锰/钴氧化物超级电容电极材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学电容器,又称超级电容器,作为一种新型的能量存储与转化装置,因为具有高功率,长寿命,高的安全性,及低维护成本等优点,而使其在移动通讯,电动车,电子设备,航空航天等各个领域具有巨大的应用前景。然其较低的能量密度又使得它的应用具有一定的局限性,限制了其取代电池的进程。尤其对于现有的赝电容器,因为在能量存储和释放过程中发生在材料表面的氧化还原反应而造成的相变,使得其能量密度和循环寿命都很有限。因此,如何在保证高功率密度的基础上提高能量密度,平衡成本和性能之间的关系成为科学界的一大挑战。
     过渡族金属氧化物,RuO2,MnO2,NiO,Co3O4,Fe3O4,VOx等,因其相对于碳基材料和导电聚合物材料来说,具有较高的理论比容量和高的能量密度等优势而成为电化学电容器最有潜力的电极材料。在这些电极材料中,虽然氧化钌的性能最好,但其成本很高,所以寻找低成本的可替代品是目前该领域研究的热点。其中,氧化锰、氧化钴因其成本低廉,制备工艺成熟,比电容高等优势吸引了研究者的注意。
     本文正是通过一种工艺简单成本低廉的化学方法,在无定型高导电的网状碳纤维纸上生长纳米级的锰氧化物及钴氧化物,将其作为超级电容器的电极材料,制备得到了具有高性能:高比容量(-1200F/g在1mol/L的硫酸钠电解质溶液中)、高功率、高能量密度、长寿命的超级电容器,并且活性材料的负载量高达0.3~1.4毫克每平方厘米,远高于多数文献报道;同时还实现了对经济成本的控制。
     针对氧化锰电极材料,主要运用同步X射线衍射光谱,扫描电子显微镜,高分辨透射电镜,及原位/非原位的X光吸收近边结构谱等表征技术及密度泛函理论计算,对锰氧化物的能量储存和释放机制进行了研究探讨:纳米级高比表面积的活性材料的使用,大大提高了电容电极的有效表面积;可变价态的金属氧化物的选用,使得利用法拉第反应,即金属元素参与的氧化还原反应,储存释放能量成为可能;各种价态的氧化物共存,对促进了氧元素位周围电子态密度随着充放电而变化有一定的作用。简而言之,活性材料高的比表面积和碳基底高的导电率使所制备的电容器快速充放电成为可能,而物理吸附和金属元素及氧元素共同参与的化学反应储能机制使其高能量密度成为可能,化学制备及退火过程产生的空穴、空位、晶错等缺陷使锰氧化物在数万次的充放电过程保持晶体结构的稳定性(即所谓的长寿命)成为可能。
     同时,我们也对研究比较多的另一种金属氧化物,Co3O4,做了初步的研究。用水热法制备了两种不同形貌的纳米结构氧化钴均匀覆盖的碳纤维电极,通过XRD、SEM、HR-TEM等手段表征了氧化钻的物相结构和微观形貌(纳米立方体和纳米线),并采用电化学表征手段研究了电极活性材料不同的微观形貌对其电容性质的影响。发现相比生长致密、粒径较大的立方颗粒,具有高比表面积的氧化钻网状纳米纤维具有更好的电容性质。由此我们初步探讨了材料形貌对电容产生影响的机制。
The exponential-growth needs of the portable electronic devices together with the electric automobiles have raised an ever-increasing demand for light-weight and compact electric power sources with high energy as well as high power density. Among them, pseudocapacitors (a kind of electrochemical capacitors or supercapacitors), as advanced and clean energy storage and management devices, offering extremely high powers as well as possible high energy densities, are expected to play a crucial role where superior power performance is required. While, existing pseudocapacitors always suffer from limited cycle life and low energy density, due to the phase changes caused by redox reactions when energy is stored/released on the surface or subsurface of the electrode. To emerge as an important energy storage technology in the future, hence, advanced electrode materials for supercapacitor are required to be equipped with higher operating voltage and higher energy and power delivery, while maintaining high cyclability.
     Transition-metal oxides, i.e. RuO2, MnOx, NiO, CoO, Fe3O4, VOx and MnOx-RuO2, are one kind of the most promising electrochemical supercapacitor materials, which are attracting widely interest owing to their relative high specific capacitance and high energy density, compared with carboneous materials and conducting-metal polymers. Among these materials, amorphous hydrated ruthenium oxide exhibits remarkably high specific capacitance and excellent reversibility because of the ideal solid-state pesudofaradaic reaction. However, the high cost, low porosity and toxic nature of RuO2limit its practical application. Therefore, some cheap and environmentally friendly metal oxides have received more and more attention. Manganese oxide, Cobalt oxide materials, as promising candidates for electrochemical supercapacitors, satisfy these fundamental requirements, low cost, environment friendly and reasonable high specific capacitance, whose theoretical value is of about1500F/g, gets more and more attention.
     In the work reported here, we made carbon fiber paper (CFP) supported nano-structured MnOx and Co3O4as electrodes for symmetric cells, respectivily. Both of these two kind of active materials can achieve eery high specific capacitance of over1000F/g, superior stability (more than5,000CV cycles, as good as carbon based electrodes) and high reaction rate (high rate capability), rectangular shapes even at a CV scan rate of100mv/s at an operating voltage window of0-0.8V in1M Na2SO4aqueous solution with the loading amount of~mg·cm-2, by preparing nano-structure metal oxide with rather simple chemical solution methods, followed by heat treatment.
