5Gb/s GaAs MSM/PHEMT单片光电子集成(OEIC)接收机前端
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单片光电子集成电路(OEIC:Optoelectronic Integrated Circuits)将激光器、光探测器等光电子器件与驱动电路、前置放大器、限幅放大器以及时钟与数据恢复电路等电子器件/电路部分或完整集成在同一衬底之上,以最大程度地减小互联寄生参数对集成单元整体性能的不利影响,并有利于提高其可靠性及实现小型化、轻量化的发展目标,在长距离大容量光纤通信、自由空间光通信、光接入网、大规模并行光学互联、光开关、光存储、星载光电系统、微小型光电传感等领域具有广泛的用途。美国、德国、日本等发达国家在单片OEIC领域的研究十分活跃,并且成就斐然,部分成果已实现商业化。
     鉴于单片OEIC良好的应用前景以及国内在这个领域与国外先进水平的巨大差距,我们开展了单片OEIC光接收机前端的研究工作,并取得了若干创新性成果,提高了国内在这个领域的研究水平,为今后开发面向实用的高性能单片OEIC器件奠定了坚实的基础。主要成果及相关研究内容如下:
     (1)研制出国内首个5Gb/s级单片OEIC光接收机前端芯片。该芯片由基于砷化镓(GaAs)衬底的金属-半导体-金属(MSM)光探测器和赝配高电子迁移率晶体管(PHEMT)分布式前置放大器组成,从材料外延到工艺流水均实现了国产化,探索出一条适合国内条件的单片OEIC技术途径;
     (2)解决了单片OEIC器件研制中的关键性技术难题——台面工艺与常规GaAsPHEMT单片微波集成电路(MMIC)工艺的兼容性问题,包括采用反应离子刻蚀(RIE)形成高度精确且工作面光滑平整的MSM光探测器台面的工艺、插指电极金属化及剥离工艺、台面与平面器件互连工艺等;
     (3)研制出国内首个基于0.5μm GaAs PHEMT技术的20GHz带宽分布式前置放大器芯片,带宽与PHEMT器件特征频率之比达2/3,最小噪声系数3.03dB,平均等效输入噪声电流密度14.6pA/Hz~(1/2),输出1dB压缩功率13.7dBm,放大器10Gb/s工作状态良好;
     (4)重点研究了0.5μm T型栅GaAs PHEMT工艺技术的关键环节——欧姆接触工艺和肖特基势垒工艺,流片得到性能优良的PHEMT器件:50MHz~26.5GHz范围内的小信号增益12~4dB,特征频率32GHz,最高振荡频率超过80GHz;
     (5)深入研究了PHEMT器件噪声性能,得出最小噪声系数F_(min)、等效噪声电导g_n、最佳输入阻抗Z_(opt)等参数与器件本征参数与寄生参数的关系,提出了通过改善欧姆接触工艺和优化材料结构设计等方法以进一步提升PHEMT器件低噪声性能,并在此基础上确定了PHEMT器件低噪声工作点,用于本次分布式前置放大电路设计,测试结果证明了上述噪声分析的有效性;
     (6)深入研究了MSM光探测器热电子发射模型,从理论上解释了GaAs MSM光探测器的基本工作模式,得出三点重要结论:①器件暗电流取决于金属-半导体接触界面的空穴势垒高度以及外加偏置条件;②光探测器工作速率受外加偏置影响较大,器件正常工作电压应位于平带电压与击穿电压之间;③平带电压由材料掺杂浓度和电极间距决定的特点具有重要意义;
     (7)对MSM光探测器在片测试结果进行了深入分析,得出低场暗电流为欧姆传导电流、高场暗电流为SiN介质Fowler-Nordhem隧穿电流的结论,初步解释了单片OEIC光接收机前端噪声偏大的原因,对于今后优化相关工艺条件,改善单片OEIC器件性能具有重要意义。
Monolithic Optoelectronic Integrated Circuits (OEIC) partially or fully integrate the optoelectronic devices, such as lasers or photodetectors, and the electronic devices or circtuits, such as drivers, preamplifiers, limiting amplifiers, clock and data recovery circuits and so on, onto a single substrate to minimize the adverse influences on the performances of the integrated unit due to the interconnections between devices, which will also benefit the reliability of the integrated unit and the realization of miniaturization and light-weighting, and so, OEIC will be very widely used in the fields of long haul and large capacity optical fiber communication, free space optical communication, optical access network, large scale parallel optical interconnection, optical switch, optical storage, satellite-borne optoelectronic system, microminiaturized optoelectronic sensor, and so on. Considerable interests has been focused on monolithic OEIC some developed countries such as the United States of America, Germany, Japan, and so on, and the outcomes are very advanced, some of which have already been commercialized.
     Due to the potential applications of monolithic OEIC and the very large gap between the researches in our homeland and those in the countries mentioned above, three projects about monolithic OEEC optical receiver front end have been carried out in our laboratory. Finally, we get some innovative results, which set a new record in our country and lay good foundations for future researches aiming at higher performances and practical uses. The main achievements and relative contents are listed below:
     1) The first 5Gb/s monolithic optical receiver front end chip in our country has been developed, which consists of a Metal-Semiconductor-Metal (MSM) photodetector and a distributed preamplifier based on Pseudomorphic High Electron Mobility Transistors (PHEMT) on a GaAs substrate. The material epitaxy and device fabrication are fully based on domestic technologies.
