电场导向螺旋神经元神经突生长的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分螺旋神经元神经突电场导向生长研究体外模型的建立
     目的:建立适合的螺旋神经元神经突电场导向生长研究的体外模型体系,用于观察不同类型的电场对体外培养螺旋神经元神经突导向生长作用的研究。
     方法:出生4-6天的Sprague-Dawley大鼠,解剖出蜗轴,分别进行组织块培养和消化分离培养,铺片方法采取单纯层粘连蛋白(Laminin)、单纯多聚赖氨酸(Poly-D-lysine,PDL)、多聚赖氨酸加层粘连蛋白(PDL+Laminin)包被、单纯鼠尾胶原蛋白包被和不包被等5种方法,观察螺旋神经的神经突的生长情况。使用35mm培养皿,分别导入铂铱合金丝、环状电极和人工耳蜗接受刺激器的极阵构建电场,外接稳压电源、函数信号发生器和电荷平衡式双相脉冲电流产生装置。采用直接接种和刺激前后拍照与先培养再移植到活细胞长时间观察记录系统中连续监测的两种方法,记录生长锥的移动轨迹。
     结果:螺旋神经元组织块培养较消化分离培养更容易获得生长方向上无干扰的“自由”神经突。Laminin、PDL和两者联合铺片的培养体系中,神经突长出数量较多、生长情况较好。鼠尾胶铺片的培养体系中,非神经细胞生长过于旺盛。不铺片的培养体系中神经突很少长出,组织块贴壁率也较低。两种观察记录方法均能够实现神经突导向生长的动态观察研究。但直接接种的方法实验效率较低,且不易进行电场内的定位研究。培养后移植到活细胞长时间观察记录系统中连续监测的方法,能够在电场中任意定位神经突,获得生长锥的连续移动轨迹,培养环境稳定,有利于导向生长的研究。
     结论:Laminin、PDL或两者联合铺片结合组织块培养的方法更容易获得适合螺旋神经元神经突导向研究的“自由神经突”。移植培养观察可以实现高效的定位研究;活细胞长时间观察记录系统中连续监测的方法有利于维持稳定的培养环境和实现神经突生长的动态观察。
     第二部分稳态和脉冲直流电场对体外培养螺旋神经元神经突生长方向的影响
     目的:观察稳态和脉冲直流电场对体外培养螺旋神经元神经突生长方向的影响。
     方法:分别采用Laminin或PDL包被玻片,用组织块法体外培养螺旋神经元。选择有“自由神经突”形成的玻片移植到活细胞观察系统中,使神经突主干末段与平行电极电场体系中的电力线垂直。在不施加电场、100mV/mm的稳态直流电场和占空比20%的100mV/mm脉冲直流电场条件下,分别记录两种培养方法生长锥在2小时内不同时间的位点,计算其与原点连线与预计生长方向(即电力线垂直线)之间的角度,分别计算平均值。
     结果:在Laminin铺片的培养体系中,100mV/mm的稳态直流电场和占空比20%的脉冲直流电场均可引起神经突向负极方向偏转;而在PDL铺片的培养体系中,神经突向正极方向偏转。在无电场的培养体系中,神经突无明显偏转。
     结论:稳态和脉冲直流电场对体外培养螺旋神经元的神经突生长有导向作用;导向的方向受培养底物的影响。
     第三部分电荷平衡式双相脉冲电场对体外培养螺旋神经元神经突生长方向的影响
     目的:观察电荷平衡式双相脉冲电场对体外培养螺旋神经元神经突生长方向的影响。
     方法:采用Laminin包被玻片,用组织块法体外培养螺旋神经元。选择有“自由神经突”形成的玻片移植到结合环状电极电场的活细胞观察系统中,使神经突末端的主干与两电极中心连线平行,并使生长锥位于经过其中一个电极中心的连线垂直线上,朝向电极方向。电极间距2mm,刺激频率250 Hz,振幅±1mA,相宽100us,相间断路间隔20us和短路相3.78ms,分别选取3个位点作为研究对象,使其与电极距离分别为两电极间距的1/2、1倍和2倍,即1mm,2mm和4mm处。记录4小时内生长锥的位移轨迹。并以生长锥位于1倍极间距处不施加电场作为对照。
     结果:电场作用下,位于1/2、1倍和2倍极间距处的生长锥时均向远离电极侧偏转。无电场作用时,神经突无明显偏转倾向。
     结论:电荷平衡式双相脉冲电场中,体外培养螺旋神经元神经突有远离电极的倾向。在远离电极时,这种倾向逐渐变小。
PartⅠStudy on the construction of neurite guidance system of spiral ganglion neurons by electric fields in vitro
     Objectives: To establish a neurite guidance system of spiral ganglion neurons by electric fields in ivtro.
     Methods: The spiral ganglion of postnatal day 4-6 Sprague-Dawley rats were dissected out. Spiral ganglion neurons were cultured by dissociated culture method or explants culture method. The coating materials included Laminin, PDL, PDL plus Laminin, Collagen I and none. The antibody of Neurofilament, MAP2 and Tau-1 were used to identify the neurite of spiral ganglion neurons. The systems of electric fields were constructed by inducing Pt-Ir wires, rings or electrode array, which were differently connected with steady DC power, Function/Arbitrary waveform generator or Cochlear Implant signal processor. The traces of growth cones were recorded by taking photos just before and after the electric stimulus in a CO_2 incubator or by time lapse module in live cell imaging (LCI) system after transplanting culture.
     Results: It was much easier for the neurites of spiral ganglion neurons to become "free" neurites without interference by surrounding cells in explants culture system than that in dissociated culture system. More neurites were found on slices coating with Laminin, PDL or PDL plus Laminin than on ones coating with Collagen I and none. The neurites could be labeled by the antibody of Neurofilament and Tau-1, but not by the antibody of MAP2. The method of time lapse recording in LCI system after transplanting culture was helpful to maintain a steady environment for neurite extending. Furthermore, it made the orientation of neurites in electric fields much easy, which is essential to the investigation on neurite guidance and helpful to improve investigation efficiency.
