钴铝双氢氧化物层状材料的制备、表征及电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于目前超级电容器研究中炭基材料的比电容较小和钌基材料的价格昂贵等缺陷,寻找其它成本低廉、性能良好的替代电极材料已经势在必行。双金属氢氧化物由于具有独特的片层结构,有望成为下一代超级电容器的电极材料。这类化合物具有丰富的片层,能够提供大的表面积,可以提高双电层电容;同时,层板中的过渡金属元素可以提供大量的电化学活性位,即,产生法拉弟赝电容。利用双金属氢氧化物作为超级电容器的电极材料,可以将双电层电容和法拉弟赝电容两种电荷储存机理结合在一起,大大改善超级电容器的性能,因而具有巨大的发展潜力。
     本文以钴铝双金属氢氧化物(Co-Al LDH)作为具体的研究对象,采用直接沉淀法或均匀沉淀法制备Co-Al LDH层状材料,通过FE-SEM、XRD、FT-IR等技术对Co-Al LDH层状材料的形貌和结构进行表征,并从结构改性、提高材料的导电性、筛选合适的电解质、加入氧化还原电对以及构筑纳米片薄膜等几个方面详细研究了Co-Al LDH层状材料的赝电容行为,对双金属氢氧化物作为超级电容器的电极材料的可行性进行了系统的分析和评价。首先,采用均匀沉淀法制备了Co-Al LDH纳米片材料,并研究了其在KOH碱性溶液中的电化学电容行为。这种Co-Al LDH材料呈现规则的六边形片状形貌,厚度约为几十个纳米;在2 A g~(-1)的大电流密度下具有赝电容活性,其质量比电容为192 F g~(-1)。同时,从探索超级电容器的储荷机理入手,研究了向KOH溶液中添加氧化还原电对(Fe(CN)_6~(3-)/Fe(CN)_6~(4-))对Co-Al LDH电极的赝电容行为的影响。由于Fe(CN)_6~(3-)/Fe(CN)_6~(4-)电对的良好的电化学可逆性能,能够接受或提供Co-Al LDH电极在充/放电过程中顺利完成化合态Co(II)/Co(III)之间的转化所需的电子,即,起到“穿梭电荷”的作用。交流阻抗和Tafel测试表明,加入氧化还原电对Fe(CN)_6~(3-)/Fe(CN)_6~(4-)之后,Co-Al LDH电极的传荷电阻降低,交换电流密度增加。
     其次,通过对Co-Al LDH进行离子交换、剥片和电泳沉积,研究了Co-Al LDH纳米片薄膜的赝电容行为。同块体材料不同,Co-Al LDH纳米片薄膜表现出极其优异的赝电容行为:在5~1000 mV s~(-1)的扫描速度范围内,都呈现出类似矩形的CV曲线;充/放电曲线为直线对称的I-V响应。究其原因,在于经剥离得到的Co-Al LDH纳米单片,脱离了原来块体材料中层间阴离子和其它片层的束缚,得以与电解质更充分地接触;同时,电化学活性位(Co元素)也最大限度地暴露在外,提高了活性材料的利用率。
     再次,针对超级电容器的电极材料在长期充/放电循环过程中由于结构发生变化而引起电容性能衰减的缺点,研究了对Co-Al LDH进行结构改性对其赝电容行为的影响。具体做法是,先利用直接沉淀法制备苯甲酸根占据层间空隙的Co-Al LDH,继之在惰性气氛下焙烧。利用LDH的结构记忆效应,将焙烧所得的产物在浓KOH溶液中浸泡后又复原为Co-AlLDH。由于复原所得的Co-Al LDH层间嵌有炭材料,在充/放电循环过程中对其结构有稳固作用。即使在2 A g~(-1)的大工作电流下,循环1000周后,电容保持率仍为100 %。
     另外,研究了不同电解质对Co-Al LDH电极的赝电容行为的影响。发现在LiOH、NaOH和KOH三种电解质的水溶液中,Co-Al LDH的电容行为有很大的差别,其根本原因在于电解质中阳离子的不同。对于LiOH和NaOH电解质而言,除了发生钴元素的化合态Co(II)/Co(III)之间的转化外,由于Li+、Na+离子的半径较小,还可以同时发生Li+或Na+离子与OH-离子作为离子对共同嵌入/脱出Co-Al LDH的晶格的电极过程;对于KOH来说,由于K+离子的半径较大,不能嵌入Co-Al LDH的晶格,只发生化合态Co(II)/Co(III)之间的转化过程。
     最后,研究了提高电极材料的导电性对Co-Al LDH的赝电容行为的影响。通过向Co-Al LDH纳米片材料中物理掺加多壁碳纳米管,改善了电极的导电性,由附着在Co-Al LDH纳米片表面的多壁碳纳米管构成良好的导电网络,不仅减小传荷电阻,而且使电极的比电容值从192.0 F g~(-1)增大到342.4 F g~(-1),循环寿命也大大改善。在此基础上,从容量匹配的角度出发,对复合电极材料中多壁碳纳米管和Co-Al LDH纳米片的配比进行了合理优化。经优化后制备的“自复合”电极的赝电容行为有了很大改善,比较接近于炭材料和水合二氧化钌的特性,即,矩形的CV曲线和近乎直线的I-V响应。
     总之,通过上述一系列的研究,系统获取了各种因素对Co-Al LDH电极的赝电容行为的影响作用,表明这类具有特殊层状结构的双金属氢氧化物是一种很有希望的超级电容器的电极替代材料。
Owing to the drawbacks in the supercapacitors nowadays that the specific capacitance of carbon-based materials is relatively low and that RuO2 is expensive, it is vital to develop new alternate electrode materials with low cost and good properties. Layered double hydroxides (LDHs) as a family of compounds with unique lamellar structure are promising for next-generation supercapacitors in that electrical double layered capacitance and faradaic pseudocapacitance can be simultaneously acquired because of their abundant slabs and electrochemically active sites if they are used as active electrode materials.