     2) As the key problem to monolithic OIEC device fabrication, the compatibility between mesa process and GaAs PHEMT MMIC process has been resolved, which consists of the formation of MSM photodetector mesa with precise height and smooth working face by Reactive Ion Etching, interdigital electrodes metallization and lifting off, and the interconnections between mesa and planar devices.
     3) The first distributed preamplifier with 20GHz bandwidth based on 0.5μm GaAs PHEMT technology in our country has been demonstrated. The ratio of bandwidth to PHEMT characteristic frequency reaches about 2/3, and the minimal noise figure and the average equivalent input noise current density keep as low as 3.03dB and 14.6pA/(Hz)~(1/2), respectively. The output 1dB power compress point is 13.7dBm, and the preamplifier has a good functional mode under the input signal of 10Gb/s NRZ pseudo-random bit sequences.
     4) As the key technologies to 0.5μm T gate GaAs PHEMT, ohmic contact and Schottky barrier processes are emphasized, the fabricated PHEMT die has a gain of 12 ~ 4dB in the range of 50MHz~26.5GHz, with the characteristic frequency and the max oscillation frequency of 32GHz and over 80GHz, respectively.
     5) The noise performance of the PHEMT device is investigated in detail. The dependences of minimum noise figure F_(min), equivalent noise conductance g_n and optimum input impedance Z_(opt) on the intrinsic and parasitic parameters of PHEMT have been discussed, and the low noise working point is also determined, which is used for the design of distributed preamplifier. The final measured results show that the noise analyses mentioned before are valid.
     6) The thermionic emission model of MSM photodetector are studied in detail, and the fundamental working mode of GaAs MSM photodetector are explained, resulting to three important conclusions: a) the dark current is determined by the hole barrier at the metal-semiconductor interface and bias. b) The working speed of MSM photodetector is strongly influenced by bias, and the normal bias should be in the range of flat-band voltage and breakdown voltage. c) The fact that the flat-band voltage is determined by the dopant concentration and interdigital electrode space is important to practical application.
     7) The on-wafer measured results of MSM photodetector are analyzed in detail, resulting to the conclusion that the dark current mechanism at low electrical field is ohmic conductance, while at high field, the dark current comes from the Fowler-Nordhem tunneling of traped electrons in SiN dielectric film. Based on this result, the somewhat larger noise current in monolithic OEIC front end can be explained roughly, which is important to the optimization of relative process for a better noise performance.
引文
[1]Mark A,Chris L,Serge M,et al.Digital optical networks using photonic integrated circuits (PICs) address the challenges of reconfigurable optical networks.IEEE Communications Magazine,2008,46(1):35-43
    [2]Kato M,Nagarajan R,Pleumeekers J,et al.40-channel transmitter and receiver photonic integrated circuits operating at per channel data rate 12.5 Gbit/s.Electron.Lett.,2007,43(8):468-469
    [3]Nagarajan R,Joyner C H,Schneider R P,et al.Large-scale photonic integrated circuits.2005,11(1):50-65
    [4]Yonezu H,Furukawa Y,Wakabara A.Epitaxial Growth of(In)GaPN Systems for Monolithic Optoelectronic Integrated Circuits on Si Substrates.IEEE 19th International.Conference on Indium Phosphide & Related Materials,2007:451-453
    [5]Kashio N,Kurishima K,Sano K,et al.100-GHz Optoelectronic Integrated Circuits Using InP HBTs and a UTC-PD.2005 International Conference on Indium Phosphide and Related Materials,2005:590-593
    [6]Mekonnen G G,Bach H G,Beling A,et al.80-Gb/s InP-based waveguide-integrated photoreceiver.IEEE J.Sel.Topics in Quantum Electron.,2005,11(2):356-360
    [7]Seidl C,Schatzmayr H,Sturm J,et al.A Programmable OEIC for Laser Applications in the Range from 405 nm to 780 nm.Proceedings of ESSCIRC,Grenoble,France,2005:439-442
    [8]Leven A,Lin J,Kondratko P,et al.An InP-based OEIC for Optical Arbitrary waveform Generation.Compound Semiconductor Integrated Circuit Symposium,2005:299-301
    [9]Kieschnick K,Zimmermann H.High-sensitivity BiCMOS OEIC for optical storage systems.IEEE J.Solid-State Circuits,2003,38(4):579-584
    [10]小林功郎.光集成器件.北京:科学出版社,2002.
    [11]行松健一.光开关与光互联.北京:科学出版社,2002
    [12]Laursen K,Yuen C,Chu D.Design high-speed MMICs and OEICs for 10 Gb/s and 40 Gb/s optical transponder front-ends.IEEE GaAs Digest,2002:221-224
    [13]Wong H.Recent developments in silicon optoelectronic devices.Microelectronics Reliability, 2002,42:317-326
    [14]Emura K.Technologies for making full use of high-speed IC performance in the development of 40-Gb/s optical receivers.Solid-State Electronics,1999,43:1613-1618
    [15]Davies G J,Duncan W J,Skevington P J,et al.Selective area growth for opto-electronic integrated circuits(OEICs).Materials Science and Engineering,1991,B9:93-100
    [16]Valette S,Jadot J P,Gidon P,et al.Si-based integrated optics technologies.Solid State Technol.,1989,32(2):69-75
    [17]Suzuki A,Kasdahara K,Shikada M.InGaAsP/InP long wavelength optoelectronic integrated circuits(OEIC's) for high-speed optical fiber communication systems.J.Lightwave technol.,1987,5(10):1479-1487
    [18]Wada O,Sakurai T,Nakagami T.Recent progress in optoelectronic integrated circuits (OEIC's).IEEE J.Quantum Electron.,1986,22(6):805-821
    [19]Alexander S B.Optical Communication Receiver Design.Washington:SPIE,1997.
