三维电极处理几种模拟有机废水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机物是对水质和水生态环境影响最严重的污染物之一,有机物污染是目前全球水污染最典型的特征,它不仅带来了一系列的环境问题,还严重危害人们生活和身体健康。因此,有机废水的治理已经成为现阶段环境保护领域亟待解决的问题。三维电极处理有机废水有很高的电流效率和很好的水处理效果,但目前技术还不成熟,有很多问题有待解决,如对粒子电极及主电极的研究和优选、各项操作参数的优化还缺乏系统深入研究,对电化学反应历程、有机物降解的机理还没有统一认识等,因此,开展三维电极处理有机废水研究具有重要意义和价值。本论文主要研究了三维电极处理模拟有机废水的效果、降解有机物的机理、降解规律、降解反应过程动力学,同时还对三维电极与Fenton试剂法联用技术进行了研究。论文的主要研究内容和结果包括:
     1.三维电极处理模拟PAM废水的实验研究
     (1)为了研究三维电极的主电极和粒子电极,进行了去除模拟PAM废水COD效率对比实验及电镜扫描实验,结果表明,用不锈钢作三维电极的主电极对废水COD去除效率最高,不锈钢材料耐蚀性能最好;三维电极中填充的活性炭确实成了粒子电极。(2)通过研究影响三维电极去除废水中PAM各种因素发现,三维电极对PAM废水COD的去除效率受主电极材料、主电极间距、电解时间和电解电流等的显著影响;三维电极在最佳条件降解0.1%PAM模拟废水有很好的效果,废水COD值由初始的1120mg/L降低到96mg/L,COD去除率达到了91%,废水中PAM含量也由1000mg/L降低到47mg/L,三维电极降解0.1%PAM废水的动力学反应为二级。
     2.三维电极降解废水中PAM机理研究
     为了弄清三维电极降解PAM的机理,分析了处理后水样中不溶物的红外光谱及CO32-、HCO3-,并采用Ti(Ⅳ)-5-Br-PADAP法和比色法检测了处理后水样中的H2O2及·OH自由基,结果表明,不溶物是PAM发生分子内反应生成的环状酰亚胺结构产物;处理后水样中有HCO3-、H2O2和·OH,说明有PAM分子被彻底降解为CO2、H2O,不溶物和H2O2及·OH都是废水中PAM浓度和COD降低的原因。最后推导了·OH自由基降解PAM的可能反应历程。
     3、三维电极处理L-亮氨酸废水研究
     (1)研究了L-亮氨酸模拟废水COD与其降解率关系,结果表明,三维电极对1.0g/L的模拟废水中L-亮氨酸降解率越大,COD去除率也越大。
     (2)三维电极电位分布研究结果表明,反应器中电位分布是不均匀的,它受废水浓度、主电极材料、电解槽端电压等的显著影响,并且与COD去除率有关。
     (3)研究了各因素对三维电极处理L-亮氨酸模拟废水效率的影响。在由正交试验得到的填充活性炭和陶粒时三维电极处理1.0g/L L-亮氨酸模拟废水的最佳操作条件下,COD去除率分别为90%和88%。三维电极处理低浓度和高浓度L-亮氨酸废水时,降解反应分别为一级反应和零级反应。
     4、三维电极方法处理多组分氨基酸废水研究
     (1)三维电极处理多组分氨基酸废水规律研究表明,多组分氨基酸废水体系总降解率越大,其COD去除率也越大;各组分去除难度由大到小依次为:L-亮氨酸>L-酪氨酸>L-精氨酸>L-组氨酸>L-半胱氨酸;
     (2)处理多组分氨基酸混合废水实验表明,二组分混合时,L-亮氨酸与L-半胱氨酸或L-酪氨酸混合时的降解率为最高或最低,废水COD去除率相应的为最高或最低;三组分混合时,L-亮氨酸+L-酪氨酸+L-半胱氨酸混合废水总降解率(55%)、COD去除率(90%)都大于L-亮氨酸+L-酪氨酸+L-精氨酸混合废水总降解率(38%)和COD去除率(84%);四、五组分氨基酸混合时,四组分总的降解率、COD去除率分别为51%、88%,均大于五组分总降解率47%、COD去除率86%;
     (3)分析了氨基酸的分子结构和·OH自由基与有机物反应的特点,结合氨基酸的前线轨道能隙值的大小,解释了不同氨基酸在相同条件下降解难易程度不同的原因。
     5、三维电极—Fenton试剂法联用技术研究
     研究了多种因素对三维电极—Fenton试剂法联用去除废水COD的影响,在最条件下,二者联用对模拟对苯二酚废水COD去除率达92%。在相同条件下,其处理废水效率高于Fenton法和三维电极法,对废水COD去除率分别为89%、53%和41%,说明三维电极—Fenton试剂法联用具有一定的可行性。
     6、三维电极处理废水可行性研究
     (1)三维电极分别静态处理含氨基酸和含聚合物实际废水,COD去除率分别为68%和83%;动态处理含聚合物实际废水,COD去除率达87%。
     (2)用三维电极静态处理含氨基酸或含聚合物实际废水最高电耗分别为9kW·h/ kgCOD和8kW·h/ kgCOD,时空产率都为3.0kgCOD/h·m3,法拉第电流效率大小分别为1375%和1450%;动态处理含聚合物实际废水最高电耗为12kW·h/ kgCOD,法拉第电流效率为1003%。废水的原始COD越高,法拉第电流效率就越高,最大电耗就越小。
Organic substance is one of the most serious pollutants that affect the water quality and water ecological environment. Pollution caused by organic substance is a typical feature of global water pollution, which not only leads to a series of environmental pollution, but also seriously imperils people’s life and health. As a result, the treatment of organic wastewater has been an urgent problem to be solved. A method of three-dimensional electrode (TDE) which applied to wastewater treatment has high electric current efficiency and desired treatment effect. However, the technique, at present, is immature and there are some key problems to be solved. For example, systematical and thorough research is deficient in the study on the optimization of particle