     In this thesis, Co-Al layered double hydroxide (Co-Al LDH), which is prepared through the method of direct coprecipitation or homogeneous coprecipitation and characterizated by SEM, XRD, and FTIR techniques, is employed as active electrode material for supercapacitor. The effects on its pseudocapacitive performances from such influencing factors as structural modification, electrical conductivity, electrolyte, redox couple and nanosheet film are investigated and discussed in detail. Meanwhile, the feasibility of LDHs as active electrode materials for supercapacitors is evaluated and a systematic study is carried out.
     First, Co-Al LDH nanosheets with regular hexagonal morphology are synthesized by homogeneous coprecipitation via the gradual hydrolysis of urea, whose specific capacitance is 192 F g~(-1) in 1 M KOH solution. Meanwhile, the capacitive properties of Co-Al LDH is examined by adding hexacyanoferrate (II) and (III) solely or jointly into 1 M KOH aqueous solution so as to understand the charge-storage mechanism for a pseudocapacitor. Owing to the high reversibility, Fe(CN)_6~(3-)/Fe(CN)_6~(4-) ion pair act as electron relay at the electrode/electrolyte interface during charge and discharge by coupling in the redox transition of Co(II)/Co(III) in the Co-Al LDH electrode. Electrochemical impedance spectra and Tafel curves provide direct evidences with decreased charge-transfer resistance and increased exchange current density in the alkaline solution containing hexacyanoferrate ions, respectively.
     Second, the pseudocapacitive performances of film electrodes consisting of Co-Al LDH nanosheets are detected. The nanosheets are obtained after Co-Al LDH’s consecutive treatments of ion-exchange with chloride, nitrate ions, and delamination in formamide. Thin films on ITO glass are fabricated through a method of electrophoretic deposition using Co-Al LDH nanosheets as building blocks. Compared to bulky Co-Al LDH material, Co-Al LDH nanosheet film exhibits excellent electrochemically capacitive properties in alkaline KOH solution: rectangle-like CV curves in a rather wide range of scan rate from 5 to 1000 mV s~(-1) and almost symmetric straight charge/discharge curves, which benefits from the unique two-dimensional morphology of the nanosheets and the utmost exposure of redox active sites.
     Third, it is investigated to modify Co-Al LDH’s structure so as to resolve the deformation and collapse of the structure of electrode material during charge/discharge circling at large current. A solid Co-Al LDH is synthesized through a three-step procedure including direct coprecipitation, heat treatment, and reconstruction. After sintering the Co-Al LDH containing benzoate at 600 oC for 3 h in argon gas flow, Co-Al double oxides are obtained. When immersed in aqueous 6 M KOH solution in air, the double oxides restack to Co-Al layered double hydroxides again with more regular crystal than before. The restacked Co-Al LDH reveals good capacitance retention of 100 % after cycling 1000 times of charge/discharge at a big current of 2 A g~(-1), which results from the stability of carbon, created during the pyrolysis of benzoate and inserted in resulting double oxides, on Co-Al LDH’s structure.
     Four, the influence from electrolyte on the pseudocapacitive performances of Co-Al LDH is evaluated. The electrochemically capacitive behavior of Co-Al LDH is quite different in LiOH, NaOH, and KOH aqueous solutions with a result of the distinct cations. It is found that Co-Al LDH undergoes two independent electrode processes in LiOH aqueous solution, involving the simultaneous intercalation of an ion-pair, i.e. lithium cation and hydroxyl group, which is different from the mechanisms in NaOH and KOH aqueous solutions. The reason is thought to be the selective intercalation into Co-Al LDH for alkali metal ions due to their respective ionic radius. Only Li+ and Na+ cations are suitable for intercalating in the remaining vacancies of (OH)6 octahedra. Compared with lithium and sodium cations, potassium ion has too large radius to fill into the [Co(OH)6] or [Al(OH)6] octahedral vacancies.
