Selection of Appropriate Solvent Combinations for Jeffamine D-400-p-Benzoquinone Polymers (PAQ=2:3). Journal of Coatings Technology, 1991, 63 (796): 51~54
    [28] Erhan S. Marine Paint Composition Comprising Quinone/Polyamine Polymer. US, 4981946, 1991-1-1
    [29] Reddy T A, Erhan S. A Study of Coating Properties of Novel Poly (Amino-Quinone)s Prepared from 2-Methylbenzoquinone and 2-Phenyl benzoquinone. Journal of Applied Polymer Science, 1994, 51 (9): 1591~1595
    [30] Kaleem K, Chertok F, Erhan S. Quinone-Amine Polymers. Ⅱ.1,3-Bis (3-Aminophenoxy) benzene-p-Benzoquinone Oligomers. Journal of Polymer Science, Part A: Polymer Chemistry, 1989, 27:865~871
    [31] Kaleem K, Chertok F, Erhan S. A Novel Coating Based on Poly(ether amine-quinone) Polymers. Progress in Organic Coatings, 1987, 15:63~71
    [32] Han M, Bie H, Warren G W, et al. Amine-Quinone Polyimides as Coatings that Protect Iron Against Corrosion. Mat Res Soc Symp, 2000, 629: FF5.17.1~FF5.17.6
    [33] Warren G W, Sharma R, Nikles D E, et al. Amine Quinone Polyurethane Polymers for Improved Performance in Advanced Particulate Media. Journal of Magnetism and Magnetic Materials, 1999, 193:276~278
    [34] 陆雪芳,高南.醌胺聚合物.涂料工业,1997(3):5~6
    [35] Mitani T, Yasui H, Morikawa H. Process for Polymerization of Acrylate or Methacrylate. US, 4517344, 1985-5-14
    [36] Bell J P, Vaideeswaran K, Nikles D E. Quinone-Amine Polyurethanes: Novel Corrosion-Inhibiting Coupling Agents for Bonding Epoxy to Steel. Journal of Adhesion Science and Technology, 1999, 13 (4): 477~499
    [37] Bell J P, Vaideeswaran K, Nikles D E. Quinone-Amine Polyurethanes: New Coupling Agents for the Steel-Epoxy System. Journal of Applied Polymer Science, 2000, 76 (8): 1338~1350
    
    
    [38] Vaideeswaran K, Bell J R Coupling Agents for the Adhesion of Steel to Epoxy. Annual Technical Conference-ANTEC, Conference Proceedings, 1995, 1: 1269~1273
    [39] Hait S B, Nikles D E. Synthesis of Amine-Quinone Polyurethanes with Amine-Quinone Group in the Backbone and Acrylate Group in the Side Chain of the Polymer. Polymer Preprints, 2001, 42 (2): 674~675
    [40] Hait S B, Huh J Y, Nikles D E. Synthesis of Side Chain Amine-Quinone Polyurethanes and their Use to Inhibit the Corrosion of Iron Particles. Polymer Preprints, 2001, 42 (2): 676~677
    [41] Hart M, Bie H, Nikles D E, et al. New Amine-Quinone Polyimides for Protecting Iron against Corrosion. Polymer Preprints, 2000, 41 (2): 1759~1760
    [42] Hu Y, Helms B, Nikles D E, et al. Sulfur-Quinone Polyurethanes and the Protection of Iron against Corrosion. Polymer Preprints, 2000, 41 (2): 1786~1787
    [43] Han M, Nikles D E. Amine-Quinone Polyimides. Journal of Polymer Science, Part A: Polymer Chemistry, 2001, 39 (22): 4044~4049
    [44] Nikles D E, Arroyo J C, Chacko A P, et al. Amine-Quinone Polyurethanes and the Corrosion Protection of Iron. Polymeric Materials Science and Engineering, 1998, 79:78~79
    [45] Han M, Nikles D E. Amine-Quinone Polyurethanes Containing N-Alkylated Amine-Quinone Monomers. Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38 (18): 3284~3292
    [46] Han M, Hu Y, Sharma R, et al. Amine-Quinone Polyurethanes. Polymer Preprints, 2000, 41 (2): 1757~1758
    [47] Han M, Helms A B, Hu Y, et al. Amine-Quinone Polymers and the Protection of Iron Particles against Corrosion. IEEE Transactions on Magnetics, 1999, 35 (5): 2763~2765
    [48] Nikles D E, Warren G W. Corrosion Protection of Iron by Amine-Quinone Polyurethanes. Polymer News, 1998, 23 (7): 223~231
    [49] Han M, Bie H, Nikles D E, et al. Amine-Quinone Polyimide: A New High-Temperature Polymer and its Use to Protect Iron against Corrosion. Journal of Polymer Science, Part A: Polymer Chemistry, 2000, 38 (16): 2893~2899
    [50] Warren G W, Sharma R, Nikles D E, et al. Amine Quinone Polyurethane
    