electrode, main electrode and the optimization of various operational parameters.Moreover,an agreement about the reaction process of electrochemistry and the mechanism of TDE degrading organic substance have not been reached. Therefore, a study on TDE treating organic wastewater has tremendous significance and value. This dissertation studies the effect of TDE,degrading mechanism of TDE, degrading regularity of TDE and degrading reaction kinetics when TDE is used to treat simulated organic wastewater. In addition, a TDE-Fenton method is explored in the dissertation. The main research content and research result include:
     1. Experiment of using TDE to treat wastewater containing polyacrylamide(PAM)
     (1) In order to study the main electrode and particle electrode of TDE, the COD removal ratio comparison by experimentally and scanning electron microscopy (SEM) is carried out. The result shows that the main electrodes made of stainless iron have the best COD removal efficiency. Moreover,electrodes made of stainless iron are the most resistive to the corrosion and active carbon packed in TDE has indeed lead to a particle electrode.
     (2) Studying various factors that affect TDE to remove PAM contained in wastewater shows that the COD removal ratio by TDE treating wastewater is significantly influenced by the main electrode material, space between the main electrode, electrolysis time and electrolysis current. Under the optimum operational condition, TDE has a satisfied effect of degrading wastewater containing 0.1% PAM, The COD of simulated wastewater containing 0.1%PAM is reduced from the initial of 1120.0mg/L to 96mg/L, and the COD removal efficiency reaches 91%. Morever PAM containing in wastewater also decreases from 1000mg/L to 47mg/L. The degrading reaction of 0.1%PAM is considered as a second order reaction by using TDE.
     2. Study on mechanism of TDE degrading wastewater containing PAM
     In order to make clear the mechanism of TDE degrading wastewater containing PAM, infrared spectrum of insoluable substance in sample after treatment is analyzed. A method referred to Ti(Ⅳ)-5-Br-PADAP and the colorimeter test for the existence of H2O2 and·OH free radicals in sample after treatment are employed. It is found that the insoluable substance is the formation of imide group via cyclization. The existence of HCO3-, H2O2 and·OH indicates that the PAM molecule is completely degraded into CO2、H2O and that the generation of insoluable substance and H2O2 and·OH are responsible for the decrease of PAM concentration and COD. At last, the possible reaction process of·OH free radical degrading PAM is deduced.
     3. Study onTDE treating L-leucine contained wastewater
     (1)The experiment studies the relationship between the COD removal ratio and L-leucine degrading ratio. It is demonstrated that when TDE treats wastewater containing 1.0g/L leucine, the higher degrading ratio of L-leucine results in, the bigger COD removal efficiency.