     Conclusions: Explants culture on slices coating with Laminin, PDL or PDL plus Laminin is suitable for neurite guidance investigation on spiral ganglion neurons. Transplanting culture and time lapse recording in LCI system is helpful to an efficient investigation on neurite guidance of spiral ganglion neurons by electric fields.
     PartⅡThe effect of steady and pulsed electric fields on the neurite growth direction of spiral ganglion neurons in vitro
     Objectives: To investigate the effect of steady and pulsed electric fields on neurite growth direction of spiral ganglion neurons in vitro.
     Methods: The spiral ganglion neurons were cultured on slices coated with Laminin or PDL by explants culture. The slices with "free neurite" were transplanted into LCI system with the direction of neurite terminals perpendicular to the vector in parallel-electrodes electric fields. The locations of growth cones in different time were recorded by taking photos. The turning angles were measured in different culture systems with no electric fields, steady or pulsed 100mV/mm DC electric fields.
     Results: The neurites cultured on Laminin coated slices turned to the cathode by steady and pulsed 100mV/mm DC electric fields, while the neurites cultured on PDL coated slices turned to the anode. The neurites extended almost straightly in culture systems without electric field.
     Conclusions: Steady and pulsed DC electric fields could both steer the direction of neurite extension of spiral ganglion neurons. Furthermore, the directions were different on slices coated with different materials.
     PartⅢThe effect of charged-balanced biphasic pulsed electric fields on the neurite growth direction of spiral ganglion neurons in vitro
     Objectives: To investigate the effect of charged-balanced biphasic pulsed electric fields on the neurite growth direction of spiral ganglion neurons in vitro.
     Methods: The spiral ganglion neurons were cultured on slices coated with Laminin by explants culture. The slices with "free neurite" were transplanted into LCI system with the direction of neurite terminals parallel to the line of two ring electrodes. The distance between the two electrodes (D) was 2 mm. The growth cones were oriented on the location 1 mm (1/2D), 2 mm (D) and 4 mm (2D) away to one of the electrodes. And the growth cones 2 mm (D) away to one of the electrodes in culture system without electric fields were also investigated as a contrast. The traces of growth cones were recorded by taking photos, which followed by turning angles measurement.
     Results: The neurites 1 mm (1/2D), 2 mm (D) and 4 mm (2D) away to the electrodes turned off the electrodes, while the directions of neurites in culture systems without electric field had no obvious tendency.
     Conclusions: The neurites of spiral ganglion neurons in charged-balanced biphasic pulsed electric fields had a tendency to turn away from the electrodes in vitro.
引文
1.Li H,Roblin G,Liu H,Heller S.Generation of hair cells by stepwise differentiation of embryonic stem cells[J].Proc Natl Acad Sci U S A,2003,100(23):13495-13500.
    2.Li H,Liu H,Heller S.Pluripotent stem cells from the adult mouse inner ear[J].Nat Med,2003,9(10):1293-1299.
    3.Izumikawa M,Minoda R,Kawamoto K,et al.Auditory hair cell replacement and heating improvement by Atohl gene therapy in deaf mammals[J].Nat Med,2005,11(3):271-276.
    4.Kawamoto K,Ishimoto S,Minoda R,et al.Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo[J].J Neurosci,2003,23(11):4395-4400.
    5.Rask-Andersen H,Bostro M,Gerdin B,et al.Regeneration of human auditory nerve.In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion[J].Hear Res,2005,203(1-2):180-191.
    6.Martinez-Monedero R,Oshima K,Heller S,et al.The potential role of endogenous stem cells in regeneration of the inner ear[J].Hear Res,2007,227(1-2):48-52.
    7.Corrales CE,Pan L,Li H,et al.Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk:Growth of processes into the organ of corti[J].J Neurobiol,2006,66(13):1489-500.
    8.Okano T,Nakagawa T,Kita T,et al.Cell-gene delivery of brain-derived neurotrophlc factor to the mouse inner ear[J].Mol Ther,2006,14(6):866-71.
    9.Hu ZQ,Ogawa R,Aoki R,et al.Temporalis muscle-galea pedicled flap for reconstruction of longstanding facial paralysis[J].J Nippon Med Sch,2005,72(2):105-12.
    10.Regala C,Duan M,Zou J,et al.Xenografted fetal dorsal root ganglion,embryonic stem cell and adult neural stem cell survival following implantation into the adult vestibulocochlear nerve[J].Exp Neurol,2005,193(2):326-33.
    11.Schuknecht HF.Auditory and cytocochlear correlates of inner ear disorders[J].Otolaryngol Head Neck Surg,1994,110(6):530-8.
    12.Shepherd RK,Murray MT,Houghton ME,et al.Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes[J].Biomaterials,1985,6(4):237-42.
    13.Kennedy DW.Multichannel intracochlear electrodes:mechanisms of insertion trauma[J].Laryngoscope,1987,97(1):42-49.
    14.Clark GM,Shepherd RK,Franz BKH,et al.The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient[J].Acta Otolaryngol Suppl,1988,448:1-65.
    15.Zappia JJ,Niparko JK,Oviatt DL,et al.Evaluation of the temporal bones of a multichannel cochlear implant patient[J].Ann Otol Rhinol Laryngol,1991,100(11):914-21.
    16.Gillespie LN,Marzella PL,Clark GM,et al.Netrin-1 as a guidance molecule in the postnatal rat cochlea[J].Hear Res,2005,199(1-2):117-123.
    17.Blamey PJ,Pyman BC,Gordon M,et al.Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients[J].Ann Otol Rhinol Laryngol,1992,101(4):342-348.
    18.Tykocinski M,Cohen LT,Pyman BC,et al.Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays[J].Am J Otol,2000,21(2):205-211.
    19.Shepherd RK,Hatsushika S,Clark GM.Electrical stimulation of the auditory nerve:the effect of electrode position on neural excitation[J].Hear Res,1993,66(1):108-120.
    20.Badi AN,Kertesz TR,Gurgel RK,et al.Development of a novel eighth-nerve intraneural auditory neuroprosthesis[J].Laryngoscope,2003,113(5):833-842.
    21.Hillman T,Badi AN,Normann RA,et al.Cochlear nerve stimulation with a 3-dimensional penetrating electrode array[J].Otol Neurotol,2003,24(5):764-768.