    [20]Zimmermann H,Kieschnick K,Heise M,et al.High-Bandwidth BiCMOS OEIC for Optical Storage Systems.1999 IEEE International Solid-State Circuits Conference,1999:384-385
    [21]Lee C P,Margalit S,Ury I,et al.Integration of an injection laser with a gunn oscillator on a semi-insulating GaAs substrate.Appl.Phys.Lett.,1978,32(12):806-807
    [22]Yust M,Chaim N B,Izadpanah S H,et al.A monolithically integrated optical repeater.Appl.Phys.Lett.,1979,35(10):795-797
    [23]Koren U,Yu K L,Chert T R,et al.Monolithic integration of a very low threshold GaInAsP laser and metal-insulator-semiconductor field-effect transistor on semi-insulating InP.Appl.Phys.Lett.,1982,40(8):643-645
    [24]Yamakoshi S,Sanada T,Wada O,et al.AIGaAs/GaAs multiquantum-well(MQW) laser applied to monolithic integration with FET driver.Electron.Lett.,1983,19(24):1020-1021
    [25]Nakano H,Yamashita S,Tanaka T,et al.Monolithic integration of laser diodes,photomonitors and laser driving and monitoring circuits on a semi-insulating GaAs.J.Lightwave Technol.,1986,4(6):574-582
    [26]Wada O,Nobuhara H,Sahara T,et al.Optoeletronic integrated four-channel Transmitter array incorporating A1GaAs/GaAs quantum-well lasers.J.Lightwave Technol.,1989,7(1):189-197
    [27]Lo Y H,Grabbe P,Iqbal M Z,et al.Multigigabit/s 1.5 pan λ/4-shifted DFB OEIC transmitter and its use in transmission experiments.IEEE Photon.Technol.Lett.,1990,2(9):673-674
    [28]Liou K Y,Chandrasekhar S,Dentai A G,et al.A 5 Gb/s Monolithically Integrated Lightwave 1.5μm Multiple Quantum Well Laser and HBT Driver Circuit.IEEE Photon.Technol.Lett.,1991,3(10):928-930
    [29]Hornung J,Wang Z G,Bronner W,et al.7.4 Gbit/s monolithically integrated GaAs/AIGaAs laser driver structure.Electron.Lett.,1993,29(19):1694-1696
    [30]李献杰,曾庆明,徐晓春,等.1.25 Gb/s InP基多量子阱激光器与HBT驱动电路的单片集成.半导体学报,2002,23(5):468-472
    [31]Takeuchi H,Tsuzuki K,Sato K,et al.Very high-speed light-source module up to 40 Gb/s containing an MQW electroabsorption modulator integrated with a DFB laser.IEEE J.Sel.Topics in Quantum Electron.,1997,3(2):336-343
    [32]Feng H,Makino T,Ogita S,et al.40 Gb/s Electroabsorption modulator-integrated DFB laser with optimized design.Tech.Dig.Opt.Fiber Commun.Conf.(OFC),2002:340-341
    [33]Kawanishi H,Suzuki T,Nakamura K,et al.1.3μm EAM-integrated DFB lasers for 40 Gb/s very-short-reach application.Tech.Dig.Opt.Fiber Commun.Conf.(OFC),2003,1:270-271
    [34]Fukano H,Akage Y,Kawaguchi Y,et al.Low Chirp Operation of 40 Gbit/s Electroabsorption Modulator Integrated DFB Laser Module With Low Driving Voltage.IEEE J.Sel.Topics in Quantum Electron.,2007,13(5):1129-1134
    [35]Yang J,Bhattacharya P,and Zhuang Wu.Monolithic integration of InGaAs-GaAs quantum-dot laser and quantum-well electroabsorption modulator on silicon.IEEE Photon.Technol.Lett.,2007,19(10):747-749
    [36]孙长征,熊兵,王健,等.基于同一外延层结构的10Gb/s单片集成光发射模块.半导体学报,2005,26(4):663-666
    [37]Wada O,Hamaguchi H,Miura S,et al.Monolithic PIN/preamplifier circuit integrated on a GaAs substrate.Electronics Letters,1983,19(24):1031-1032
    [38]Makiuchi M,Hamaguchi H,Kumai T,et al.Monolithic four-channel photoreceiver integrated on a GaAs substrate using metal-semiconductor-metal photodiodes and FET's.IEEE Electron Device Lett.,1985,6(12):634-635
    [39]Wang H,Ankri D.Monolithic integrated photoreceiver implemented with GaAs/GaAlAs heterojunction bipolar phototransistor and transistors.Electron.Lett.,1986,22(7):391-393
    [40]Harder C S,Zeghbroeck B V,Meier H,et al.5.2-GHz bandwidth monolithic GaAs optoelectronic receiver.IEEE Electro.Device Lett.,1988,9(4);171-173
    [41]Hurm V,Rosenzweig J,Ludwig M,et al.8.2 GHz bandwidth monolithic integrated optoelectronic receiver using MSM photodiode and 0.5 μm recessed-gate AlGaAs/GaAs HEMTs. Electron. Lett., 1991,27(9): 734-735
    [42] Wang J S, Shih C G, Chang W H, et al. 11 GHz bandwidth optical integrated receivers using GaAs MESFET and MSM technology. IEEE Photon. Technol. Lett., 1993,5(3): 316-318
    [43] Kawamura H, Suematsu E, Imai N. A 45-50 GHz monolithically integrated FET/MSM OEIC receiver. Proc. 25th Eur. Microwave Conf., Bologna, Italy, 1995:990-995.