     Scanning electron microscope (SEM Leo/Zeiss1530), the high resolution transmission electron microscope (JEOL4000EX) and Synchrotron-based X-ray analysis (Diffraction XRD and Absorption XANES) were employed to collect the morphology and phase information of the active materials. To characterize their electrochemical performance as super-capacitors, cyclic voltammetry (CV) curves and galvanostatic charge-discharge curves were recorded at room temperature in a symmetric-cell configuration containing1M Na2SO4,1M Ca(NO3)2, or1M H2SO4electrolyte solution. The potential and current were controlled by an Electrochemical Interface (Solartron, SI1286) and the electrochemical impedance spectroscopy (EIS) analysis was conducted using a Frequency Response Analyzer (Solartron SI1255) and SI1286with an applied ac voltage of10mV in the frequency range of0.001Hz to1MHz.
引文
(1)Simon, P. Y. Gogotsi, Materials for Electrochemical Capacitors, Nature Mater,2008, (11), 845-854.
    (2)Brezesinski, T.; J. Wang; S. H. Tolbert B. Dunn, Ordered Mesoporous Alpha-Mo03 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors, Nature Mater,2010, (2), 146-151.
    (3)Hall, P. J.; M. Mirzaeian; S. I. Fletcher; F. B. Sillars; A. J. R. Rennie; G O. Shitta-Bey; G. Wilson; A. Cruden R. Carter, Energy Storage in Electrochemical Capacitors:Designing Functional Materials to Improve Performance, Energy & Environmental Science,2010,3,1238-1251.
    (4)Kim, J.-H.; K. Zhu; Y. Yan; C. L. Perkins A. J. Frank, Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented NiO-TiO2 Nanotube Arrays, Nano Letters,2010, (10),4099-4104.
    (5)Selvarani, G.; S. V. Selvaganesh; S. Krishnamurthy; G. V. M. Kiruthika; P. Sridhar; S. Pitchumani A. K. Shukla, A Methanol-Tolerant Carbon-Supported Pt-Au Alloy Cathode Catalyst for Direct Methanol Fuel Cells and Its Evaluation by Dft, The Journal of Physical Chemistry C, 2009, (17),7461-7468.
    (6)袁国辉,电化学电容器,化学电源技术丛书,2006,
    (7)Becker, H. I. Electric double layer capacitor. [P]. USP:2800616.1957 07 23.4
    (8)Boos D. L., Electrolytic capacitor having carbon paste elecrodes. USP:3536963,1970-10-27.
    (9)Rudge, A.; J. Davey; I. Raistrick; S. Gottesfeld J. P. Ferraris, Conducting Polymers as Active Materials in Electrochemical Capacitors, Journal of power sources,1994, (1-2),89-107.
    (10)Trasatti, S. G. Buzzanca, Ruthenium Dioxide:A New Interesting Electrode Material. Solid State Structure and Electrochemical Behaviour, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1971, (2), A1-A5.
    (11)Conway B. E, Birss V, Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources,1997,66:1-14
    (12)阿伦 J;巴德;拉里 R 福克纳(谷林瑛等译).电化学原理及与应用.北京:化学工业出版社.1986.
    (13)李狄.电化学原理.北京:北京航空航天大学出版社.1999.
    (14)Conway, B.; V. Birss J. Wojtowicz, The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors, Journal of Power Sources,1997, (1-2),1-14.
    (15)Wang, J.; J. Polleux; J. Lim B. Dunn, Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles, The Journal of Physical Chemistry C,2007, (40), 14925-14931.
    (16)Green, M.; K. Hanson; R. Carr I. Lindau, Stm Observations of the Underpotential Deposition and Stripping of Pb on Au (111) under Potential Sweep Conditions, Journal of The Electrochemical Society,1990,3493.
    (17)Lee, B. J.; S. Sivakkumar; J. M. Ko; J. H. Kim; S. M. Jo D. Y. Kim, Carbon Nanofibre/Hydrous RuO2 Nanocomposite Electrodes for Supercapacitors, Journal of Power Sources,2007, (2),546-552.
    (18)Yuan, C.; L. Chen; B. Gao; L. Su X. Zhang, Synthesis and Utilization of RuO2·Xh2O Nanodots Well Dispersed on Poly (Sodium 4-Styrene Sulfonate) Functionalized Multi-Walled Carbon Nanotubes for Supercapacitors, J Mater Chem,2008, (2),246-252.
    (19)Bi, R. R.; X. L. Wu; F. F. Cao; L. Y. Jiang; Y. G. Guo L. J. Wan, Highly Dispersed Ruo2 Nanoparticles on Carbon Nanotubes:Facile Synthesis and Enhanced Supercapacitance Performance, The Journal of Physical Chemistry C,2010, (6),2448-2451.
    (20)Xia, H.; Y. S. Meng; G. Yuan; C. Cui L. Lu, A Symmetric RuO2/RuO2 Supercapacitor Operating at 1.6 V by Using a Neutral Aqueous Electrolyte, Electrochemical and Solid-State Letters,2012, A60.
    (21)Dai, L.; D. W. Chang; J. B. Baek W. Lu, Carbon Nanomaterials for Advanced Energy Conversion and Storage, Small,2012,
    (22)Zhai, Y.; Y. Dou; D. Zhao; P. F. Fulvio; R. T. Mayes S. Dai, Carbon Materials for Chemical Capacitive Energy Storage, Advanced Materials,2011,
    (23)Gamby, J.; P. L. Taberna; P. Simon; J. F. Fauvarque M. Chesneau, Studies and Characterisations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors, Journal of Power Sources,2001,(1),109-116.