     At last, the effect of electrode’s electrical conductivity on the pseudocapacitive performances of Co-Al layered double hydroxide is studied by mixing multi-wall carbon nanotubes (MWCNTs) with Co-Al LDH. It is found that either specific capacitance (342.4 F·g~(-1)) or long-term performance of all composite electrodes at high current density is superior to pure LDH electrode (192 F·g~(-1)) due to the network of MWCNTs attached to the surface of LDH, which betters interconnection of Co-Al LDH particles and decreases contract resistance. On this basis, MWCNTs and Co-Al LDH, as two electroactive materials, are integrated in one electrode to form a new-concept self-hybrid composite electrode in the light of the thought that different materials should match correctly according to their respective charge-storage mechanisms. Cyclic voltammetry and chronopotentiometric techniques are employed to evaluate the electrochemical behaviors of the symmetric self-hybrid supercapacitor in 1 M KOH solution, giving the results that the CV curves approach rectangle shapes, and that charge/discharge curves are basically symmetrical.
     In a word, on the basis of above analysis and researches, a conclusion can be drawn out that LDHs with special layered architecture are hopeful in supercapacitors as alternate electrode material.
引文
[1] J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature. 2001, 414(6861): 359-367.
    [2]汪继强.化学与物理电源.北京:国防工业出版社2008: 95-96.
    [3] R. K?tz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta. 2000, 45(15-16): 2483-2498.
    [4] B. E. Conway. Transition from "supercapacitor" to "battery" behavior in electrochemical energy storage. Journal of The Electrochemical Society. 1991, 138(6): 1539-1548.
    [5] B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources. 1997, 66 (1-2): 1-14.
    [6] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors. Nature Materals. 2008, 7(11): 845-854.
    [7] D. Qu. Studies of the activated carbons used in double-layer supercapacitors. Journal of Power Sources. 2002, 109(2): 403-411.
    [8] D. Qu, H. Shi. Studies of activated carbons used in double-layer capacitors. Journal of Power Sources. 1998, 74(1): 99-107.
    [9] H. Shi. Activated carbons and double layer capacitance. Electrochimica Acta. 1996, 41(10): 1633-1639.
    [10] U. Fischer, R. Saliger, V. Bock, et al. Carbon aerogels as electrode material in supercapacitors. Journal of Porous Materials. 1997, 4(4): 281-285.
    [11] K. H. An, W. S. Kim, Y. S. Park, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Advanced Funtional Materials. 2001, 11(5): 387-392.
    [12] A. B. Fuertes, G. Lota, T. A. Centeno, et al. Templated mesoporous carbons for supercapacitor application. Electrochimica Acta. 2005, 50(14): 2799-2805.
    [13] E. Frackowiak, F. Beguin. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon. 2002, 40(10): 1775-1787.
    [14] K. R. Prasad, N. Miura. Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode. Applied Physics Letters. 2004, 85(18): 4199-4201.
    [15] X. F. Wang, Z. You, D. B. Ruan. A hybrid metal oxide supercapacitor in aqueous KOHelectrolyte. Chinese Journal of Chemistry. 2006, 24(9): 1126-1132.
    [16] A. B. Fuertes, F. Pico, J. M. Rojo. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources. 2004, 133(2): 329-336.
    [17] G. N. Yushin, E. N. Hoffman, A. Nikitin, et al. Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon. 2005, 43(10): 2075-2082.
    [18] R. K. Dash, G. Yushin, Y. Gogotsi. Synthesis, structure and porosity analysis of microporous mesoporous carbon derived from zirconium carbide. Microporous and Mesoporous Materials. 2005, 86(1-3): 50-57.
    [19] R. K. Dash, A. Nikitin, Y. Gogotsi. Microporous carbon derived from boron carbide. Microporous and Mesoporous Materials. 2004, 72(1-3): 203-208.
    [20] Y. Gogotsi, A. Nikitin, H. H. Ye, et al. Nanoporous carbide-derived carbon with tunable pore size. Nature Materials. 2003, 2(9): 591-594.
    [21] C. Zhou, S. Kumar, C. D. Doyle, et al. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chemistry of Materials. 2005, 17(8): 1997-2002.
    [22] W. C. Chen, T. C. Wen, H. Teng. Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochimica Acta. 2003, 48(6): 641-649.
    [23] Q. Xiao, X. Zhou. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta. 2003, 48(5): 575-580.
    [24] W. C. Chen, T. C. Wen. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. Journal of Power Sources. 2003, 117(1-2): 273-282.