    [44] Hurm V, Benz W, Berroth M, et al. 20 Gbit/s fully integrated MSM-photodiode A IGaAs/GaAs-HEMT optoelectronic receiver. Electron. Lett., 1996,32(7): 683-684
    [45] Hietala V M, Chun C, Laskar J, et al. Two-dimensional 8×8 photoreceiver array and VCSEL drivers for high-throughput optical data links. IEEE J. Solid-State circuits, 2001, 36(9):1297-1302
    [46] Hurm V, Benz W, Bronner W, et al. 40 Gbit/s 1.55 μm pin-HEMT photoreceiver monolithically integrated on 3in GaAs substrate. Electron. Lett., 1998,34(21): 2060-2062
    [47] Baeyens Y, Leven A, Bronner W, et al. Millimeter-wave long-wavelength integrated optical receivers grown on GaAs. IEEE Photon. Technol. Lett., 1999,11(7): 868-870
    [48] Zhang Y, Whelan C S, Leoni R, et al. 40-Gbit/s OEIC on GaAs substrate through metamorphic buffer technology. IEEE Electron Device Lett., 2003,24(9): 529-531
    [49] Crow J D, Anderson C J, Bermon S, et al. A GaAs MESFET IC multiprocessor networks. IEEE Trans. Electron. Devices, 1989,26(3): 362-267
    
    [50] Shih C G, Barlage D, Wang J S, et al. Design and fabrication of 5 Gb/s fully integrated OEIC receivers using direct ion implanted GaAs MESFET-MSM. IEEE MTT-S Digest, 1994,3:1379-1382
    [51] Lao Z, Hurm V, Bronner W, et al. 20-Gb/s 14-kΩ transimpedance long-wavelength MSM-HEMT photoreceiver OEIC. IEEE Photon. Technol. Lett., 1998,10(5): 710-712
    [52] Lang M, Bronner W, Benz W, et al. Complete monolithic integrated 2.5 Gbibs optoelectronic receiver with large area MSM photodiode for 850 nm wavelength. Electron. Lett., 2001,37(20): 1247-1249
    
    [53] Geib K M, Choquette K D, Serkland D K, et al. Fabrication and performance of two-dimensional matrix addressable arrays of integrated vertical-cavity lasers and resonant cavity photodetectors. IEEE J. Sel. Topics Quantum Electron., 2002,8(4): 943-947
    
    [54] Stach M, Rinaldi F, Chandran M, et al. Bidirectional optical Interconnection at Gb/s data rates with monolithically integrated VCSEL-MSM transceiver chips. IEEE Photon. Technol. Lett., 2006,18(22):2386-2388
    [55]Xianjie Li,Jinping Ao,Rong Wang,et al.An 850 nm wavelength monolithic integrated photoreceiver with a single-power-supplied transimpedance amplifier based on GaAs PHEMT technology.IEEE GaAs Digest,2001:65-68
    [56]敖金平,刘伟吉,李献杰,等.单片集成长波长光接收机.半导体光电,2002,23(1):26-28
    [57]焦世龙,陈堂胜,叶玉堂等.5 Gb/s单片集成GaAs MSM/PHEMT 850 nm光接收机前端.半导体学报,2007,28(4):587-591
    [58]Sze S M.Physics of Semiconductor Devices.New York:John Wiley & Sons,1981
    [59]Baca A G,Ashby C I H.Fabrication of GaAs devices.London:The Institution of Electrical Engineers,2005
    [60]Bethe H A.Theory of the boundary layer of crystal rectifier.MIT Radiat.Lab.Rep.,1942:43-12
    [61]Sze S M,Coleman D J,loya A.Current transport in metal-semiconductor-metal structure.Solid-State Electron.,1971,14(12):1209-1218
    [62]Gibbons G,Sze S M.Avalanche breakdown in read diodes and pin diodes.Solid-State Electron.,1968,11(2):225-232
    [63]Jang J H,Cueva G,Hoke W E,et al.Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction P-i-I-N photodiodes.J.Lightwave Technol.,20(3):507-514,2002
    [64]Wey Y G,Giboney K,Bowers J,et al.110 GHz GaInAs/InP double Heterostructure p-i-n photodetector.J.Lightwave Technol.,1995,13(7):1490-1499
    [65]Ito M,Wada O.Low dark current GaAs Metal-Semiconductor-Metal(MSM) photodiodes using WSix contacts.IEEE J.Quantum Electron.,1986,22(7):1073-1077
    [66]Lim Y C,Moore R A.Properties of Alternately Charged Coplanar Parallel Strips by Conformal Mappings.IEEE Trans.Electron Devices,1968,15(3):173-180
    [67]Hilberg W.From approximations to exact relations for characteristic impedances.IEEE Tram.Microwave Theory Tech.,1969:17(5):259-265
    [68]Bottcher E H,Kuhl D,Hieronymi F,et al.Ultrafast semiinsulating InP:Fe-InGaAs:Fe-InP:Fe MSM photodetectors:modeling and performance.IEEE J.Quantum Electron.,1992,28(10):2343-2357
    [69]Sellina P J,Buttara C M,Manolopoulosa S,et al.Charge collection response of SI GaAs p-i-n detectors.IEEE Trans.Nuclear Science,1995,42(4):247-253
    [70] Soole J B D, Schumacher H. Transit-time limited frequency response of InGaAs MSM photodetectors. IEEE Trans. Electron Devices, 1990,37(11): 2285 -2291
    [71] Koscielniak W C, Pelouard J L, Littlejohn M A. Dynamic behaviour of photocarriers in a GaAs metal-semiconductor-metal photodetector with sub-half-micron electrode pattern. Appl.Phys. Lett., 1989,54(6): 567-569