    (24)Hang, S., Activated Carbons and Double Layer Capacitance, Electrochimica Acta,1996, (10), 1633-1639.
    (25)Qu, D. H. Shi, Studies of Activated Carbons Used in Double-Layer Capacitors, Journal of Power Sources,1998, (1),99-107.
    (26)Deyang, Q., Studies of the Activated Carbons Used in Double-Layer Supercapacitors, Journal of Power Sources,2002, (2),403-411.
    (27)Kim, Y. J.; Y. Horie; S. Ozaki; Y. Matsuzawa; H. Suezaki; C. Kim; N. Miyashita M. Endo, Correlation between the Pore and Solvated Ion Size on Capacitance Uptake of Pvdc-Based Carbons, Carbon,2004, (8-9),1491-1500.
    (28)Shi, H., Activated Carbons and Double Layer Capacitance, Electrochimica Acta,1996, (10), 1633-1639.
    (29)Salitra, G.; A. Soffer; L. Eliad; Y. Cohen D. Aurbach, Carbon Electrodes for Double-Layer Capacitors I. Relations between Ion and Pore Dimensions, Journal of The Electrochemical Society, 2000, (7),2486-2493.
    (30)Vix-Guterl, C.; E. Frackowiak; K. Jurewicz; M. Friebe; J. Parmentier F. Beguin, Electrochemical Energy Storage in Ordered Porous Carbon Materials, Carbon,2005, (6), 1293-1302.
    (31)Eliad, L.; G. Salitra; A. Soffer D. Aurbach, On the Mechanism of Selective Electroadsorption of Protons in the Pores of Carbon Molecular Sieves, Langmuir,2005, (7),3198-3202.
    (32)Eliad, L.; E. Pollak; N. Levy; G. Salitra; A. Soffer D. Aurbach, Assessing Optimal Pore-to-Ion Size Relations in the Design of Porous Poly(VinyIidene Chloride) Carbons for Edl Capacitors, Applied Physics A:Materials Science & Processing,2006, (4),607-613.
    (33)Dash, R.; J. Chmiola; G. Yushin; Y. Gogotsi; G. Laudisio; J. Singer; J. Fischer S. Kucheyev, Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications, Carbon,2006, (12),2489-2497.
    (34)Raymundo-Pinero, E.; K. Kierzek; J. Machnikowski F. Beguin, Relationship between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes, Carbon,2006, (12),2498-2507.
    (35)Momma, T.; X. Liu; T. Osaka; Y. Ushio Y. Sawada, Electrochemical Modification of Active Carbon Fiber Electrode and Its Application to Double-Layer Capacitor, Journal of Power Sources, 1996, (2),249-253.
    (36)Ishikawa, M.; A. Sakamoto; M. Monta; Y. Matsuda K. Ishida, Effect of Treatment of Activated Carbon Fiber Cloth Electrodes with Cold Plasma Upon Performance of Electric Double-Layer Capacitors, Journal of Power Sources,1996, (2),233-238.
    (37)Kodama, M.; J. Yamashita; Y. Soneda; H. Hatori; S. Nishimura K. Kamegawa, Structural Characterization and Electric Double Layer Capacitance of Template Carbons, Materials Science and Engineering:B,2004, (1),156-161.
    (38)Frackowiak, E.; G. Lota; J. Machnikowski; C. Vix-Guterl F. Beguin, Optimisation of Supercapacitors Using Carbons with Controlled Nanotexture and Nitrogen Content, Electrochimica Acta,2006, (11),2209-2214.
    (39)Kaempgen, M.; C. K. Chan; J. Ma; Y. Cui G. Gruner, Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes, Nano Letters,2009, (5),1872-1876.
    (40)An, K. H.; W. S. Kim; Y. S. Park; J. M. Moon; D. J. Bae; S. C. Lim; Y. S. Lee Y. H. Lee, Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Advanced Functional Materials,2001, (5),387-392.
    (41)Li, X.; J. Rong B. Wei, Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress, ACS Nano,2010,
    (42)Hu, C.-C; K.-H. Chang; M.-C. Lin Y.-T. Wu, Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous Ruo2 for Next Generation Supercapacitors, Nano Letters,2006, (12),2690-2695.
    (43)Zheng, J. T. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors, Journal of The Electrochemical Society,1995, L6.
    (44)Zheng, J. P. T. R. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors, Journal of The Electrochemical Society,1995, (1), L6-L8.
    (45)Zheng, J. P.; P. J. Cygan T. R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, Journal of The Electrochemical Society,1995, (8),2699-2703.
    (46)Zheng, J. P., Ruthenium Oxide-Carbon Composite Electrodes for Electrochemical Capacitors, Electrochemical and Solid-State Letters,1999, (8),359-361.
    (47)Santos, M. C; A. J. Terezo; V. C. Fernandes; E. C. Pereira L. O. S. Bulhoes, An Eqcm Investigation of Charging RuO2 thin Films Prepared by the Polymeric Precursor Method, Journal of Solid State Electrochemistry,2005, (2),91-95.
    (48)Zheng, J.; P. Cygan T. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors, Journal of The Electrochemical Society,1995,2699.
    (49)Liu, T.; W. Pell B. Conway, Self-Discharge and Potential Recovery Phenomena at Thermally and Electrochemically Prepared Ruo2 Supercapacitor Electrodes, Electrochimica Acta,1997, (23-24),3541-3552.