     (2) The study on the electric potential distribution of TDE shows that the electric potential distribution is uneven in the reactor, which is significantly affected by the wastewater concentration, main electrode material and the terminal voltage of electrobath has something to do with the COD removal ratio.
     (3) The experiment studies the influence of factors on the treating efficiency of TDE with different packed particles (activate carbon, ceramic particle). Through orthogonal experiment, the optimum operational condition of TDE packed with either activate carbon or ceramic particle is obtained for treating the simulated wastewater containing 1.0g/L- leucine. Under this condition, the COD removal efficiencies are 90% and 88%, respectively. With TDE treating low-concentration and high-concentration wastewater containing L-leucine, the degrading reaction is a first order reaction and a zeroth order reaction, respectively.
     4. Study on TDE treating wastewater containing multi-component amino acid
     (1) The study on TDE treating wastewater containing multi-component amino acid illustrates that the higher the general degraddation ratio of wastewater containing multi-component amino acid is, the higher COD removal efficiency is. The degraddation of different components of amino acid becomes difficult fowling the order from difficult to easy: L-leucine>L-tyrosine>L-arginine >L-histidine>L-cysteine.
     (2) Treating mixed wastewater of containing multi- component amino acid mixed shows that when mixing two-component amino acids, the degrading ratio of L-leucinie mixing with L-cysteine or mixing with L-tyrosine is the highest or the lowest, the COD removal ratio is the highest or the lowest,relevantly. When mixing three-component amino acids, the general degrading ratio (55%) and the COD removal ratio (90%) of wastewater containing L-leucine and L-tyrosine and L-cysteine is higher than those of wastewater containing L-leucine and L-tyrosine and L-arginine. When mixing 4 or 5 component amino acids,the general degrading ratio and COD removal ratio of wastewater containing 4-component amino acids are 51% and 88%, respectively,higher than the degrading ratio 47%and COD removal ratio 86% for 5- component..
     (3)Based on the molecule structure of amino acid, and the feature of the reaction of·OH radical with organic substance, and different energy-gap of frontier orbital of amino acid,the reason why different amino acids in wastewater under the same condition has different degrading effects has been explained.
     5. Study on TDE-Fenton method
     The experiment studies the effect of factors influencing the COD removal ratio of TDE-Fenton method. Under the optimum conditions, the COD removal ratio of TDE-Fenton method treating simulated organic wastewater containing hydroquinone can reach 92%. Under the same conditions, the TDE-Fenton method has a better degrading effect than either Fenton agent or TDE. The COD removal ratios are 89%、53% and 41% for TDE-Fenton,Fenton and TDE,respectively, demonstrating that the TDE-Fenton method has definite a feasibility.
     6. The feasibility study of TDE on teat wastewater
     (1)TDE is used to treat a real wastewater containing amino acid and wastewater containing polymer statically. The COD removal ratios are 68% and 83%,respectively While treating a real wastewater containing polymer dynamically by TDE,the COD removal ratio is 87%.
     (2) When TDE is used to treat a real wastewater containing amino acid and polymer statistically, the maximum electrical consumption is 9kW·h/kgCOD and 8kW·h/kgCOD respectively and the space-time yield is both 3.0kgCOD/h·m3.The Faradic current efficiencies are 13756% and 1450%,respectively. When TDE is utilized to treat the real wastewater containing polymer dynamically, the maximum electrical consumption is 12kW·h/ kgCOD. The Faradic current efficiency is 1003%. Higher the original COD in wastewater is, higher the Faradic current efficiency is, whereas smaller the maximum electrical consumption is.
引文
[1]吴晓芙,胡曰利.有机废水处理中的环境生物技术及其进展.中南林学院学报,2003,23(6):41.
    [2]周明华,吴祖成,汪大翚.电化学高级氧化工艺降解有毒难生化有机废水[J].化学反应工程与工艺,2001,17(3):263-271.
    [3]李炳焕,黄艳娥,刘会媛.电化学催化降解水中有机污染物的研究进展[J].环境污染治理技术与设备,2002,3(2):23-27.
    [4]温东辉,祝万鹏.高浓度难降解有机废水的催化氧化技术发展[J].环境科学,1994,15(5):88-91.
    [5] Do J S,Chen C P. In Situ Oxidative Degradation of Formaldehyde with Electrogenerated Hydrogen Peroxide[J]. J Electrochem Soc.,1993,140:1633.