    [72] Lee D H, Sheng S L, Lee S, et al. A study of surface passivation on GaAs and In_(0.53)Ga_(0.47)As Schottky-barrier photodiodes using SiO_2, SiN_4 and Polyimide. IEEE Trans. Electron Devices,1988,35(10): 1695-1696
    [73] Sze S M. Current transport and maximum dielectric strength of silicon nitride films. J. Appl.Phys., 1967,38(7): 2951-2955
    [74] Mohammad S N, Tao M, Park D G, et al. Composition and conduction properties of silicon nitrides deposited by plasma-enhanced ultra-high-vacuum chemical vapour deposition. Phil.Mag.B, 1996,73(5): 817-831
    [75] Vila M, Prieto C, Ramirez R. Electrical behavior of silicon nitride sputtered thin films. Thin Solid Films, 2004,459:195-199
    [76] Xiumiao Zhang, Guohua Shi, Ailing Yang, et al. The correlations between properties of plasma-enhanced chemically vapour deposited silicon nitride and the depositon conditions.Thin Solid Films, 1992,215:134-141
    [77] Hugon M C, Delmotte F, Agius B. High density plasma deposition of device quality silicon nitride. II. Effects of thickness on the electrical properties. J. Vac. Sci. Technol. B, 1999,17(4), 1430-1434
    [78] Mangalaraj D, Radhakrishnan M, Balasubramanian G. Electrical conduction and breakdown properties of silicon nitride films. J. Materials Science, 1982,17(5): 1474-1478
    [79] Gould R D, Awan S A. DC conductivity in RF magnetron sputtered gold-silicon nitride-gold sandwich structures. Thin Solid Films, 2001,398-399:454-459
    [80] Allers K H. Prediction of dielectric reliability from I-V characteristics: Poole-Frenkel conduction mechanism leading to √ E model for silicon nitride MIM capacitor.Microelectronics Reliability, 2004,44(3): 411-423
    
    [81] Parsons G N, Souk J H, Batey J. Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition. J. Appl. Phys., 1991, 70(3):1553-1560
    [82] Lampert M A. Volume-controlled current injection in insulators. Rep. Prog. Phys., 1964, 27: 329-367
    [83]Awan S A,Gould R D,Gravano S.Electrical conduction processes in silicon nitride thin films prepared by r.f.magnetron sputtering using nitrogen gas.Thin Solid Films,1999,355-356:456-460
    [84]Ma T P.Gate dielectric properties of silicon nitride films formed by jet vapor deposition.Applied Surface Science.1997,117JI118:259-267
    [85]Jackie C,Wong H,Poon M C,et al..Oxynitride gate dielectric prepared by thermal oxidation of low-pressure chemical vapor deposition silicon-rich silicon nitride.Microelectronics Reliability,2003,43(4):611-616
    [86]Ongaro R,Pillonnet A.Generalized Poole-Frenkel(PF) effect with donor distributed in energy.Roy.Phys.Appl.1989,24(12):1097-1110
    [87]Kol'Dyaev Ⅵ.Nonlinear Frenkel and Poole effects.Phil.Mag.B,1999,79(2):331-342
    [88]Harrell W R,Frey J.Oberservation of Poole-Frenkel effect saturation in SiO_2 and other insulating films.Thin Solid Films 1999,352:195-204
    [89]Ongaro R,Pillonnet A.Poole,-Frenkel(PF) effect high field saturation.Rev.Phys.Appl.,1989,24(12):1085-1095
    [90]Rieh J S,Klotzkin D,Qasaimeh O,et al.Monolithically integrated SiGe-Si PIN-HBT front-end photoreceivers.IEEE Photon.Technol.Lett.,1998,10(3):415-417
    [91]Cowles J,Aitken A L G,Bhattacharya P,et al.7.1 GHz Bandwidth Monolithically Integrated In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As PIN-HBT Transimpedance Photoreceiver.IEEE Photon.Technol.Lett.,1994,6(8):963-965
    [92]DeSalvo G C,Tseng W F,Comas J.Etch rates and selectivities of citric acid/hydrogen peroxide on GaAs,Al_(0.3)Ga_(0.7)As,In_(0.2)Ga_(0.8)As,In_(0.53)Ga_(0.47)As,In_(0.52)Al_(0.48)As,and InP.J.Electrochem.Soc.,1992,139(3):831-834
    [93]Juang Y Z,Su Y K,Shei S C,et al.Comparing reactive ion etching of Ⅲ-Ⅴ compounds in Cl_2/BCl_3/Ar and CCl_2F_2/BCl_3/Ar discharges.J.Vac.Sci.Technol.A,1994,12(1):75-82
    [94]Ibbotson D E,Flamm D L.Plasma Etching for Ⅲ-Ⅴ compound devices:part Ⅰ.Solid State Technol.,1988,31(10):77-79
    [95]Hilton K P,Woodward J.Via holes for GaAs MMICs fabricated using reactive ion etching.Electron.Lett,1985,21(21):962-963
    [96]Sonek G J,Ballantyne J M.Reactive ion etching of GaAs using BCl3.J.Vac.Sci.Technol.B.1984,2(4):653-657
    [97] Pearton S J, Hobson W S, Abernahy C R, et al. Dry etching characteristics of Ⅲ-Ⅴsemiconductors in microwave BCl_3 discharges. Plasma Chemistry and Plasmaprocessing,1993,13(2): 311-332
    [98] Tamura H, Kurihara H. GaAs and GaAlAs reactive ion etching in BCl_3-Cl_2 mixture. Jap. J.Appl. Phys., 1984,23(9): L731-L733
    [99] Dasaro L A, Butherus A D, Dilorenzo J V, et al. Plasma-etched via connections to GaAs FETs. Inst. Phys. Conf. Ser., 1981,56:267-273