    (50)Liu, X. P. G. Pickup, Carbon Fabric Supported Manganese and Ruthenium Oxide Thin Films for Supercapacitors, Journal of The Electrochemical Society,2011, (3), A241-A249.
    (51)Shao, Y.; Z. Yi; F. Lu; F. Deng B. Li, Poorly Crystalline RuO.4SnO.6O2 Nanocomposites Coated on Ti Substrate with High Pseudocapacitance for Electrochemical Supercapacitors,2012,
    (52)Thackeray, M, Manganese Oxides for Lithium Batteries, Progress in Solid State Chemistry, 1997,(1-2),1-71.
    (53)Thackeray, M. M.; C. S. Johnson; J. T. Vaughey; N. Li S. A. Hackney, Advances in Manganese-Oxide'Composite'electrodes for Lithium-Ion Batteries, J Mater Chem,2005, (23), 2257-2267.
    (54)Einaga, H. A. Ogata, Benzene Oxidation with Ozone over Supported Manganese Oxide Catalysts:Effect of Catalyst Support and Reaction Conditions, Journal of hazardous materials, 2009,(2-3),1236-1241.
    (55)Guo, Y.; X. Liao; J. He; W. Ou D. Ye, Effect of Manganese Oxide Catalyst on the Dielectric Barrier Discharge Decomposition of Toluene, Catalysis Today,2010, (3),176-183.
    (56)Toupin, M.; T. Brousse D. Belanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor, Chemistry of materials,2004, (16),3184-3190.
    (57)Ragupathy, P.; H. N. Vasan N. Munichandraiah, Synthesis and Characterization of Nano-MnO2 for Electrochemical Supercapacitor Studies, Journal of The Electrochemical Society, 2008,(l),A34-A40.
    (58)Devaraj, S. N. Munichandraiah, Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties, The Journal of Physical Chemistry C,2008, (11), 4406-4417.
    (59)Kuo, S.-L. N.-L. Wu, Investigation of Pseudocapacitive Charge-Storage Reaction of MnO 2-nH2O Supercapacitors in Aqueous Electrolytes, Journal of The Electrochemical Society,2006, (7),A1317-A1324.
    (60)Dong, X.; W. Shen; J. Gu; L. Xiong; Y. Zhu; H. Li J. Shi, MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors, The Journal of Physical Chemistry B,2006, (12),6015-6019.
    (61)An, G; P. Yu; M. Xiao; Z. Liu; Z. Miao; K. Ding L. Mao, Low-Temperature Synthesis of Mn3O4 Nanoparticles Loaded on Multi-Walled Carbon Nanotubes and Their Application in Electrochemical Capacitors, Nanotechnology,2008,275709.
    (62)Wang, B.; J. Park; C. Wang; H. Ahn G. Wang, Mn3o4 Nanoparticles Embedded into Graphene Nanosheets:Preparation, Characterization, and Electrochemical Properties for Supercapacitors, Electrochimica Acta,2010, (22),6812-6817.
    (63)Xue, L.; H. Hao; Z. Wei; T. Huang A. Yu, A Hierarchical Porous-Based Electrode for Electrochemical Capacitor, Journal of Solid State Electrochemistry,2011, (3),485-491.
    (64)Yuan, C.; L. Hou; L. Yang; D. Li; L. Shen; F. Zhang X. Zhang, Facile Interfacial Synthesis of Flower-Like Hierarchical a-MnO2 Sub-Microspherical Superstructures Constructed by Two-Dimension Mesoporous Nanosheets and Their Application in Electrochemical Capacitors, Journal of Materials Chemistry,2011, (40),
    (65)Yu, G.; L. Hu; M. Vosgueritchian; H. Wang; X. Xie; J. R. McDonough; X. Cui; Y. Cui Z. Bao, Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors, Nano Letters,2011, (7),2905-2911.
    (66)Pang, S. C.; B. H. Wee S. F. Chin, The Capacitive Behaviors of Manganese Dioxide Thin-Film Electrochemical Capacitor Prototypes, International Journal,2011,397685.
    (67)Yang, L.; S. Cheng; Y. Ding; X. Zhu; Z. L. Wang M. Liu, Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanowires for High-Capacity Pseudocapacitors, Nano Letters,2011,
    (68)Barbero, C; G.A. Planes M. C. Miras, Redox Coupled Ion Exchange in Cobalt Oxide Films, Electrochemistry Communications,2001, (3),113-116.
    (69)Zhu, T.; J. S. Chen X. W. Lou, Shape-Controlled Synthesis of Porous Co3O4 Nanostructures for Application in Supercapacitors, Journal of Materials Chemistry,2010, (33),
    (70)Wang, D.; Q. Wang T. Wang, Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3O4 Nanostructures for Application in Supercapacitors, Inorganic Chemistry,2011, (14),6482-6492.
    (71)Xiong, S.; C. Yuan; X. Zhang; B. Xi Y. Qian, Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chemistry-A European Journal,2009, (21),5320-5326.
    (72)Xu, J.; L. Gao; J. Cao; W. Wang Z. Chen, Preparation and Electrochemical Capacitance of Cobalt Oxide (Co3O4) Nanotubes as Supercapacitor Material, Electrochimica Acta,2010, (2), 732-736.