    [25] E. Frackowiak, V. Khomenko, K. Jurewicz, et al. Supercapacitors based on conducting polymers/nanotubes composites. Journal of Power Sources. 2006, 153(2): 413-418.
    [26] K. H. An, K. K. Jeon, J. K. Heo, et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. Journal of the Electrochemical Society. 2002, 149(8): A1058-A1062.
    [27] A. Laforgue, P. Simon, J. F. Fauvarque, et al. Activated carbon/conducting polymer hybrid supercapacitors. Journal of the Electrochemical Society. 2003, 150(5): A645-A651.
    [28] T. R. Jow, J. P. Zheng. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide. Journal of the Electrochemical Society. 1998, 145(1): 49-52.
    [29] J. P. Zheng, P. J. Cygan, T. R. Jow. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society. 1995, 142(8): 2699-2703.
    [30]袁国辉.电化学电容器.北京:化学工业出版社. 2006: 104.
    [31] H. K. Kim, T. Y. Seong, J. H. Lim, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors. Journal of Power Sources. 2001, 102(1-2): 167-171.
    [32] K. R. Prasad, N. Miura. Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. Journal of Power Sources. 2004, 135(1-2): 354-360.
    [33] M. S. Hong, S. H. Lee, S. W. Kim. Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochemical and Solid State Letters. 2002, 5(10): A227-A230.
    [34] T. Brousse, M. Toupin, D. Belanger. A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. Journal of the Electrochemical Society. 2004, 151(4): A614-A622.
    [35] V. Subramanian, H. W. Zhu, R. Vajtai, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. Journal of Physical Chemistry B. 2005, 109(43): 20207-20214.
    [36] V. Khomenko, E. Raymundo-Pinero, F. Beguin. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. Journal of Power Sources. 2006, 153(1): 183-190.
    [37] P. Ragupathy, H. N. Vasan, N. Munichandraiah. Synthesis and characterization of Nano-MnO2 for electrochemical supercapacitor studies. Journal of the Electrochemical Society. 2008, 155(1): A34-A40.
    [38] G. Arabale, D. Wagh, M. Kulkarni, et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide. Chemical Physics Letters. 2003, 376(1-2): 207-213.
    [39] C. Arbizzani, M. Mastragostino, L. Meneghello, et al. Electronically conducting polymers and activated carbon: Electrode materials in supercapacitor technology. Advanced Materials. 1996, 8(4): 331-334.
    [40] G. X. Wang, B. L. Zhang, Z. L. Yu, et al. Manganese oxide/MWNTs composite electrodes for supercapacitors. Solid State Ionics. 2005, 176(11-12): 1169-1174.
    [41]沈家骢.超分子层状结构——组装与功能.北京:科学出版社2004: 125-127.
    [42] D. G. Evans, D. A. Xue. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chemical Communications. 2006, (5): 485-496.
    [43] S. Miyata. Anion-exchange properties of hydrotalcite-like compounds. Clays and ClayMinerals. 1983, 31(4): 305-311.
    [44] H. C. B. H. a. C. B. Koch. Synthesis and properties of hexacyanoferrate interlayered in hydrotalcite. I. Hexacyanoferrate(II). Clays and Clay Minerals. 1994, 42(2): 170-179.
    [45] M. J. Holgado, V. Rives, M. S. Sanromán, et al. Hexacyanoferrate-interlayered hydrotalcite. Solid State Ionics. 1996, 92(3-4): 273-283.
    [46] Y. Han, Z.-H. Liu, Z. Yang, et al. Preparation of Ni2+-Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chemistry of Materials. 2008, 20(2): 360-363.
    [47] I. Carpani, M. Berrettoni, M. Giorgetti, et al. Intercalation of iron(III) hexacyano complex in a Ni, Al hydrotalcite-like compound. Journal of Physical Chemistry B. 2006, 110(14): 7265-7269.
    [48]段雪,张法智.插层组装与功能材料.北京:化学工业出版社2007: 14.
    [49]郑水林.非金属矿物材料.北京:化学工业出版社2007: 77.
    [50] J. V. de Melo, S. Cosnier, C. Mousty, et al. Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides). Analytical Chemistry. 2002, 74(16): 4037-4043.
    [51] L. Lei, R. P. Vijayan, D. O'Hare. Preferential anion exchange intercalation of pyridinecarboxylate and toluate isomers in the layered double hydroxide [LiAl2(OH)6]Cl·H2O. Journal of Materials Chemistry. 2001, 11(12): 3276-3280.
    [52] S. P. Newman, W. Jones. Synthesis, characterization and applications of layered double hydroxides containing organic guests. New Journal of Chemistry. 1998, 22(2): 105-115.