    [100] Pearton S J, Ren F, Katz A, et al. Dry processed, through-wafer via holes for GaAs power devices. J. Vac. Sci. Technol. B, 1993,11(2): 152-158
    [101] Ibbotson D E, Flamm D L. Plasma etching for Ⅲ-Ⅴ compound devices: part Ⅱ. Solid State Technol., 1988,31(11): 105-108,137
    [102] Tokunaga K, Redeker F C, Danner D A, et al. Comparison of Aluminum etch rates in carbon tetrachloride and boron trichloride plasmas. J. Electrochem. Soc., 1981,128(4): 851-855
    [103] McNevin S C, Becher G E. Investigation of the kinetic mechanism for the ion-assisted atching of GaAs in Cl_2 using a modulated ion beam. J. Appl. Phys., 1985,58(12): 4670-4678
    [104] Balooch M, Olander D R. The thermal and ion-assisted reactions of GaAs(100) with molecular chlorine. J. Vac. Sci. Technol. B, 1986,4(4): 794-805
    [105] Franz G, Hoyler C. Reactive ion etching GaAs and AlAs: Kinetics and process monitoring. J. Vac. Sci. Technol. B, 1996,14(1): 126-131
    [106] McNevin S C. A thermochemical model for the plasma etching of aluminum in BCl_3/Cl_2 and BBr_3/Br_2. J. Vac. Sci. Technol. B, 1990,8(6): 1212-1221
    [107] Donnelly V M, Flamm D L. Anisotropic etching in chlorine-containing plasmas. Solid State Technol., 1981,24(4): 161-166
    
    [108] Norheden K J, Ferguson D W, Smith P M. Reactive ion etching of via holes for GaAs high electron mobility transistors and monolithic microwave integrated circuits using Cl_2/BCl_3/Ar gas mixtures. J. Vac. Sci. Technol. B, 1993,11(5): 1879-1883
    [109] Pearton S J. Dry-etching techniques and chemistries for III-V semiconductors. Materials Science and Engineering, 1991,10(3): 187-196
    [110] Pang S W. Surface Damage in III-V Devices by Dry Etching. The 3th International Symposium on Plasma Process-Induced Damage, 1998: 50-55
    
    [111] Dingle R, Stormer H L, Gossard A C, et al. Electron mobilities in modulation-doped semiconductor heterojunction superlattice. Appl. Phys. Lett., 1978,33(7): 665-667
    [112]HiyamizuSetal S,Mimura T,Fujii T,et al.High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface.Appl.Phys.Lett.,1980,37(11):805-807
    [113]Mimura T,Hiyamizu S,Fujii T,et al.A new field-effect transistor with selectively doped GaAs/n-Al_xGa_(1-x)As heterojunctions,Jap.J.Appl.Phys.1980,19(5):L225-227
    [114]D.Delagebeaudeuf,P.Delescluse,P.Etienne,et al.Two-dimensional electron gas MESFET structure.Eeleetron Lett.1980,16(17):667-668
    [115]Moll N,Hueschen M R,Colbrie A F.Pulse-Doped AlGaAs /InGaAs Pseudomorphic MODFET's.IEEE Trans.Electron Devices,1988,35(7):879-886
    [116]Rosenberg J J,Benlamri M,Kirchner P D,et al.An In_(0.15)Ga-(0.85)As/GaAs pseudomorphic single quantum well HEMT.IEEE Electron Device Lett.,1985,6(10):491-493
    [117]Ketterson A,Moloney M,Mnsselink W T,et al.High Transeonductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors.IEEE Electron Device Lett.,1985,6(12):628-630
    [118]Pearsall T P,Hendel R,O'Connor P,et al.Selectively-doped Al_(0.48)In_(0.52)As/Ga_(0.47)In_(0.53)As heterostructure field effect transistor.IEEE Electron Device Lett.,1983,4(1):5-8
    [119]Kuo J M,Lalvic B,Chang T Y.New pseudomorphic MODFETs utilizing Ga_(0.47)In_(0.53)As/Al_(0.48)In_(0.52)As heterostructures.IEEE Electron Devices Meeting,1986,32:460-463
    [120]Nguyen L D,Brown A S,Thompson M A,et al.50-nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors.IEEE Trans.Electron Devices,1992,39(9):2007-2013
    [121]Kao M J,Hsu W C,Shieh H M,et al.Improved mobilities and concentrations in double quantum well InGaAs/GaAs pseudomorphic HFETs using multi-coupled δ-doped GaAs.Solid-State Electronics,1995,38(6):1171-1173
    [122]Piotrowicz S,Gaquiere C,Bonte B,et al.Best combination between power density efficiency,and Gain at V-Band with an InP-based PHEMT structure.IEEE Microwave and Guided Wave Lett.,1998,8(1):10-12
    [123]Chin A,Liao C C,Tsai C.In_(0.52)Al_(0.48)As/InAs/In_xAl_(1-x)As pseudomorphic HEMT's on InP.IEEE Electron Device Lett.,1997,18(4):157-159
    [124]Nakayama T,Miyamoto H.Modulation doped structure with thick strained InAs channel beyond the critical thickness.J.Cryst.Growth,1999,201-202:782-785
    [125]Lin J C,Chen Y C,Tsai W C.The study of δ-doped InGaP/InGaAs/GaAs pseudomorphic high electron mobility transistor.Microclectronics Journal,2007,38(3):310-315
    [126]Li A Z,Chen Y Q,Chen J X,et al.High-performance enhancement-mode pseudomorphic InGaP/InGaAs/GaAs HEMT structures by gas source molecular beam epitaxy.J.Crystal Growth,2003,251(1-4):816-821.