    22.Gstoettner W,Franz P,Hamzavi J,et al.Intracochlear position of cochlear implant electrodes[J].Acta Otolaryngol,1999,119(2):229-233.
    23.Cords SM,Reuter G,Issing PR,et al.A silastic positioner for a modiolus-hugging position of intracochlear electrodes:electrophysiologic effects[J].Am J Otol,2000,21(2):212-217.
    24.Fayad JN,Luxford W,Linthicum FH.The Clarion electrode positioner:temporal bone studies[J].Am J Otol,2000,21(2):226-229.
    25.Yang NW,Hodges AV,Balkany TJ.Novel intracochlear electrode positioner: effects on electrode position[J].Ann Otol Rhinol Laryngol Suppl,2000,185:18-20.
    26.Tykocinski M,Duan Y,Tabor B,et al.Chronic electrical stimulation of the auditory nerve using high surface area(HiQ) platinum electrodes[J].Hear Res,2001,159(1-2):53-68.
    27.Saunders,E,Cohen,L,Aschendorff,A,et al.Threshold,comfortable level and impedance changes as a function of electrode-modiolar distance[J].Ear Hear,2002,23(1 Suppl):28S-40S.
    28.Rajnicek AM,Foubister LE,McCaig CD.Growth cone steering by a physiological electric field requires dynamic microtubules,microfilaments and Rac-mediated filopodial asymmetry[J].J Cell Sci,2006,119(Pt 9):1736-1745.
    29.Webber A,Raz Y.Axon guidance cues in auditory development[J].Anat Rec A Discov Mol Cell Evol Biol,2006,288(4):390-396.
    30.Wise AK,Richardson R,Hardman J,et al.Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3[J].J Comp Neurol,2005,487(2):147-165.
    31.Staecker H,Kopke R,Malgrange B,et al.NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells[J].Neuroreport,1996,7(4):889-894.
    32.Miller JM,Chi DH,O'Keeffe LJ,et al.Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss[J].Int J Develop Neurosci,1997,15(4-5):631-643.
    33.Ernfors P,Duan ML,ElShamy WM,et al.Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3[J].Nat Med,1996,2(4):463-467.
    34.Gillespie LN,Clark GM,Marzella PL.Delayed neurotrophin treatment supports auditory neuron survival in deaf guinea pigs[J].Neuroreport,2004,15(7):1121-1125.
    35.Richardson RT,O'Leary S,Wise A,et al.A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support[J].Hear Res,2005,204(1-2):37-47.
    36.Pirvola U,Ylikoski J,Palgi J,et al.Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia[J].Proc Natl Acad Sci U S A,1992,(20):9915-9919.
    37.Ernfors P,Van De Water T,Loring J,et al.Complementary roles of BDNF and NT-3 in vestibular and auditory development[J].Neuron,1995,14(6):1153-1164.
    38.Dazert S,Kim D,Luo L,et al.Focal delivery of fibroblast growth factor-1 by transfected cells induces spiral ganglion neurite targeting in vitro[J].J Cell Physiol,1998,177(1):123-129.
    39.Richardson RT,Thompson B,Moulton S,et al.The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons[J].Biomaterials,2007,28(3):513-523.
    40.Hotary KB,and Robinson KR.The neural tube of the Xenopus embryo maintains a potential difference across itself[J].Dev Brain Res,1991,59(1):65-73.
    41.McCaig CD,Rajnicek AM,Song B,et al.Controlling cell behavior electrically:current views and future potential[J].Physiol Rev,2005,85(3):943-978.
    42.Borgens RB and Shi R.Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential[J].Dev Dyn,1995,203(4):456-467.
    43.Patel N,Poo MM.Orientation of neurite growth by extracellular electric fields [J].J Neurosci,1982,2(4):483-96.
    44.McCaig CD.Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field[J].Development,1987,100(1):31-41.
    45.McCaig CD.Nerve growth in the absence of growth cone filopodia and the effects of a small applied electric field[J].J Cell Sci,1989,93(Pt 4):715-721.
    46.Song B,Zhao M,Forrester J,et al.Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo[J].J Cell Sci,2004,117(Pt 20):4681-4690
    47.Cormie P,Robinson KR.Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro[J].Neurosci Lett,2007,411(2):128-132.
    48.Schmidt CE,Shastri VR,Vacanti JP,Langer R.Stimulation of neurite outgrowth using an electrically conducting polymer[J].Proc Natl Acad Sci U S A,1997,94(17):8948-8953.
    49.Sisken BF,Kanje M,Lundborg G,et al.Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields[J].Brain Res,1989,485(2):309-316.
    50.Rusovan A,Kanje M,Mild KH.The stimulatory effect of magnetic fields on regeneration of the rat sciatic nerve is frequency dependent[J].Exp Neurol,1992,117(1):81-84.
    51.Walker JL,Evans JM,Resig P,et al.Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields[J].Exper Neurol,1994,125(2):302-305.
    52.Walker JL,Kryscio R,Smith JM,et al.Electromagnetic field treatment of nerve crush injury in a rat model:Effect of signal configuration on functional recovery[J].Bioelectromagnetics,2007,28(4):256-263.
    53.Crowe MF,Sun Z-P,Battocletti JH,et al.Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury[J].Spine,2003,28(24):2660-2666.
    54.Wood M,Willits RK.Short-duration,DC electrical stimulation increases chick embryo DRG neurite outgrowth[J].Bioelectromagnetics,2006,27(4):328-331.
    55.Lousteau RJ.Increased spiral ganglion cell survival in electrically stimulated deafened guinea pig cochleae[J].Laryngoscope,1987,97(7 Pt 1):836-842.
    56.Hartshorn DO,Miller JM,Altschuler RA.Protective effect of electrical stimulation in the deafened guinea pig cochlea[J].Otolaryngol Head Neck Surg,1991,104(3):311-319.
    57.Leake PA,Hradek GT,Rebscher SJ,et al.Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats[J].Hear Res,1991,54(2):251-271.
    58.Leake PA,Hradek GT,Snyder RL.Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness[J].J Comp Neurol,1999,412(4):543-562.
    59.Mitchell A,Miller JM,Finger PA,Heller JW,Raphael Y,Altschuler RA.Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig[J].Hear Res,1997,105(1-2):30-43.