    (73)Chang, J. K.; C. M. Wu I. W. Sun, Nano-Architectured Co (OH)2 Electrodes Constructed Using an Easily-Manipulated Electrochemical Protocol for High-Performance Energy Storage Applications, J Mater Chem,2010, (18),3729-3735.
    (74)Gong, L. X. Liu, Facile Synthesis and Capacitive Characteristics of Co (OH) 2 Nanoflakes Via a Solid-Reaction Route at Room Temperature, Materials Letters,2011,
    (75)Zhang, F.; Y. Zhou H. Li, Nanocrystalline Nio as an Electrode Material for Electrochemical Capacitor, Materials chemistry and physics,2004, (2-3),260-264.
    (76)Xu, M. W.; S. J. Bao H. L. Li, Synthesis and Characterization of Mesoporous Nickel Oxide for Electrochemical Capacitor, Journal of Solid State Electrochemistry,2007, (3),372-377.
    (77)Nam, K. W. K. B. Kim, A Study of the Preparation of Nio Electrode Via Electrochemical Route for Supercapacitor Applications and Their Charge Storage Mechanism, Journal of The Electrochemical Society,2002, A346.
    (78)Liu, K. C. M. A. Anderson, Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors, Journal of The Electrochemical Society,1996,124.
    (79)Nam, K. W.; E. S. Lee; J. H. Kim; Y. H. Lee K. B. Kim, Synthesis and Electrochemical Investigations of Nio Thin Films and Nio on Three-Dimensional Carbon Substrates for Electrochemical Capacitors, Journal of The Electrochemical Society,2005, A2123.
    (80)Li, F.; J. Song; H. Yang; S. Gan; Q. Zhang; D. Han; A. Ivaska L. Niu, One-Step Synthesis of Graphene/Sno2 Nanocomposites and Its Application in Electrochemical Supercapacitors, Nanotechnology,2009,455602.
    (81)Wu, N.; C. Han S. Kuo, Enhanced Performance of SnO2 Xerogel Electrochemical Capacitor Prepared by Novel Crystallization Process, Journal of Power Sources,2002, (2),418-421.
    (82)Lee, H. Y. J. Goodenough, Ideal Supercapacitor Behavior of Amorphous V2O5-nH2O in Potassium Chloride (KCI) Aqueous Solution, Journal of Solid State Chemistry,1999, (1),81-84.
    (83)Lao, Z.; K. Konstantinov; Y. Tournaire; S. Ng; G. Wang H. Liu, Synthesis of Vanadium Pentoxide Powders with Enhanced Surface-Area for Electrochemical Capacitors, Journal of Power Sources,2006, (2),1451-1454.
    (84)Du, X.; C. Wang; M. Chen; Y. Jiao J. Wang, Electrochemical Performances of Nanoparticle Fe3O4/Activated Carbon Supercapacitor Using Koh Electrolyte Solution, The Journal of Physical Chemistry C,2009, (6),2643-2646.
    (85)Chen, J.; K. Huang S. Liu, Hydrothermal Preparation of Octadecahedron Fe3O4 Thin Film for Use in an Electrochemical Supercapacitor, Electrochimica Acta,2009, (1),1-5.
    (86)涂亮亮贾春阳,导电聚合物超级电容器电极材料,化学进展,2010,(8),1610-1618.
    (87)Zhang, D. Y. Wang, Synthesis and Applications of One-Dimensional Nano-Structured Polyaniline:An Overview, Materials Science and Engineering:B,2006, (1),9-19.
    (88)Chunyang, T. L. J., Conducting Polymers as Electrode Materials for Supercapacitors,化学进展,2010,(08),1610-1618.
    (89)Li, D.; J. Huang R. B. Kaner, Polyaniline Nanofibers:A Unique Polymer Nanostructure for Versatile Applications, Accounts of Chemical Research,2008, (1),135-145.
    (90)Subramania, A. S. L. Devi, Polyaniline Nanofibers by Surfactant-Assisted Dilute Polymerization for Supercapacitor Applications, Polymers for Advanced Technologies,2008, (7), 725-727.
    (91)Wang, K.; J. Huang Z. Wei, Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors, The Journal of Physical Chemistry C,2010, (17),8062-8067.
    (92)Fan, L. Z. J. Maier, High-Performance Polypyrrole Electrode Materials for Redox Supercapacitors, Electrochemistry Communications,2006, (6),937-940.
    (93)Jurewicz, K.; S. Delpeux; V. Bertagna; F. Beguin E. Frackowiak, Supercapacitors from Nanotubes/Polypyrrole Composites, Chemical physics letters,2001, (1-3),36-40.
    (94)Di Fabio, A.; A. Giorgi; M. Mastragostino F. Soavi, Carbon-Poly (3-Methylthiophene) Hybrid Supercapacitors, Journal of The Electrochemical Society,2001, A845.
    (95)Reddy, A. L. M.; M. M. Shaijumon; S. R. Gowda P. M. Ajayan, Coaxial Mn02/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries, Nano Letters,2009, (3), 1002-1006.
    (96)Peng, C; S. Zhang; D. Jewell G. Z. Chen, Carbon Nanotube and Conducting Polymer Composites for Supercapacitors, Progress in Natural Science,2008, (7),777-788.
    (97)Wang, Q.; Z. Wen J. Li, A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a Tio2-B Nanowire Anode, Advanced Functional Materials,2006, (16),2141-2146.
    (98)Service, R. F., New'Supercapacitor'Promises to Pack More Electrical Punch, Science,2006, (5789),902.