    [127]Yoon S F,Gay B P,Zheng H Q,et al.0.25-μm gate In_(0.48)Ga_(0.52)P/In_(0.2)Ga_(0.8)As/GaAs pseudomorphic high electron mobility transistors grown by solid-source molecular beam epitaxy.Solid-State Electron.,1999,43(4):785-789
    [128]Ali F,Gupta A.HEMTs and HBTs:Devices,Fabrication,and Circuits.Boston:Artech House,1991
    [129]Cunningham J E,Tsang W T,Schubert E F,et al.Quantum size effect in δ-doped AlGaAs heterostructures.J.Vac.Sci.Technol.B,1985,6(2):599-602
    [130]Schubert E F,Cunningham J E,Tsang W T,et al.Selectively δ-doped Al_xGa_(1-x)As/GaAs heterostructure with high two dimension electron-gas concentrations n_(2DEG)≥1.5×10~(12) cm~(-2) for field effect transistors.Appl.Phys.Lett.,1987,51(15):1170-1172
    [131]Schubert E F,Fischer A,Ploog K.The delta-doped field-effect transistor(δFET).IEEE Trans.Electron Devices,1986,33(5):625-632
    [132]Andersson T G,Chen Z G,Kulakovskii V D,et al.Variation of the critical layer thickness with In content in stained InxGal-xAs quantum wells grown by molecular beam epitaxy.Appl.Phys.Lett.,1987,51(10):752-754
    [133]Nguyen L D,Schaff W J,Tasker P J,et al.Charge control,DC,and RF performance of a 0.35-μm pseudomorphic AIGaAs/InGaAs modulation-doped field-effect transistor.IEEE Trans.Electron Devices,1988,35(2):139-144
    [134]Ando Y,Itoh T.Analysis of charge control in pseudomorphic two-dimensional electron gas field-effect transistors.IEEE Trans.Electron Devices,1988,35(12):2295-2301
    [135]Mead C A.Metal-semiconductor surface barriers.Solid-State Electron.,1966,9(11-12):1023-1033
    [136]陈堂胜,陈克金.具有扩散阻挡层的n-GaAs欧姆接触.固体电子学研究与进展,1994,14(3):256-259
    [137]H.H.Berger.Models for contacts to planar devices.Solid-state electron.,1972,15(2):145-158
    [138]Ladbrooke P H.MMIC DESIGN:GaAs FETs and HEMTs.Norwood:Artech House,1989
    [139]李辉.GaAs FET在片测试及模型提取技术研究:[硕士学位论文].南京:东南大学,2005
    [140] Wang G W, Eastman L F. An analytical model for Ⅰ-Ⅴ and small-signal characteristics of planar-doped HEMT's. IEEE Trans. Microwave Theory Tech., 1989,37(9): 1395-1400
    [141] Wang G W, Ku W H. An analytical and computer-aided model of the AlGaAs/GaAs high electron mobility transistor. IEEE Trans. Electron Devices, 1986,33(5): 657-663
    [142] Golio J M. Microwave MESFETs & HEMTs. Norwood: Artech House, 1991
    [143] Manku T. Microwave CMOS-Device Physics and Design. IEEE J. Solid-State Circuits, 1999,34(3): 277-285
    [144] Robertson I D, Lucyszyn S. RFIC AND MMIC design and technology. London: The Institute of Electrical Engineers, 2001
    [145] Yang L, Long S I. New method to measure the source and drain resistance of the GaAs MESFET. IEEE Electron Device Lett, 1986,7(2): 75-77
    [146] Dambrine G, Cappy A, Heliodore F, et al. A New method for determining the FET small-signal equivalent circuit. IEEE Trans. Microwave Theory Tech., 1988, 36(7):1151-1159
    [147] Pucel R A, Haus H A, H. Statz. Signal and noise properties of gallium arsenide microwave field-effect transistors. In Advances in Electronics and Electron Physics. NewYork:Academic, 1975,38:195-265
    [148] Cappy A. Noise modeling and measurement techniques. IEEE Trans. Microwave Theory Tech., 1988,36(1): 1-10
    [149] Statz H, Haus H A, Pucel R A. Noise characteristics of gallium arsenide field effect transistors. IEEE Trans. Electron Devices, 1974,21(9): 545-562
    [150] Kim B, Tsemg H Q, Shih H D. Millimeter-wave GaAs FET's prepared by MBE. IEEE Electron Device Lett., 1985,6(1): 1-2
    [151] Chye P W, Huang C. Quarter-micron low noise GaAs FET's. IEEE Electron Device Lett.,1982, 3(12): 401-403
    [152] Rudolph M, Doerner R, Heymann P, et al. Direct extraction of FET noise models from noise figure measurements. IEEE Trans. Microwave Theory Tech., 2002,50(2): 461-464
    [153] Heymann P, Rudolph M, Prinzler H, et al. Experimental evaluation of microwave field-effect transistor noise models. IEEE Trans. Microwave Theory Tech., 1999,47(2): 156-162
    [154] Garuso G, Sannino M. Computer aided determination of microwave two port noise parameters. IEEE Trans. Microwave Theory Tech., 1978,26(9): 639-643
    [155] Lazaro A, Pradell L, Beltran A, et al. Direct extraction of all four transistor noise parameters from 50 noise figure measurements.Electron.Lett.,1998,34(3):289-291