    60.Shepherd RK,Coco A,Epp SB,et al.Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural heating loss[J].J Comp Neurol,2005,486(2):145-158.
    61.Hegarty JL,Kay AR,Green SH.Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of[Ca~(2+)]_i within a set range[J].J Neurosci,1997,17(6):1959-1970.
    62.Zheng JL,Stewart RR,Gao WQ.Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity[J].J Neurosci,1995,15(7 Pt 2):5079-5087.
    63.Malgrange B,Lefebvre P,Van de Water TR,et al.Effects of neurotrophins on early auditory neurones in cell culture[J].Neuroreport,1996,7(4):913-917.
    64.Mou K,Hunsberger CL,Cleary JM,Davis RL et al.Synergistic effects of BDNF and NT-3 on postnatal spiral ganglion neurons[J].J Comp Neurol 1997,386(4):529-539.
    65.Marzella PL,Clark GM,Shepherd RK,et al.Synergy between TGF-beta 3 and NT-3 to promote the survival of spiral ganglia neurones in vitro[J].Neurosci Lett,1998,240(2):77-80.
    66.Marzella PL,Gillespie LN,Clark GM,et al.The neurotrophins act synergistically with LIF and members of the TGF-beta superfamily to promote the survival of spiral ganglia neurons in vitro[J].Hear Res,1999,138(1-2):73-80
    67.Gillespie LN,Clark GM,Bartlett PF,et al.LIF is more potent than BDNF in promoting neurite outgrowth of mammalian auditory neurons in vitro[J].Neuroreport,2001,12(2):275-279.
    68.Brors D,Aletsee C,Schwager K,et al.Interaction of spiral ganglion neuron processes with alloplastic materials in vitro[J].Hear Res,2002,167(1-2):110-121.
    69.Aletsee C,Mullen L,Kim D,et al.The disintegrin kistrin inhibits neurite extension from spiral ganglion explants cultured on laminin[J].Audiol Neurootol,2001,6(2):57-65.
    70.Evans AR,Euteneuer S,Chavez E,et al.Laminin and fibronectin modulate inner ear spiral ganglion neurite outgrowth in an in vitro alternate choice assay [J].Dev Neurobiol,2007,67(13):1721-1730.
    71.Brown MC,Berglund AM,Kiang NYS,et al.Central trajectories of Type Ⅱspiral ganglion neurons[J].J Comp Neurol,1988,278(4):581-590.
    72.Goycoolea MV,Stypulkowski P,Muchow DC.Ultrastructural studies of the peripheral extensions(dendrites) of type Ⅰ ganglion cells in the cat[J]. Laryngoscope,1990,100(2 Pt 2 Suppl 50):19-24.
    73.Whitlon DS,Grover M,Tristano J,et al.Culture conditions determine the prevalence of bipolar and monopolar neurons in cultures of dissociated spiral ganglion[J].Neuroscience,2007,146(2):833-40.
    74.Goslin K,Banker G.Experimental observations on the development of polarity by hippocampal neurons in culture[J].J Cell Biol,1989,108(4):1507-1516.
    75.Dotti CG.Banker GA,Binder LI.The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture[J].Neurosci,1987,23(1):121-130.
    76.Caceres A,Banker GA,Binder L.Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture[J].Neurosci,1986,6(3):714-722.
    77.Binder LI,Frankfurter A,Rebhun LI.Differential localization of MAP-2 and tau in mammalian neurons in situ[J].Ann N Y Acad Sci,1986,466:145-166.
    78.Binder LI,Frankfurter A,Kim H,et al.Heterogeneity of microtubule-associated protein 2 during rat brain development[J].Proc Natl Acad Sci USA,1984,81(17):5613-5617.
    79.Caceres A,Binder LI,Payne MR,et al.Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies[J].J Neurosci,1984,4(2):394-410.
    80.Kishi M,Pan YA,Crump JG.et al.Mammalian SAD kinases are required for neuronal polarization[J].Science,2005,307(5711):929-932.
    81.Jiang H,Guo W,Liang X,et al.Both the establishment and the maintenance of neuronal polarity require active mechanisms:critical roles of GSK-3beta and its upstream regulators[J].Cell,2005,120(1):123-135.
    82.McCaig CD,Rajnicek AM,Song B,et al.Has electrical growth cone guidance found its potential[J]? Trends Neurosci,2002,25(7):354-359.
    83.Robinson KR,Messerli MA.Electric embryos:the embryonic epithelium as a generator of developmental information[A].In:McCaig CD.Nerve Growth and Nerve Guidance[M].London:Portland Press,1996:131-150.
    84.Davenport RW,McCaig CD.Hippocampal growth cone responses to focally applied electric fields[J].J Neurobiol,1993,24(1):89-100.
    85.Wang E,Zhao M,Forrester JV,et al.Re-orientation and faster directed migration of lens epithelial cells in a physiological electric field[J].Exp Eye Res,2000,71(1):91-98.
    86.Rajnicek AM,Robinson KR,McCaig CD.The direction of neurite growth in a weak de electric field depends on the substratum:contributions of substrate adhesivity and surface charge[J].Dev Biol,1998,203(2):412-423.
    87.Cork RJ,McGinnis M E,Tsai J,et al.The growth of PC-12 neurites is biased toward the anode[J].J Neurobiol,1994,25(12):1609-1616.
    88.McCaig CD.Nerve branching is induced and oriented by a small applied electric field[J].J Cell Sci,1990,95(Pt 4):605-615.
    89.Hinkle L,McCaig CD,Robinson KR.The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field[J].J Physiol,1981,314:121-135.
    90.McCaig CD.Dynamic aspects of amphibian neurite growth and the effects of an applied electric field[J].J Physiol,1986,375:55-69.
    91.McCaig CD,Sangster L,Stewart R.Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching[J].Dev Dyn,2000,217(3):299-308.
    92.Erskine L,McCaig CD.Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth[J].Dev Biol,1995,171(2):330-339.
    93.Stewart R,Erskine L,McCaig CD.Calcium channel subtypes and intracellular calcium stores modulate electric field-stimulated and oriented nerve growth[J].Dev Biol,1995,171(2):340-351.