    [53] D. Tichit, B. Coq. Catalysis by hydrotalcites and related materials. Cattech. 2003, 7(6): 206-217.
    [54]雷立旭,张卫锋,胡猛,等.层状复合金属氢氧化物:结构、性质及其应用.无机化学学报. 2005, 21(4): 451-463.
    [55] R. Roto, G. Villemure. Electrochemical impedance spectroscopy of electrodes modified with thin films of Ni-Al-Cl layered double hydroxides. Journal of Electroanalytical Chemistry. 2002, 527(1-2): 123-130.
    [56] R. Roto, G. Villemure. Electrochemical impedance spectroscopy of electrodes modified with thin films of MgMnCO3 layered double hydroxides. Electrochimica Acta. 2006, 51(12): 2539-2546.
    [57] R. Roto, L. Yu, G. Villemure. Effect of potential cycling in basic solutions on the structure of Ni-Al layered double hydroxide films. Journal of Electroanalytical Chemistry. 2006, 587(2): 263-268.
    [58] E. Scavetta, M. Berrettoni, M. Giorgetti, et al. Electrochemical characterisation of Ni/Al-X hydrotalcites and their electrocatalytic behaviour. Electrochimica Acta. 2002, 47(15): 2451-2461.
    [59] E. Scavetta, D. Tonelli, A. Giorgetti, et al. AC impedance study of a synthetic hydrotalcite-like compound modified electrode in aqueous solution. Electrochimica Acta. 2003, 48(10): 1347-1355.
    [60] E. Scavetta, M. Berrettoni, F. Nobili, et al. Electrochemical characterisation of electrodes modified with a Co/Al hydrotalcite-like compound. Electrochimica Acta. 2005, 50(16-17): 3305-3311.
    [61] A. Mignani, E. Scavetta, D. Tonelli. Electrodeposited glucose oxidase/anionic clay for glucose biosensors design. Analytica Chimica Acta. 2006, 577(1): 98-106.
    [62] E. Scavetta, B. Ballarin, M. Berrettoni, et al. Electrochemical sensors based on electrodes modified with synthetic hydrotalcites. Electrochimica Acta. 2006, 51(11): 2129-2134.
    [63] G. A. Caravaggio, C. Detellier, Z. Wronski. Synthesis, stability and electrochemical properties of NiAl and NiV layered double hydroxides. Journal of Materials Chemistry. 2001, 11(3): 912-921.
    [64] R. S. Jayashree, P. V. Kamath. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. Journal of Power Sources. 2002, 107(1): 120-124.
    [65] B. Mavis, M. Akinc. Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry. Journal of Power Sources. 2004, 134(2): 308-317.
    [66] F. Leroux, E. Raymundo-Pinero, J. M. Nedelec, et al. Textural and electrochemical properties of carbon replica obtained from styryl organo-modified layered double hydroxide. Journal of Materials Chemistry. 2006, 16(21): 2074-2081.
    [67] F. Li, Q. Tan, D. G. Evans, et al. Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co-Al layered double hydroxide precursor. Catalysis Letters. 2005, 99(3-4): 151-156.
    [68] M. Wohlfahrt-Mehrens, J. Schenk, P. M. Wilde, et al. New materials for supercapacitors. Journal of Power Sources. 2002, 105(2): 182-188.
    [69]刘献明,张校刚. CoAl双氢氢化物作超级电容器的电极材料.电源技术. 2003, (3): 315-317.
    [70]刘献明,张校刚.水热处理对Co―Al双氢氧化物电容性能的影响.应用化学. 2003, (6): 524-527.
    [71]张校刚,刘献明,包淑娟,等. Ni离子掺杂对CoAl双氢氧化物电化学电容的影响.无机化学学报. 2004, (1): 94-98.
    [72] Y. Wang, W. S. Yang, S. C. Zhang, et al. Synthesis and electrochemical characterization of Co-Al layered double hydroxides. Journal of the Electrochemical Society. 2005, 152(11): A2130-a2137.
    [73] K. X. He, X. G. Zhang, J. Li. Preparation and electrochemical capacitance of Me double hydroxides (Me = Co and Ni)/TiO2 nanotube composites electrode. Electrochimica Acta. 2006, 51(7): 1289-1292.
    [74] V. Gupta, S. Gupta, N. Miura. Al-substitutedα-cobalt hydroxide synthesized by potentiostatic deposition method as an electrode material for redox-supercapacitors. Journal of Power Sources. 2008, 177(2): 685-689.
    [75] Y. G. Wang, L. Cheng, Y. Y. Xia. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. Journal of Power Sources. 2006, 153(1): 191-196.
    [76] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, et al. Electrochemical energy storage in ordered porous carbon materials. Carbon. 2005, 43(6): 1293-1302.