    (1)Wang, G.; L. Zhang J. Zhang, A Review of Electrode Materials for Electrochemical Supercapacitors, Chem Soc Rev,2012,41,797.
    (1)Conway, B.; V. Birss J. Wojtowicz, The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors, Journal of Power Sources,1997, (1-2),1-14.
    (2)Bao, L.; J. Zang X. Li, Flexible Zn2SnO4/MnO2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes, Nano Letters,2011,11, 1215-1220.
    (3)Whittingham, M. S., Materials Challenges Facing Electrical Energy Storage, Mrs Bulletin, 2008, (4),411-419.
    (4)Conway, B. E. Electrochemical Supercapacitors. (Kluwer-Academic,1999).
    (5)Chmiola, J.; G. Yushin; Y. Gogotsi; C. Portet; P. Simon P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science,2006, (5794),1760-1763.
    (6)Simon, P. Y. Gogotsi, Materials for Electrochemical Capacitors, Nature Materials,2008, (11), 845-854.
    (7)Hall, P. J.; M. Mirzaeian; S. I. Fletcher; F. B. Sillars; A. J. R. Rennie; G. O. Shitta-Bey; G. Wilson; A. Cruden R. Carter, Energy Storage in Electrochemical Capacitors:Designing Functional Materials to Improve Performance, Energy & Environmental Science,2010, (9),1238-1251.
    (8)Brezesinski, T.; J. Wang; S. H. Tolbert B. Dunn, Ordered Mesoporous Alpha-MoO3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors, Nature Materials,2010, (2), 146-151.
    (9)Toupin, M.; T. Brousse D. Belanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor, Chemistry of materials,2004, (16),3184-3190.
    (1O)Raymundo-Pinero, E.; V. Khomenko; E. Frackowiak F. Beguin, Performance of Manganese Oxide/CNTs Composites as Electrode Materials for Electrochemical Capacitors, Journal of the Electrochemical Society,2005, (1), A229-A235.
    (11)Chou, S. L.; J. Z. Wang; S. Y. Chew; H. K. Liu S. X. Dou, Electrodeposition of Mno2 Nanowires on Carbon Nanotube Paper as Free-Standing, Flexible Electrode for Supercapacitors, Electrochemistry Communications,2008, (11),1724-1727.
    (12)Fischer, A. E.; K. A. Pettigrew; D. R. Rolison; R. M. Stroud J. W. Long, Incorporation of Homogeneous, Nanoscale Mno2 within Ultraporous Carbon Structures Via Self-Limiting Electroless Deposition:Implications for Electrochemical Capacitors, Nano Letters,2007, (2), 281-286.
    (13)Lee, S. W.; J. Kim; S. Chen; P. T. Hammond Y. Shao-Horn, Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors, Acs Nano,2010, (7),3889-3896.
    (14)Lang, X. Y.; A. Hirata; T. Fujita M. W. Chen, Nanoporous Metal/Oxide Hybrid Electrodes for Electrochemical Supercapacitors, Nature Nanotechnology,2011, (4),232-236.
    (15)Post, J. E., Manganese Oxide Minerals:Crystal Structures and Economic and Environmental Significance, Proceedings of the National Academy of Sciences of the United States of America, 1999, (7),3447-3454.
    (16)Shen, Y. F.; R. P. Zerger; R. N. Deguzman; S. L. Suib; L. McCurdy; D. I. Potter C. L. Oyoung, Manganese Oxide Octahedral Molecular Sives:Preparation, Characterization, and Applications, Science,1993, (5107),511-515.
    (17)Tian, Z. R.; W. Tong; J. Y. Wang; N. G. Duan; V. V. Krishnan S. L. Suib, Manganese Oxide Mesoporous Structures:Mixed-Valent Semiconducting Catalysts, Science,1997, (5314),926-930.
    (18)Ragupathy, P.; D. H. Park; G. Campet; H. N. Vasan; S. J. Hwang; J. H. Choy N. Munichandraiah, Remarkable Capacity Retention of Nanostructured Manganese Oxide Upon Cycling as an Electrode Material for Supercapacitor, Journal of Physical Chemistry C,2009, (15), 6303-6309.
    (19)Xu, M. W.; D. D. Zhao; S. J. Bao H. L. Li, Mesoporous Amorphous MnO2 as Electrode Material for Supercapacitor, Journal of Solid State Electrochemistry,2007, (8),1101-1107.
    (20)Subramanian, V.; H. W. Zhu B. Q. Wei, Synthesis and Electrochemical Characterizations of Amorphous Manganese Oxide and Single Walled Carbon Nanotube Composites as Supercapacitor Electrode Materials, Electrochemistry Communications,2006, (5),827-832.
    (21)Lee, H. Y. J. B. Goodenough, Supercapacitor Behavior with Kcl Electrolyte, Journal of Solid State Chemistry,1999, (1),220-223.
    (22)Gao, T.; M. Glerup; F. Krumeich; R. Nesper; H. Fjellvag P. Norby, Microstructures and Spectroscopic Properties of Cryptomelane-Type Manganese Dioxide Nanofibers, Journal of Physical Chemistry C,2008, (34),13134-13140.
    (23)Hu, C. C. T. W. Tsou, Ideal Capacitive Behavior of Hydrous Manganese Oxide Prepared by Anodic Deposition, Electrochemistry Communications,2002, (2),105-109.
    (24)Wang, H.; H. S. Casalongue; Y. Liang H. Dai, Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials, Journal of the American Chemical Society, 2010, (21),7472-7477.