    [156]Jeon J,Kwon Y,Min H S.A physics-based GaAs PHEMT noise model for low drain bias operation using characteristic potential method.IEEE Microwave and Wireless Components Letters,2002,12(9):344-342
    [157]Pospieszalski M W,Niedzwieki A C.FET noise model and on-wafer measurement of noise parameters.IEEE MTT-S,1991,3:1117-1120
    [158]Gupta M S,Greiling P T.Microwave noise characterization of GaAs MESFET's:determination of extrinsic noise parameters.IEEE Trans.Microwave Theory Tech.,1988,36(4):745-751
    [159]Podell A F.A functional GaAs FET noise model.IEEE Trans.Electron Devices,1981,28(5):511-517
    [160]Fukui H.Optimal noise figure of microwave GaAs MESFET's.IEEE Trans.Electron Devices,1979,26(7):1032-1037
    [161]Delagebeaudeuf D,Chevrier J,Laviron M,et al.A new relationship between the Fukui coefficient and optimal current value for low-noise operation of field-effect transistors.IEEE Electron Device Lett.,1985,6(9):444-445
    [162]Shibata T,Kimura S,Kimura H,et al.A design technique for a 60 GHz-bandwidth distributed baseband amplifier IC module.IEEE J.Solid-State Circuits,1994,29(12):1537-1544
    [163]Beyer J B,Prasad S N,Becher R C,et al.MESFET distributed amplifier design guidelines.IEEE Trans.Microwave Theory Tech.,1984,32(3):268-275
    [164]Shigematsu H,Sate M,Suzuki T,et al.A 49-GHz preamplifier with a transimpedance gain of 52 dB using InP HEMT's.IEEE J.Solid-State Circuits,2001,36(9):1309-1313
    [165]Freundorfer A P and Nguyen T L.Noise in distributed MESFET preamplifiers.IEEE J.Solid-State Circuits,1996,31(8):1100-1111
    [166]Yuen C,Nishimoto C,Pao Y C,et al.High.gain,low-noise monolithic HEMT distributed amplifiers up to 60 GHz.IEEE Trans.Microwave Theory Tech.,1990,38(12):2016-2017
    [167]Fraywe J P,Viaud J P,Campovecchio M,et al.A 2W,high efficiency,2-8 GHz,Cascode HBT MMIC power distributed amplifier.IEEE MTT-S Digest,2000,1:529-532
    [168]Agostino S D,Paoloni C.Design of high-performance power-distributed amplifier using lange couplers.IEEE Trans.Microwave Theory Tech.,1994,42(12):2525-2530
    [169]Tang O S A,Aitchison C S.A very wide-band microwave MESFET mixer using the distributed mixing principle.IEEE Trans.Microwave Theory Tech.,1985,33(12):1470-1478
    [170]Wu C R,Hsieh H H,Lu L H.An ultra-wideband distributed active mixer MMIC in 0.18μm CMOS technology.IEEE Trans.Microwave Theory Tech.,2007,55(4):625-632
    [171]Deng K L,Wang H.A miniature broad-band pHEMT MMIC balanced distributed doubler.IEEE Trans.Microwave Theory Tech.,2003,51(4):1257-1261
    [172]Tang Y L,Chen P Y,Wang H.A broadband PHEMT MMIC distributed doubler using high-pass drain line topology.IEEE Microwave and Wireless Components Lett.,2004,14(5):201-203
    [173]Barta G S.Surface-mounted GaAs active splitter and attenuator MMIC's used in a 1-10 GHz leveling loop.IEEE Trans.Electron Devices,1986,33(12):2100-2106
    [174]Ito Y.Distributed and lossy match active power splitters using bridged-T low-pass filter networks.IEEE MTT-S Digest,1990,3:1089-1092
    [175]Ahy R M.4-40 GHz MMIC distributed active combiner with 3 dB gain.Electron.Lett.,1992,28(8):739-741
    [176]Safarian A,Zhou L,Heydari P.CMOS distributed active power combiners and splitters for multi-antenna UWB beamforming Transceivers.IEEE J.Solid-State Circuits,2007,42(7):1481-1491
    [177]Robertson I D,Aghvami A H.A novel wideband MMIC active balun.Proceedings of 20th Europen Microwave Conference,Budapest,Hungary,1990
    [178]Tajima Y,Titus W,Mozzi R,et al.Broadband GaAs FET 2×1 switches.IEEE GaAs Digest,1984:81-84
    [179]Ko W,Kwon Y.Improved noise analysis of distributed preamplifier with easeode FET cells.IEEE Trans.Microwave Theory Tech.,2005,53(1):361-371
    [180]Kayali S,Ponchak G,Shaw R.GaAs MMIC reliability assurance guidelines for space applications.Pasadena:Jet Propulsion Lab.,1996
    [151]Park M S.Minasian R A.Ultra-low-noise and wideband-tuned optical receiver synthesis and design.IEEE J.Lightwave Technol.,1994,12(2):254-259
    [182]Ravender Goyal.Monolithic Microwave Integrated Circuits:Technology and Design.New York:Arteeh House,1989,82-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700