    [77] J. W. Long, A. L. Young, D. R. Rolison. Spectroelectrochemical characterization of nanostructured, mesoporous manganese oxide in aqueous electrolytes. Journal of the Electrochemical Society. 2003, 150(9): A1161-A1165.
    [78] Z. Fan, J. H. Chen, M. Y. Wang, et al. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials. Diamond and Related Materials. 2006, 15(9): 1478-1483.
    [79] V. Gupta, N. Miura. Electrochemically deposited polyaniline nanowire's network - A high-performance electrode material for redox supercapacitor. Electrochemical and Solid State Letters. 2005, 8(12): A630-A632.
    [80] X. Y. Wang, X. Y. Wang, W. G. Huang, et al. Sol-gel template synthesis of highly ordered MnO2 nanowire arrays. Journal of Power Sources. 2005, 140(1): 211-215.
    [81] E. Hosono, S. Fujihara, I. Honma, et al. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources. 2006, 158(1): 779-783.
    [82] F. Beguin. Application of nanotextured carbons for electrochemical energy storage in aqueous medium. Journal of the Brazilian Chemical Society. 2006, 17(6): 1083-1089.
    [83] V. Gupta, T. Kusahara, H. Toyama, et al. Potentiostatically deposited nanostructuredα-Co(OH)2: A high performance electrode material for redox-capacitors. Electrochemistry Communications. 2007, 9(9): 2315-2319.
    [84] L. Cao, F. Xu, Y.-Y. Liang, et al. Preparation of the novel nanocomposite Co(OH)2/ ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials. 2004, 16(20): 1853-1857.
    [85] T. C. Liu, W. G. Pell, B. E. Conway, et al. Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide. Journal of the Electrochemical Society. 1998, 145(6): 1882-1888.
    [86] D. Choi, G. E. Blomgren, P. N. Kumta. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Advanced Materials. 2006, 18(9): 1178-1182.
    [87] M. Lazzari, F. Soavi, M. Mastragostino. High voltage, asymmetric EDLCs based on xerogel carbon and hydrophobic IL electrolytes. Journal of Power Sources. 2008, 178(1): 490-496.
    [88] A. Balducci, R. Dugas, P. L. Taberna, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources. 2007, 165(2): 922-927.
    [89] P. Liu, M. Verbrugge, S. Soukiazian. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. Journal of Power Sources. 2006, 156(2): 712-718.
    [90] T. A. Centeno, M. Hahn, J. A. Ferna?ndez, et al. Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes. Electrochemistry Communications. 2007, 9(6): 1242-1246.
    [91] Q. Li, K. X. Li, C. G. Sun, et al. An investigation of Cu2+ and Fe2+ ions as active materials for electrochemical redox supercapacitors. Journal of Electroanalytical Chemistry. 2007, 611(1-2): 43-50.
    [92]田昭武,董全峰,郑明森,等.基于液相中的电化学活性物质的超级电容器.中国,发明专利. CN1866427, 2006.
    [93] Z. P. Liu, R. Z. Ma, M. Osada, et al. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society. 2006, 128(14): 4872-4880.
    [94] C. Jaubertie, M. J. Holgado, M. S. San Roman, et al. Structural characterization and delamination of lactate-intercalated Zn,Al- layered double hydroxides. Chemistry of Materials. 2006, 18(13): 3114-3121.
    [95] S. Miyata. Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals. 1983, 31(4): 305-311.
    [96] Y. G. Wang, Y. Y. Xia. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochemistry Communications. 2005, 7(11): 1138-1142.
    [97] L. Cao, F. Xu, Y. Y. Liang, et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density. Advanced Materials. 2004, 16(20): 1853-1857.
    [98] M. Jobbagy, A. E. Regazzoni. Anion-exchange equilibrium and phase segregation in hydrotalcite systems: Intercalation of hexacyanoferrate(III) ions. Journal of Physical Chemistry B. 2005, 109(1): 389-393.
    [99] J. M. Fernandez, M. A. Ulibarri, F. M. Labajos, et al. The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites. Journal of Materials Chemistry. 1998, 8(11): 2507-2514.
    [100] E. Scavetta, D. Tonelli, M. Giorgetti, et al. AC impedance study of a synthetic hydrotalcite-like compound modified electrode in aqueous solution. Electrochimica Acta. 2003, 48(10): 1347-1355.
    [101] J. N. Soderberg, A. C. Co, A. H. C. Sirk, et al. Impact of porous electrode properties on the electrochemical transfer coefficient. Journal of Physical Chemistry B. 2006, 110(21): 10401-10410.
    [102] M. Adachi-Pagano, C. Forano, J. P. Besse. Delamination of layered double hydroxides by use of surfactants. Chemical Communications. 2000, (1): 91-92.