    (25)Hu, C. C.; W. C. Chen K. H. Chang, How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors, Journal of the Electrochemical Society,2004, (2), A281-A290.
    (26)Oswald, H. R.; Feitknec.W Wampetic.Mj, Crystal Data of Mn5O8 and Cd2Mn3O8, Nature, 1965, (4992),72-&.
    (27)Park, Y. J. M. A. Doeff, Synthesis and Electrochemical Characterization of M2Mn3O8 (M=Ca, Cu) Compounds and Derivatives, Solid State Ionics,2006, (9-10),893-900.
    (28)Home, C. R.; U. Bergmann; M. M. Grush; R. C. C. Perera; D. L. Ederer; T. A. Callcott; E. J. Cairns S. P. Cramer, Electronic Structure of Chemically-Prepared Li X Mn2O4 Determined by Mn X-Ray Absorption and Emission Spectroscopies, The Journal of Physical Chemistry B,2000, (41), 9587-9596.
    (29)Yoon, W. S.; P. Clare; M. Balasubramanian; X. Q. Yang J. McBreen, In Situ X-Ray Absorption Spectroscopic Study on LiniO.5mn0.5o2 Cathode Material During Electrochemical Cycling, Chemistry of materials,2003, (16),3161-3169.
    (30)Kim, M. G. C. H. Yo, X-Ray Absorption Spectroscopic Study of Chemically and Electrochemically Li Ion Extracted LiyCo0.85A10.15O2 Compounds, Journal of Physical Chemistry B,1999, (31),6457-6465.
    (31)Horne, C. R.; U. Bergmann; M. M. Grush; R. C. C. Perera; D. L. Ederer; T. A. Callcott; E. J. Cairns S. P. Cramer, Electronic Structure of Chemically-Prepared LixMn2O4 Determined by Mn X-Ray Absorption and Emission Spectroscopies, Journal of Physical Chemistry B,2000, (41), 9587-9596.
    (32)Kim, M. G. C. H. Yo, X-Ray Absorption Spectroscopic Study of Chemically and Electrochemically Li Ion Extracted Li Y Co0.85A10.1502 Compounds, The Journal of Physical Chemistry B,1999, (31),6457-6465.
    (33)Yoon, W. S.; M. Balasubramanian; K. Y. Chung; X. Q. Yang; J. McBreen; C. P. Grey D. A. Fischer, Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Lil-xCol/3Nil/3Mn 1/302 Electrode System by Combination of Soft and Hard X-Ray Absorption Spectroscopy, Journal of the American Chemical Society,2005, (49), 17479-17487.
    (34)Kim, M. G.; H. J. Shin; J. H. Kim; S. H. Park Y. K. Sun, Xas Investigation of Inhomogeneous Metal-Oxygen Bond Covalency in Bulk and Surface for Charge Compensation in Li-Ion Battery Cathode Li Nil/3Col/3Mnl/3O2 Material, Journal of the Electrochemical Society,2005, (7), A1320-A1328.
    (35)Aydinol, M. K.; A. F. Kohan; G. Ceder; K. Cho J. Joannopoulos, Ab Initio Study of Lithium Intercalation in Metal Oxides and Metal Dichalcogenides, Physical Review B,1997, (3), 1354-1365.
    (36)Bader, R. F. W. Atoms in Molecules-A Quantum Theory. (Oxford University Press,1990).
    (37)Kwon, K. D.; K. Refson G. Sposito, Defect-Induced Photoconductivity in Layered Manganese Oxides:A Density Functional Theory Study, Physical Review Letters,2008, (14),
    (1)Simon, P. Y. Gogotsi, Materials for Electrochemical Capacitors, Nature Materials,2008, (11), 845-854.
    (2)Hall, P. J.; M. Mirzaeian; S.I. Fletcher; F. B. Sillars; A. J. R. Rennie; G.O. Shitta-Bey; G. Wilson; A. Cruden R. Carter, Energy Storage in Electrochemical Capacitors:Designing Functional Materials to Improve Performance, Energy & Environmental Science,2010, (9),1238-1251.
    (3)Brezesinski, T.; J. Wang; S. H. Tolbert B. Dunn, Ordered Mesoporous Alpha-Moo3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors, Nature Materials,2010, (2), 146-151.
    (4)Kim, J.-H.; K. Zhu; Y. Yan; C. L. Perkins A. J. Frank, Microstructure and Pseudocapacitive Properties of Electrodes Constructed of Oriented Nio-Tio2 Nanotube Arrays, Nano Letters,2010, (10),4099-4104.
    (5)Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Nano Lett.2006,6 (12),2690-2695/
    (6)Chmiola, J.; G. Yushin; Y. Gogotsi; C. Portet; P. Simon P. L. Taberna, Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science,2006, (5794),1760-1763.
    (7)Kim, H.-K.; T.-Y. Seong; J.-H. Lim; W. li Cho Y. Soo Yoon, Electrochemical and Structural Properties of Radio Frequency Sputtered Cobalt Oxide Electrodes for Thin-Film Supercapacitors, Journal of Power Sources,2001, (1-2),167-171.
    (8)Nam, K.-W.; W.-S. Yoon K.-B. Kim, X-Ray Absorption Spectroscopy Studies of Nickel Oxide Thin Film Electrodes for Supercapacitors, Electrochimica Acta,2002, (19),3201-3209.