    Polymers for Improved Performance in Advanced Particulate Media. Journal of Magnetism and Magnetic Materials, 1999, 193 (1-3): 276~278
    [51] Blair E, Nikles J A, Nikles D E, et al. Molecular Structure of the Amine-Quinone Model Compound 2,4-Bis(Dimethylamino)-1,4-Benzoquinone. Polymer Preprints, 2000, 41 (1): 317~318
    [52] Nikles D E, Belmore K A, Liang Jeng-Li. Amine-Quinone Polyurethanes as Binders for Metal Particle Tape: Ⅰ .Preparation of Monomers and Polymers and Polymer Thermal Properties. Polymer Preprints, 1993, 34 (2): 670~671
    [53] 金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社,1999.1~2
    [54] 周其风,胡汗杰.高分子化学.北京:化学工业出版社,2001.58~59
    [55] 何德林,王锡臣.微波技术在聚合反应中的应用研究进展.高分子材料科学与工程,2001,17(1):20~24
    [56] 路建美,朱秀林,朱健,等.马来酸酐的微波固相聚合研究.高分子材料科学与工程,1999,15(1):158~160
    [57] 赵文元,王亦军.功能高分子材料化学.北京:化学工业出版社,1996.36~40
    [58] 万梅香.导电高分子.高分子通报,1999,(3):47~53
    [59] 袁新华,徐红星,魏贤勇,等.芳香族电子导电高分子的应用和进展.高分子材料科学与工程,2001,17(5):25~29
    [60] 殷敬华,莫志深.现代高分子物理学(上册).北京:科学出版社,2001.321~323
    [61] 何天白,胡汉杰.功能高分子与新技术.北京:化学工业出版社,2001.78~79
    [62] 洪啸吟,冯汉保.涂料化学.北京:科学出版社,1997.278~280
    [63] 崔益秀,杨固厂.导电聚合物在锂离子电池中的应用.电子技术参考,2002,2(2):32~36
    [64] 吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2002.275~285
    [65] 马建标,李晨曦.功能高分子材料.北京:化学工业出版社,2000.207~209
    [66] 施良和,胡汉杰.高分子科学的今天与明天.北京:化学工业出版社,1994.54~55
    [67] 林尚安,陆耘,梁兆熙.高分子化学.北京:科学出版社,1998.146~150
    [68] 朱明华.仪器分析(第三版).北京:高等教育出版社,2000.286~287
    [69] 黄量,于德泉.紫外光谱在有机化学中的应用(上册).北京:科学出版社,1988.20~22
    [70] 周伟舫.电化学测量.上海:上海科学技术出版社,1985.342~349
    
    
    [71] 夏玉宇.化验员实用手册.北京:化学工业出版社,1999.684~685
    [72] 李启隆.电分析化学.北京:北京师范大学出版社,1995.221~231
    [73] 查全性.电极过程动力学导论(第三版).北京:科学出版社,2002.368~374
    [74] 姚海军,张校刚,夏熙.纳米TiO_2掺杂MnO_2电极的电化学行为.电池, 2003,33(1):6~7
    [75] 庄楚强,吴亚森.应用数理统计基础.广州:华南理工大学出版社,1999.427~429
    [76] 潘祖仁,孙经武.高分子化学.北京:化学工业出版社,1980.8~9
    [77] 藤嵨昭.电化学测定方法(陈震,姚建年译).北京:北京大学出版社,1995.152~155
    [78] 魏东,吴辉煌.聚邻苯二胺膜电极的性能及其对苯醌还原动力学的影响.高等学校化学学报,1995,16(11):1761~1766
    [79] 唐致远,徐国祥.巯基苯胺聚合物电极材料在锂电池中的应用.应用化学,2002,19(6):548~551
    [80] 崔月芝.有机化合物锂电池的研究综述.山东轻工业学院学报,1999,13(1):25~28
    [81] Tobishima S, Yamaki J, Yamaji A. Cathode Characteristics of Organic Electron Acceptors for Lithium Batteries. J Electrochem Soc, 1984, 131 (1): 57~63
    [82] 李强,钟光祥.锂离子电池及其电解液.浙江化工,2002,33(3):11~12
    [83] 张文保,倪生麟.化学电源导论.上海:上海交通大学出版社,1992.5~6
    [84] 雷永泉,万群,石永康.新能源材料.天津:天津大学出版社,2000.42~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700