    94.Rajnicek AM,McCaig CD.cAMP and protein kinase A signaling underlie growth cone turning in a physiological electric field[J].Soc Neurosci Abstr,2001,27:795.
    95.Palmer AM,Messerli MA,Robinson KR.Neuronal galvanotropism is independent of external Ca~(2+) entry or internal Ca~(2+) gradients[J].J Neurobiol,2000,45(1):30-38.
    96.Fang KS,Ionides E,Oster G,et al.Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields[J].J Cell Sci,112(Pt 12):1967-1978.
    97.Zhao M,Dick A,Forrester JV,et al.Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin [J].Mol Biol Cell,1999,10(4):1259-1276.
    98.Robinson KR.The responses of cells to electrical fields:a review[J].J Cell Biol,1985,101(6):2023-2027.
    99.Patel NB,Poo MM.Perturbation of the direction of neurite growth by pulsed and focal electric fields[J].J Neurosci,1984,4(12):2939-2947.
    100.Ming GL,Henley J,Tessier-Lavigne M,et al.Electrical activity modulates growth cone guidance by diffusible factors[J].Neuron,2001,29(2):441-452.
    101.Brummer SB,McHardy J,Turner MJ.Electrical stimulation with Pt electrodes:trace analysis for dissolved platinum and other dissolved electrochemical products[J].Brain Behav Evol,1977,14(1-2):10-22.
    102.Aran JM,Wu ZY,Charlet de Sauvage R,et al.Electrical stimulation of the ear:experimental studies[J].Ann Otol Rhinol Laryngol,1983,92(6 Pt 1):614-620.
    103.Hurlbert RJ,Tator CH,Theriault E.Dose-response study of the pathological effects of chronically applied direct current stimulation on the normal rat spinal cord[J].J Neurosurg,1993,79(6):905-916.
    104.Shepherd RK,Linahan N,Xu J,et al.Chronic electrical stimulation of the auditory nerve using non-charge-balanced stimuli[J].Acta Otolaryngol,1999,119(6):674-684.
    105.Black RC,Hannaker P.Dissolution of smooth platinum electrodes in biological fluids[J].Appl Neurophysiol,1980,42(6):366-374.
    106.McHardy J,Robblee LS,Marston JM,et al.Electrical stimulation with pt electrodes.Ⅳ.Factors influencing Pt dissolution in inorganic saline[J].Biomaterials,1980,1(3):129-134.
    107.Robblee LS,McHardy J,Marston JM,et al.Electrical stimulation with Pt electrodes.Ⅴ.The effect of protein on Pt dissolution[J].Biomaterials,1980,1(3):135-139.
    108.Huang CQ,Shepherd RK,Carter PM,et al.Electrical stimulation of the auditory nerve:direct current measurement in vivo[J].IEEE Trans Biomed Eng,1999,46(4):461-470.
    109.Kimura K,Yanagida Y,Haruyama T,et al.Electrically induced neurite outgrowth of PC12 ceils on the electrode surface[J].Med Biol Eng Comput, 1998,36(4):493-498.
    110.Hansen MR,Zha X-M,Bok J,et al.Multiple distinct signal pathways,including an autocrine neurotrophic mechanism,contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro [J].J Neurosci,2001,21(7):2256-2267.
    111.Hultcrantz M,Snyder R,Rebscher S,et al.Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats[J].Hear Res,1991,54(2):272-280.
    112.Araki S,Kawano A,Seldon L,et al.Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens[J].Laryngoscope,1998,108(5):687-695.
    113.Shepherd RK,Matsushima J,Martin RL,et al.Cochlear pathology following chronic electrical stimulation of the auditory nerve:Ⅱ Deafened kittens[J].Hear Res,1994,81(1-2):150-166.
    114.Li L,Parkins CW,Webster DB.Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration[J]? Hear Res,1999,133(1-2):27-39.
    115.Bok J,Zha XM,Cho YS,et al.An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP[J].J Neurosci,2003,23(3):777-787.
    116.Bok J,Wang Q,Huang J,et al.CaMKⅡ and CaMKⅣ mediate distinct prosurvival signaling pathways in response to depolarization in neurons[J].Mol Cell Neurosci,2007,36(1):13-26.
    117.Ghosh A,Greenberg ME.Calcium signaling in neurons:molecular mechanisms and cellular consequences[J].Science,1995,268(5208):239-247.
    118.Gomez TM,Spitzer NC.Regulation of growth cone behavior by calcium:new dynamics to earlier perspectives[J].J Neurobiol,2000,44(2):174-183.
    119.Zucker RS,Regehr WG.Short-term synaptic plasticity[J].Armu Rev Physiol,2002,64:355-405.
    120.Collin T,Marty A,Llano I.Presynaptic calcium stores and synaptic transmission[J].Curr Opin Neurobiol,2005,15(3):275-281.
    121.Roehm PC,Xu N,Woodson EA,et al.Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain[J].Mol Cell Neurosci,2008,37(2):376-387.
    1.Fritzseh B,Pirvola U,Ylikoski J.Making and breaking the innervation of the ear:neurotrophic support during ear development and its clinical implications[J].Cell & Tissue Research,1999,295(3):369-382.
    2.Lefebvre PP,Weber T,Rigo J-M,et al.Peripheral and central target-derived trophic factor(s) effects on auditory neurons[J].Hear Res,1992,58(2):185-192.
    3.Sehecterson LC,Bothwell M.Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear[J].Hear Res,1994,73(1):92-100.
    4.Ylikoski J,Pirvola U,Moshnyakov M,et al.Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear[J].Hear Res,1993,65(12):69-78.
    5.Kim WY,Fritzsch B,Serls A,et al.NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development.Development,2001, 128(3):417-426.
    6.Hegarty JL,Kay AR,Green SH.Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins or cAMP and requires elevation of[Ca2+]i within a set range[J].J Neurosci,1997,17(6):1959-1970.
    7.Hansen MR,Zha X-M,Bok J,et al.Multiple distinct signal pathways,including an autocrine neurotrophic mechanism,contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro[J].J Neurosci,2001,21(7):2256-2267.
    8.Liberman MC,Kiang NY.Acoustic trauma in cats.Cochlear pathology and auditory-nerve activity[J].Acta Otolaryngol Suppl,1978,358:1-63.