    [103] F. Leroux, M. Adachi-Pagano, M. Intissar, et al. Delamination and restacking of layered double hydroxides. Journal of Materials Chemistry. 2001, 11(1): 105-112.
    [104] T. Hibino, W. Jones. New approach to the delamination of layered double hydroxides. Journal of Materials Chemistry. 2001, 11(5): 1321-1323.
    [105] T. Hibino. Delamination of layered double hydroxides containing amino acids. Chemistry of Materials. 2004, 16(25): 5482-5488.
    [106] T. Hibino, M. Kobayashi. Delamination of layered double hydroxides in water. Journal of Materials Chemistry. 2005, 15(6): 653-656.
    [107] M. Jobbagy, A. E. Regazzoni. Delamination and restacking of hybrid layered double hydroxides assessed by in situ XRD. Journal of Colloid and Interface Science. 2004, 275(1): 345-348.
    [108] Q. L. Wu, A. Olafsen, O. B. Vistad, et al. Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of Materials Chemistry. 2005, 15(44): 4695-4700.
    [109] Z. P. Liu, R. Z. Ma, Y. Ebina, et al. General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides. Langmuir. 2007, 23(2): 861-867.
    [110] L. Li, R. Z. Ma, Y. Ebina, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chemistry of Materials. 2005, 17(17): 4386-4391.
    [111] L. Li, R. Z. Ma, Y. Ebina, et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. Journal of the American Chemical Society. 2007, 129(25): 8000-8007.
    [112] L. Wang, N. Sakai, Y. Ebina, et al. Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations: Fabrication, structure, and electrochemical behavior. Chemistry of Materials. 2005, 17(6): 1352-1357.
    [113] L. Z. Wang, Y. Ebina, K. Takada, et al. Ultrathin hollow nanoshells of manganese oxide. Chemical Communications. 2004, (9): 1074-1075.
    [114] L. Li, R. Ma, N. Iyi, et al. Hollow nanoshell of layered double hydroxide. Chemical Communications. 2006, (29): 3125-3127.
    [115] N. Iyi, T. Matsumoto, Y. Kaneko, et al. Deintercalation of carbonate ions from a hydrotalcite-like compound: Enhanced decarbonation using acid?salt mixed solution. Chemistry of Materials. 2004, 16(15): 2926-2932.
    [116] N. Iyi, T. Matsumoto, Y. Kaneko, et al. A novel synthetic route to layered double hydroxides using hexamethylenetetramine. Chemistry Letters. 2004, 33(9): 1122-1123.
    [117] N. Iyi, K. Okamoto, Y. Kaneko, et al. Effects of anion species on deintercalation of carbonate ions from hydrotalcite-like compounds. Chemistry Letters. 2005, 34(7): 932-933.
    [118] W. J. Zhou, J. Zhang, T. Xue, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors. Journal of Materials Chemistry. 2008, 18(8): 905-910.
    [119] A. I. Tsyganok, M. Inaba, T. Tsunoda, et al. Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg-Al mixed oxide. Applied Catalysis A-General. 2004, 275(1-2): 149-155.
    [120] G. S. Thomas, P. V. Kamath. The layered double hydroxide (LDH) of Zn with Ga: Synthesis and reversible thermal behaviour. Solid State Sciences. 2006, 8(10): 1181-1186.
    [121] F. Wong, R. G. Buchheit. Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings. Progress in Organic Coatings. 2004, 51(2): 91-102.
    [122] Y. G. Wang, Y. Y. Xia. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system. Journal of the Electrochemical Society.2006, 153(2): A450-A454.
    [123] Q. Wang, Z. H. Wen, J. H. Li. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Advanced Functional Materials. 2006, 16(16): 2141-2146.
    [124] V. Prevot, B. Casal, E. Ruiz-Hitzky. Intracrystalline alkylation of benzoate ions into layered double hydroxides. Journal of Materials Chemistry. 2001, 11(2): 554-560.
    [125] I. C. C. Fathi Kooli, Masha Vucelic, and William Jones. Synthesis and Properties of Terephthalate and Benzoate Intercalates of Mg-Al Layered Double Hydroxides Possessing Varying Layer Charge. Chemistry of Materials. 1996, 8(8): 1969 - 1977.
    [126] S. Miyata. Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals. 1983, 31: 305-311.
    [127] G. D. Moggridge, P. Parent, G. Tourillon. A NEXAFS study of the orientation of benzoate intercalated into a layer double hydroxide. Physica B. 1995, 208&209: 269-270.
    [128] V. Prevot, C. Forano, J. P. Besse. Hydrolysis in polyol: New route for hybrid-layered double hydroxides preparation. Chemistry of Materials. 2005, 17(26): 6695-6701.
    [129] J. Perez-Ramirez, G. Mul, F. Kapteijn, et al. In situ investigation of the thermal decomposition of Co-Al hydrotalcite in different atmospheres. Journal of Materials Chemistry. 2001, 11(3): 821-830.