    [6] Katoh M,Nishiki Y,Nakamatsu S.Polymer Electrolyte-type Electrochemical Ozone Generator with an Oxygen Cathode[J]. J Appl. Electrochem,1994, 24:489.
    [7] J Wu K E Taylor. Optimization of the reaction conditions for enzymatic removalof phenol from waste water in the presence of polyethylene glycol[J]. Water Res.,1993,27:1701-1706.
    [8] Mellor R B. Reduction of nitrate in water by immobilized enzymes[J].Nature, 1992,355(3):717-719.
    [9]符小荣,张校刚.TiO2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学,1997,14(4):77-79.
    [10]陶映初,陶举洲编著.环境电化学[M].北京:化学工业出版社,2003,1-197.
    [11] Vlyssides A.G.. Electrochemical oxidation of a Textile Dye and Finishing Wastewater Using a Pt/Ti Electrode[J]. J Environ. Sci. Health-Environ Sci. Eng.Toxic Hazard Subst Control,1998,33(5):847.
    [12] Li-Choung Chiang. Electrochemical Oxidation Pretreatment of RefractoryOrganic Pollutants[J]. Water Sci. Technol,1997,36(2-3):123.
    [13] Szpyrkowicz L. Electrochemical Treatment of Copper Cyanide Wastewater Using Stainless Steal Electrodes[J]. Water Sci. Technol,1998,38(6):261.
    [14] Li-Choung Chiang.Electrochemical Oxidation Process for the Treatment of CokePlant Wastewater[J]. J Environ. Sci. Health–Environ. Sci. Technol.,1995,30(4):753.
    [15] Su-Moon Park. Electrochemical Destruction of Organic Wastes[J]. J. Environ. Conscious Des. Manuf.,1995,4(3-4):7.
    [16]邓国华.碱木素的电化学氧化研究[J].纤维素科学与技术,1997,5(3):41-46.
    [17]贾金平,杨骥,廖军等.活性炭纤维电极法处理染料废水机理初探[J].环境科学, 1997,18(6):31~34.
    [18]赵少陵,贾金平.活性炭纤维电极法处理印染废水的应用研究[J].上海环境科学, 1997,16(5):24~27.
    [19]陈长春,刘健,方建敏等.电渗析法处理造纸黑液回收碱的试验研究[J].环境污染与防治,1997,19(2):7~10.
    [20]苏宏.电浮选法处理造纸废水的研究[J].环境工程,1990,8(3):1-3.
    [21]马志毅,郜宏漪,刘瑞强.电气浮对水中油类及表面活性剂去除的实验研究[J].水处理技术,1998,24(5):303~307.
    [22]朱又春,吴松平,林建民等.磁电解法处理工业废水过程中的电极行为[J].环境科学,1995,16(5):6~9.
    [23]吴海锁,朱光灿,吕锡武等.微电解工艺在染料废水治理中的应用[J].环境导报, 1999,(2):18~20.
    [24]张天胜,陆海燕,陈欣等.铁屑内电解法处理含酚废水[J].环境保护,1997,(8): 17~20.
    [25]姚培正,岳贝贝,常晓昕等.铁屑-活性炭内电解法处理废水研究[J].环境科学研究,1994,7(3):54~59.
    [26]陈武,李凡修,梅平.废水处理的电化学方法研究进展[J].湖北化工,2001,18(1):10-12.
    [27]彭党聪,金奇庭,张希衡.填充床电极直接氧化含氰废水[J].电镀与环境保护, 1993,13(2):21~25.
    [28] Polcars A M,Palmas S,Renoldi F,et al. On the Performance of Ti/SnO2 and Ti/PbO2 Anodes in Electrochemical Degradation of 2- Chlorophenol for Wastewater Treatment[J]. J. Appl. Electrochem,1999,29:147-151.
    [29] Naumczyk J. Electrochemical treatment of textile wastewater[J]. Water Sci. Technol.,1996,33(7):17~24.
    [30] Simonsson D. Electrochemistry for Cleaner environment[J]. Chemical Society Reviews,1997,26(3):181~190.
    [31] Craig D R. Efficient electrochemical destruction of organic wastes [J]. AEA. Technology,1991,(24):75~78.