    9.Hartmann R,Topp G.Klinke R.Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea[J].Hear Res,1984,13(1):47-62.
    10.Shepherd RK,Javel E.Electrical stimulation of the auditory nerve.Ⅰ.Correlation of physiological responses with cochlear status[J].Hear Res,1997,108(1-2):112-144.
    11.Schimmang T,Tan J,Muller M,et al.Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and heating loss[J].Development,2003,130(19):4741-4750.
    12.Tan J,Shepherd RK.Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75neurotrophin receptor signaling[J].Am J Pathol,2006,169(2):528-543.
    13.Terayama Y,Kaneko Y,Kawamoto K,et al.Ultrastructural changes of the nerve elements following disruption of the organ of Corti.Ⅰ.Nerve elements in the organ of Corti[J].Acta Otolaryngol,1977,83(3-4):291-302.
    14.Spoendlin H.Factors inducing retrograde degeneration of the cochlear nerve[J].Ann Otol Rhinol Laryngol Suppl,1984,112:76-82.
    15.Leake PA,Hradek GT.Cochlear pathology of long term neomycin induced deafness in cats[J].Hear Res,1988,33(1):11-33.
    16.Spoendlin H,Schrott A.Analysis of the human auditory nerve[J].Hear Res,1989,43(1):25-38.
    17.Hardie NA,Shepherd RK.Sensofineural hearing loss during development:morphological and physiological response of the cochlea and auditory brainstem [J].Hear Res,1999,128(1-2):147-165.
    18.Wright L.Cell survival in chick embryo ciliary ganglion is reduced by chronic ganglionic blockade[J].Brain Res Dev Brain Res,1981,227(2):283-286.
    19.Lipton SA.Blockade of electrical activity promotes the death of mammalian retinal ganglion cells in culture[J].Proc Natl Acad Sci USA,1986,83(24):9774-9778.
    20.Furber S,Oppenheim RW,Prevette D.Naturally-occurring neuron death in the ciliary ganglion of the chick embryo following removal of preganglionic input:evidence for the role of afferents in ganglion cell survival[J].J Neurosci,1987,7(6):1816-1832.
    21.Meriney SD,Pilar G,Ogawa M,et al.Differential neuronal survival in the avian ciliary ganglion after chronic acetylcholine receptor blockade[J].J Neurosci,1987,7(12):3840-3849.
    22.Maderdrut JL,Oppenheim RW,Prevette D.Enhancement of naturally-occurring cell death in the sympathetic and parasympathetic ganglia of the chicken embryo following blockade of ganglionic transmission[J].Brain Res,1988,444(1):189-194.
    23.Rubel EW,Hyson RL,Durham D.Afferent regulation of neurons in the brain stem auditory system[J].J Neurobiol,1990,21(1):169-196.
    24.Ruitjer JM,Baker RE,De Jong BM,et al.1991.Chronic blockade of bioelectfic activity in neonatal rat cortex grown in vitro.Morphological effects[J].Int J Dev Neurosci 9:331-338.
    25.Catsicas M,Pe'quinot Y,Clarke PGH.Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development[J].J Neurosei,1992,12(12):4642-4650.
    26.Galli-Resta L,Ensini M,Fusco E,et al.Afferent spontaneous electrical activity promotes the survival of target cells in the developing retinotectal system of the rat[J].J Neurosci,1993,13(1):243-250.
    27.Scott BS,Fisher KC.Potassium concentration and number of neurons in cultures of dissociated ganglia[J].Exp Neurol,1970,27(1):16-22.
    28.Bennett MR,White W.The survival and development of cholinergic neurons in potassium-enriched media[J].Brain Res,1979,173(3):549-553.
    29.Chalazonitis A,Fischbach GD.Elevated potassium induces morphological differentiation of dorsal root ganglionic neurons in dissociated cell culture[J].Dev Biol,1980,78(1):173-183.
    30.Wakade AR,Edgar D,Thoenen H.Both nerve growth factor and high K~+concentrations support the survival of chick embryo sympathetic neurons.Evidence for a common mechanism of action[J].Exp Cell Res,1983,144(2):377-384.
    31.Gallo V,Kingsbury A,Balazs R,Jorgensen OS.The role of depolarization in the survival and differentiation of cerebellar granule cells in culture[J].J Neurosci,1987,7(7):2203-2213.
    32.Collins F,Lile JD.The role of dihydropyridine-sensitive voltage gated calcium channels in potassium mediated neuronal survival[J].Brain Res,1989,502(1):99-108.
    33.Collins F,Schmidt MF,Guthrie PB,et al.Sustained increase in intracellular calcium promotes neuronal survival[J].J Neurosci,1991,11(8):2582-2587.
    34.Koike T,Martin DP,Johnson Jr EM.Role of Ca~(2+) channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation:evidence that levels of internal Ca~(2+) determine nerve growth factor dependence of sympathetic ganglion cells[J].Proc Natl Acad Sci USA,1989,86(16):6421-6425.
    35.Franklin JL,Sanz-Rodriguez C,Juhasz A,et al.Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth:requirement for Ca~(2+) influx but not Trk activation[J].J Neurosci,1995,15(1 Pt 2):643-664.
    36.Ghosh A,Camahan J,Greenberg ME.Requirement for BDNF in activity-dependent survival of cortical neurons[J].Science,1994,263(5153):1618-1623.
    37.Robinson M,Buj-Bello A,Davies AM.Paracrine interactions of BDNF involving NGF-dependent embryonic sensory neurons[J].Mol Cell Neurosci,1996,7(2):143-151.
    38.Meyer-Franke A,Kaplan MR,Pfrieger FW,et al.Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture[J].Neuron,1995,15(4):805-819.
    39.Hack N,Hidaka H,Wakefield MJ,et al.Promotion of granule cell survival by high K~+ or excitatory amino acid treatment and Ca~(2+)/calmodulin-dependent protein kinase activity[J].Neuroscience,1993,57(1):9-20.
    40.Soler RM,Egea J,Mintenig GM,et al.Calmodulin is involved in membrane depolarization-mediated survival of motoneurons by phosphatidylinositol-3kinase- and MAPK-independent pathways[J].J Neurosci,1998,18(4):1230-1239.