    (9)Kim, J.-H.; K. H. Lee; L. J. Overzet G. S. Lee, Synthesis and Electrochemical Properties of Spin-Capable Carbon Nanotube Sheet/Mnox Composites for High-Performance Energy Storage Devices, Nano Letters,2011, (7),2611-2617.
    (10)Yang, L.; S. Cheng; Y. Ding; X. Zhu; Z. L. Wang M. Liu, Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanowires for High-Capacity Pseudocapacitors, Nano Letters,2011,
    (11)Barbero, C.; G. A. Planes M. C. Miras, Redox Coupled Ion Exchange in Cobalt Oxide Films, Electrochemistry Communications,2001, (3),113-116.
    (12)Zhu, T.; J. S. Chen X. W. Lou, Shape-Controlled Synthesis of Porous Co3o4 Nanostructures for Application in Supercapacitors, Journal of Materials Chemistry,2010, (33),
    (13)Wang, D.; Q. Wang T. Wang, Morphology-Controllable Synthesis of Cobalt Oxalates and Their Conversion to Mesoporous Co3o4 Nanostructures for Application in Supercapacitors, Inorganic Chemistry,2011, (14),6482-6492.
    (14)Barbero, C.; G. A. Planes M. C. Miras, Electrochem Commun,2001, (3),113.
    (15)Kong, L. B.; J. W. Lang; M. Liu; Y. C. Luo L. Kang, Facile Approach to Prepare Loose-Packed Cobalt Hydroxide Nano-Flakes Materials for Electrochemical Capacitors, Journal of Power Sources,2009, (2),1194-1201.
    (16)Jayalakshmi, M. K. Balasubramanian, Simple Capacitors to Supercapacitors-an Overview, Int J Electrochem Sci,2008, (1),196-199.
    (17)Kotz, R. M. Carlen, Principles and Applications of Electrochemical Capacitors, Electrochimica Acta,2000, (15-16),2483-2498.
    (18)Bao, L. H.; J. F. Zang X. D. Li, Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes, Nano Lett,2011, (3),1215-1244.
    (19)Simon, P. Y. Gogotsi, Materials for Electrochemical Capacitors, Nat Mater,2008, (11), 845-854.
    (20)Zhu, T.; J. S. Chen X. W. Lou, Shape-Controlled Synthesis of Porous Co3o4 Nanostructures for Application in Supercapacitors, Journal of Materials Chemistry,2010, (33),7015-7020.
    (21)Hu, L.; D. S. Hecht G. Gruner, Carbon Nanotube Thin Films:Fabrication, Properties, and Applications, Chemical Reviews,2010, (10),5790-5844.
    (22)Wu, H.; L. B. Hu; M. W. Rowell; D. S. Kong; J. J. Cha; J. R. McDonough; J. Zhu; Y. A. Yang; M. D. McGehee Y. Cui, Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode, Nano Lett,2010, (10),4242-4248.
    (23)Zheng, L.; Y. Xu; D. Jin Y. Xie, Well-aligned molybdenum oxide nanorods on metal substrates:solution-based synthesis and their electrochemical capacitor application, J Mater Chem, 2010, (34),7135.
    (24)Yu, G. H.; L. B. Hu; M. Vosgueritchian; H. L. Wang; X. Xie; J. R. McDonough; X. Cui; Y. Cui Z. N. Bao, Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors, Nano Lett,2011, (7),2905-2911.
    (25)Hou, Y.; Y. W. Cheng; T. Hobson J. Liu, Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes, Nano Lett,2010, (7),2727-2733.
    (26)Zhang, X. J. Z. M. Shen, Carbon fiber paper for fuel cell electrode, Fuel,2002, (17), 2199-2201.
    (27)Pike, G.E. C. H. Seager, Percolation and conductivity:A computer study. I, Phys Rev B,1974, (4),1421-1434.
    (28)Lang, X. Y.; A. Hirata; T. Fujita M. W. Chen, Nat Nanotechnol,2011, (4),232. (29) Zhu, T.; J. S. Chen X. W. Lou, J Mater Chem,2010, (33),7015.
    (30)Cao, L.; M. Lu H. L. Li, J Electrochem Soc, Preparation of Mesoporous Nanocrystalline Co3O4 and Its Applicability of Porosity to the Formation of Electrochemical Capacitance,2005, (5),A871-A875.
    (31)Cheng, H.; Z. G. Lu; J. Q. Deng; C. Y. Chung; K. L. Zhang Y. Y. Li, A Facile Method to Improve the High Rate Capability of Co3O4 Nanowire Array Electrodes, Nano Res,2010, (12), 895-901.
    (32)Wei, T. Y.; C. H. Chen; K. H. Chang; S. Y.Lu C. C. Hu, Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route, Chem Mater,2009, (14), 3228-3233.
    (33)Gao, Y. Y.; S. L. Chen; D. X. Cao; G. L. Wang J. L. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam, J Power Sources,2010, (6),1757-1760.
    (1)Peng, C.;S. Zhang; D. Jewell G. Z. Chen. Carbon Nanotube and Conducting Polymer Composites for Supercapacitors, Progress in Natural Science,2008, (7), 777-788.
    (2)Wang, Q.; Z. Wen J. Li, A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a Tio2-B Nanowire Anode, Advanced Functional Materials, 2006, (16),2141-2146.
    (3)Lee, H.; J. Kang; M. S. Cho; J.-B. Choi Y. Lee, Mno2/Graphene Composite Electrodes for Supercapacitors:The Effect of Graphene Intercalation on Capacitance, Journal of Materials Chemistry,2011, (45),

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700