    [130] J. Ismail, M. F. Ahmed, P. Vishnu Kamath. Cyclic voltammetric studies of pure and doped films of cobalt hydroxide in 1 M KOH. Journal of Power Sources. 1991, 36(4): 507-516.
    [131] M. Jayalakshmi, M. M. Rao, F. Scholz. Electrochemical behavior of solid lithium manganate (LiMn2O4) in aqueous neutral electrolyte solutions. Langmuir. 2003, 19: 8403-8408.
    [132] M. M. Rao, M. Jayalakshmi, O. Schaf, et al. Electrochemical behaviour of solid lithium nickelate (LiNiO2) in an aqueous electrolyte system. Journal of Solid State Electrochemistry. 1999, 4(1): 17-23.
    [133] M. M. Rao, M. Jayalakshmi, O. Schaf, et al. Electrochemical behaviour of solid lithium cobaltate (LiCoO2) and lithium manganate (LiMn2O4) in an aqueous electrolyte system. Journal of Solid State Electrochemistry. 2001, 5(1): 50-56.
    [134] C. Lin, J. A. Ritter, B. N. Popov. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society. 1998, 145(12): 4097-4103.
    [135] X. Hou, R. J. Kirkpatrick. Thermal evolution of the Cl--LiAl2 layered double hydroxide: A multinuclear MAS NMR and XRD perspective. Inorganic Chemistry. 2001, 40(25): 6397-6404.
    [136] A. V. Besserguenev, A. M. Fogg, R. J. Francis, et al. Synthesis and structure of the gibbsiteintercalation compounds [LiAl2(OH)6]X{X=Cl, Br, NO3} and [LiAl2(OH)6]Cl·H2O using synchrotron X-ray and neutron powder diffraction. Chemistry of Materials. 1997, 9(1): 241-247.
    [137] A. M. Fogg, D. O'Hare. Study of the Intercalation of Lithium Salt in Gibbsite Using Time-Resolved in Situ X-ray Diffraction. Chemistry of Materials. 1999, 11(7): 1771-1775.
    [138] Y. M. Tzou, S. L. Wang, L. C. Hsu, et al. Deintercalation of Li/Al LDH and its application to recover adsorbed chromate from used adsorbent. Applied Clay Science. 2007, 37(1-2): 107-114.
    [139] K. A. Tarasov, V. P. Isupov, L. E. Chupakhina, et al. A time resolved, in-situ X-ray diffraction study of the de-intercalation of anions and lithium cations from [LiAl2(OH)6](n)X·H2O (X = Cl-, Br-, NO3-, SO42-). Journal of Materials Chemistry. 2004, 14(9): 1443-1447.
    [140] G. R. Williams, D. O'Hare. A kinetic study of the intercalation of lithium salts into Al(OH)3. Journal of Physical Chemistry B. 2006, 110(22): 10619-10629.
    [141] J. Bacskai, K. Martinusz, E. Czirok, et al. Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. Journal of Electroanalytical Chemistry. 1995, 385(2): 241-248.
    [142] I. Carpani, M. Berrettoni, B. Ballarin, et al. Study on the intercalation of hexacyanoferrate(II) in a Ni, Al based hydrotalcite. Solid State Ionics. 2004, 168(1-2): 167-175.
    [143] D. Villers, D. Jobin, C. Soucy, et al. The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor. Journal of the Electrochemical Society. 2003, 150(6): A747-A752.
    [144] A. B. Yuan, Q. L. Zhang. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochemistry Communications. 2006, 8(7): 1173-1178.
    [145] C. Z. Yuan, X. G. Zhang, Q. F. Wu, et al. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics. 2006, 177(13-14): 1237-1242.
    [146] H. Kuan-Xin, W. Quan-Fu, Z. Xiao-Gang, et al. Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties. Journal of the Electrochemical Society. 2006, 153(8): A1568-A1574.
    [147] Y. G. Wang, L. Yu, Y. Y. Xia. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon. Journal of the Electrochemical Society. 2006, 153(4): A743-A748.
    [148] W. Z. Li, C. H. Liang, W. J. Zhou, et al. Preparation and characterization of multiwalledcarbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. Journal of Physical Chemistry B. 2003, 107(26): 6292-6299.
    [149]巴德.电化学方法——原理和应用.北京:化学工业出版社. 2005: 159.
    [150] S. L. Medway, C. A. Lucas, A. Kowal, et al. In situ studies of the oxidation of nickel electrodes in alkaline solution. Journal of Electroanalytical Chemistry. 2006, 587(1): 172-181.
    [151] V. Ganesh, S. Pitchumani, V. Lakshminarayanan. New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. Journal of Power Sources. 2006, 158(2): 1523-1532.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700