    41.Yano S,Tokumitsu H,Sodeding TR.Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway[J].Nature,1998,396(6711):584-587.
    42.Boutillier AL,Kienlen-Campard P,Loeffier JP.Depolarization regulates cyclin D1degradation and neuronal apoptosis:a hypothesis about the role of the ubiquitin/proteasome signalling pathway[J].Eur J Neurosci,1999,11(2):441-448.
    43.Vaillant AR,Mazzoni I,Tudan C,et al.Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival[J].J Cell Biol,1999,146(5):955-966.
    44.Ikegami K,Koike T.Membrane depolarization-mediated survival of sympathetic neurons occurs through both phosphatidylinositol 3-kinase- and CaM kinase Ⅱ-dependent pathways[J].Brain Res,2000,866(1-2):218-226.
    45.See V,Boutillier AL,Bito H,et al.Calcium/calmodulindependent protein kinase type Ⅳ(CaMKⅣ) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons[J].FASEB J,2001,15(1):134-144.
    46.Choi DW.Calcium-mediated neurotoxicity:relationship to specific channel types and role in ischemic damage[J].Trends Neurosci,1988,11(10):465-469.
    47.Siesjo BK,Bengtsson F,Grampp W,et al.Calcium,excitotoxins,and neuronal death in the brain[J].Ann NY Acad Sci,1989,568:234-251.
    48.Koike T,Tanaka S.Evidence that nerve growth factor dependence of sympathetic neurons for survival in vitro may be determined by levels of cytoplasmic free Ca2+[J].Proc Nail Acad Sci USA,1991,88(9):3892-3896.
    49.Kater SB,Mattson MP,Cohan C,et al.Calcium regulation of the neuronal growth cone[J].Trends Neurosci,1988,11(7):315-321.
    50.Zha X-M,Bishop JF,Hansen MR,et al.BDNF synthesis in spiral gangion neurons is constitutive and CREB-dependent[J].Hear Res,2001,156(1-2):53-68.
    51.Braun AP,Schulman H.The multifunctional calcium/calmodulindependent protein kinase:from form to function[J].Annu Rev Physiol,1995,57:417-445.
    52.Malenka RC,Nicoll RA.Long-term potentiation--a decade of progress[J]?Science,1999,285(5435):1870-1874.
    53.Goshima Y,Ohsako S,Yamauchi T.Overexpression of Ca~(2+)/calmodulin -dependent protein kinase Ⅱ in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility[J].J Neurosci,1993,13(2):559-567.
    54.Tashima K,Yamamoto H,Setoyama C,et al.Overexpression of Ca~(2+)/calmodulin-dependent protein kinase Ⅱ inhibits neurite outgrowth of PC12cells[J].J Neurochem,1996,66(1):57-64.
    55.Masse'T,Kelly PT.Overexpression of Ca~(2+)/calmodulindependent protein kinase Ⅱ in PC12 cells alters cell growth,morphology,and nerve growth factor-induced differentiation[J].J Neurosci,1997,17(3):924-931.
    56.Vaillant AR,Zanassi P,Walsh GS,et al.Signaling mechanisms underlying reversible,activity-dependent dendrite formation[J].Neuron,2002,34(6):985-998.
    57.Miller JM,Chi DH,O'Keeffe LJ,et al.Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss[J].Int J Dev Neurosci,1997,15(4-5):631-643.
    58.Bok J,Wang Q,Huang J,et al.CaMKⅡ and CaMKⅣ mediate distinct prosurvival signaling pathways in response to depolarization in neurons[J].Mol Cell Neurosci,2007,36(1):13-26.
    59.Hansen MR,Bok J,Devaiah AK,et al.Ca~(2+)/calmodulin-dependent protein kinases Ⅱ and Ⅳ both promote survival but differ in their effects on axon growth in spiral ganglion neurons[J].J Neurosci Res,2003,72(2):169-184.
    60.Wong-Riley MTT,Walsh SM,Leake-Jones PA.Maintenance of neuronal activity by electrical stimulation of unilaterally deafened cats demonstrable with cytochrome oxidase technique[J].Ann Otol Rhinol,Laryngol,1981,90(2 Pt 3):30-32.
    61.Lousteau RJ.Increased spiral ganglion cell survival in electrically stimulated deafened guinea pig cochleae[J].Laryngoscope,1987,97(7 Pt 1):836-842.
    62.Hartshorn DO,Miller JM,Altschuler RA.Protective effect of electrical stimulation in the deafened guinea pig cochlea[J].Otolaryngol Head Neck Surg,1991,104(3):311-319.
    63.Leake PA,Hradek GT,Rebscher SJ,et al.Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats[J].Hear Res,1991,54(2):251-271.
    64.Leake PA,Hradek GT,Snyder RL.Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness[J].J Comp Neurol,1999,412(4):543-562.
    65.Lustig LR,Leake PA,Snyder RL,et al.Changes in the cat cochlear nucleus following neonatal deafening and chronic intracochlear electrical stimulation[J].Hear Res,1994,74(1-2):29-37.
    66.Leake PA,Snyder RL,Hradek GT,et al.Chronic intracochlear electrical stimulation in neonatally deafened cats:effects of intensity and stimulating electrode location[J].Hear Res,1992,64(1):99-117.
    67.Hultcrantz M,Snyder R,Rebscher S,et al.Effects of neonatal deafening and chronic intracochlear electrical stimulation on the cochlear nucleus in cats[J].Hear Res,1991,54(2):272-280.
    68.Mitchell A,Miller JM,Finger PA,et al.Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig[J].Hear Res,1997,105(1-2):30-43.
    69.Leake PA,Snyder RL,Hradek GT,et al.Consequences of chronic extracochlear electrical stimulation in neonatally deafened cats.Hear Res,1995,82(1):65-80.
    70.Shepherd RK,Matsushima J,Martin RL,et al.Cochlear pathology following chronic electrical stimulation of the auditory nerve:Ⅱ Deafened kittens[J].Hear Res,1994,81(1-2):150-166.
    71.Araki S,Kawano A,Seldon L,et al.Effects of chronic electrical stimulation on spiral ganglion neuron survival and size in deafened kittens[J].Laryngoscope,1998,108(5):687-695.
    72.Shepherd RK,Coco A,Epp SB,et al.Chronic depolarization enhances the trophic effects of brainderived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss[J].J Comp Neurol,2005,486(2):145-158.
    73.Li L,Parkins CW,Webster DB.Does electrical stimulation of deaf cochleae prevent spiral ganglion degeneration[J]? Hear Res,1999,133(1-2):27-39.
    74.Schuknecht HF.Auditory and cytocochlear correlates of inner ear disorders[J].Otolaryngol Head Neck Surg,1994,110(6):530-8.
    75.Shepherd RK,Murray MT,Houghton ME,et al.Scanning electron microscopy of chronically stimulated platinum intracochlear electrodes[J].Biomaterials,1985,6(4):237-42.
    76.Kennedy DW.Multichannel intracochlear electrodes:mechanisms of insertion trauma[J].Laryngoscope,1987,97(1):42-49.
    77.Clark GM,Shepherd RK,Franz BKH,et al.The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient[J].Acta Otolaryngol Suppl,1988,448:1-65.
    78.Zappia JJ,Niparko JK,Oviatt DL,et al.Evaluation of the temporal bones of a multichannel cochlear implant patient[J].Ann Otol Rhinol Laryngol,1991,100(11):914-21.
    79.Gillespie LN,Marzclla PL,Clark GM,et al.Netrin-1 as a guidance molecule in the postnatal rat cochlea[J].Hear Res,2005,199(1-2):117-123.
    80.Blamey PJ,Pyman BC,Gordon M,et al.Factors predicting postoperative sentence scores in postlinguistically deaf adult cochlear implant patients[J].Ann Otol Rhinol Laryngol,1992,101(4):342-348.
    81.Tykocinski M,Cohen LT,Pyman BC,et al.Comparison of electrode position in the human cochlea using various perimodiolar electrode arrays[J].Am J Otol,2000,21(2):205-211.
    82.Shepherd RK,Hatsushika S,Clark GM.Electrical stimulation of the auditory nerve:the effect of electrode position on neural excitation[J].Hear Res,1993,66(1):108-120.
    83.Badi AN,Kertesz TR,Gurgel RK,et al.Development of a novel eighth-nerve intraneural auditory neuroprosthesis[J].Laryngoscope,2003,113(5):833-842.
    84.Hillman T,Badi AN,Normann RA,et al.Cochlear nerve stimulation with a 3-dimensional penetrating electrode array[J].Otol Neurotol,2003,24(5):764-768.
    85.Gstoettner W,Franz P,Hamzavi J,et al.Intracochlear position of cochlear implant electrodes[J].Acta Otolaryngol,1999,119(2):229-233.
    86.Cords SM,Reuter G,Issing PR,et al.A silastic positioner for a modiolus-hugging position of intracochlear electrodes:electrophysiologic effects[J].Am J Otol,2000,21(2):212-217.
    87.Fayad JN,Luxford W,Linthicum FH.The Clarion electrode positioner:temporal bone studies[J].Am J Otol,2000,21(2):226-229.
    88.Yang NW,Hodges AV,Balkany TJ.Novel intracochlear electrode positioner:effects on electrode position[J].Ann Otol Rhinol Laryngol Suppl,2000,185:18-20.
    89.Tykocinski M,Duan Y,Tabor B,et al.Chronic electrical stimulation of the auditory nerve using high surface area(HiQ) platinum electrodes[J].Hear Res,2001,159(1-2):53-68.
    90.Saunders,E,Cohen,L,Aschendorff,A,et al.Threshold,comfortable level and impedance changes as a function of electrode-modiolar distance[J].Ear Hear,2002,23(1 Suppl):28S-40S.
    91.Rajnicek AM,Foubister LE,McCaig CD.Growth cone steering by a physiological electric field requires dynamic microtubules,microfilaments and Rat-mediated filopodial asymmetry[J].J Cell Sci,2006,119(Pt 9):1736-1745.
    92.Webber A,Raz Y.Axon guidance cues in auditory development[J].Anat Rec A Discov Mol Cell Evol Biol,2006,288(4):390-396.
    93.Borgens RB and Shi R.Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential[J].Dev Dyn,1995,203(4):456-467.
    94.McCaig CD,Rajnicek AM,Song B,et al.Controlling cell behavior electrically:current views and future potential[J].Physiol Rev,2005,85(3):943-978.
    95.Patel N,Poo MM.Orientation of neudte growth by extracellular electric fields[J].J Neurosci,1982,2(4):483-96.
    96.McCaig CD.Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field[J].Development,1987,100(1):31-41.
    97.McCaig CD.Nerve growth in the absence of growth cone filopodia and the effects of a small applied electric field[J].J Cell Sci,1989,93(Pt 4):715-721.
    98.Cormie P,Robinson KR.Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro[J].Neurosci Lett,2007,411(2):128-132.
    99.Davenport RW,McCaig CD.Hippocarnpal growth cone responses to focally applied electric fields[J].J Neurobiol,1993,24(1):89-100.
    100.Wang E,Zhao M,Forrester JV,et al.Re-orientation and faster directed migration of lens epithelial cells in a physiological electric field[J].Exp Eye Res,2000,71(1):91-98.
    101.Cork RJ,McGinnis M E,Tsai J,et al.The growth of PC-12 neurites is biased toward the anode[J].J Neurobiol,1994,25(12):1609-1616.
    102.McCaig CD.Nerve branching is induced and oriented by a small applied electric field[J].J Cell Sci,1990,95(Pt 4):605-615.
    103.Hinkle L,McCaig CD,Robinson KR.The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field[J].J Physiol,1981,314:121-135.
    104.McCaig CD.Dynamic aspects of amphibian neurite growth and the effects of an applied electric field[J].J Physiol,1986,375:55-69.
    105.McCaig CD,Rajnicek AM,Song B,et al.Has electrical growth cone guidance found its potential[J]? Trends Neurosci,2002,25(7):354-359.
    106.Rajnicek AM,Robinson KR,McCaig CD.The direction of neurite growth in a weak dc electric field depends on the substratum:contributions of substrate adhesivity and surface charge[J].Dev Biol,1998,203(2):412-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700