    [32] Kotz R,Stuki S,Carcer B. Electrochemical Wastewater Treatment Using High Overvoltage Anodes[J]. J. Appl. Electrochem,1991,21:14-20.
    [33]周军,金奇庭.电解法处理废水的研究进展[J].水处理技术,2000,26(3):130.
    [34] Backhurst J R,Coulson J M,Goodridge F et al. A Preliminary Investigation of Fluidized Bed Electrodes[J].J. Electrochem.Soc.,1969,116:1600-1607.
    [35]崔小明.聚丙烯酰胺生产与消费[J].中国石油和化工,2000,(12):47-48.
    [36]刘海滨.聚丙烯酰氨的性质及应用[J].国外油田工程,2001,17(9):53-54
    [37]汪文.北京建聚丙烯酰胺生产线[J].上海化工,1999,(10):10.
    [38]冈秦麟.论我国的三次采油技术[J].油气采收率技术,1998,5(4):1-7.
    [39] YangCheng-Zhi,HANDa-Kuang.8thEuropean Symposiumon improved Oil Reccovery[C]. Australia:Vienna,1995,568.
    [40]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(3):1-7.
    [41]荆国林,于水利,韩强.聚合物驱采油污水处理技术研究进展[J].工业用水与废水,2004,35(2):16-18.
    [42]王启民.聚合物驱油技术的实践与认识[J].大庆石油地质与开发,1999,18(4):1-5.
    [43]邓述波,周抚生,陈忠喜.聚丙烯酰胺对聚合物驱含油污水中油珠沉降分离的影响[J].环境科学,2002,23(2):69-72.
    [44] Taylor K C,Burke R A. Development of a flow injection analysis method for the determination of acrylamide copolymers in brines[J].Journal of Petroleum Science and engineering,1998,21(2):129-139.
    [45]国家环保局,国家技术监督局.污水综合排放标准(GB8978-1996)[S].北京:中国环境科学出版社,1996.
    [46]中国石油天然气集团公司环境保护公报(1998)年度[J].油气田环境保护,1999, 9(3):7~9.
    [47]王海森.在集团公司安全、环境与健康工作会议上的报告[J].油气田环境保护, 2000,10(2):1~5.
    [48]王大卫.石油工业污染防治技术回顾与展望[J].油气田环境保护,2000,10(4):6-8.
    [49]南玉明,贾辉,郑海洋.聚丙烯酰胺的化学降解研究[J].大庆石油学院学报, 1997,21(1):49-52.
    [50] Junzo Suzuki,Keiko Hukushima,Shizuo Suzuki. Effect of ozone treatment upon biodegradability of water-soluble polymers[J]. Environmental Science & Technology,1978,12(10): 1180-1183.
    [51] Ramsden D K,Mckay K. Polym. Deg. and Stab. [M].Cambrige Univ. Press,London,1986,14:217.
    [52]朱麟勇,常志英,李明宇等.部分水解聚丙烯酰胺在水溶液中的氧化降解(Ⅱ.有机杂质的影响)[J].高分子材料科学与工程,2000,16(2):112-114.
    [53]朱麟勇,常志英,李妙贞等.部分水解聚丙烯酰胺在水溶液中的氧化降解(Ⅰ.温度的影响)[J].高分子材料科学与工程,2000,16(1):113-116.
    [54]王宝辉,孔凡贵,张铁锴等.高铁酸钾氧化去除油田污水中聚丙烯酰胺的研究[J].工业水处理,2004,24(1):21-23.
    [55]陈颖,吴红军,孔凡贵等.高铁酸钾处理含聚合物油田污水的研究[J].工业用水与废水,2004,35(2):29-32.
    [56]陈颖,李金莲,王宝辉等.高铁酸钾滤液氧化降解HPAM的研究[J].化工进展,2005,24(1):68-70.
    [57]陈颖,李金莲,王宝辉等.高铁酸钾滤液对油田三元复合驱模拟污水的降解[J].大庆石油学院学报,2005,29(2):48~51.
    [58]张铁锴,吴红军,王宝辉等.Fenton法去除油田污水中聚丙烯酰胺的可行性分析[J].工业用水与废水,2005,36(3):39-41.
    [59]程林波,张鸿涛.废水中聚丙烯酰胺的生物降解试验研究初探[J].环境保护, 2004,(1):20-23.
    [60] Jeanine L,Kay-Shoemake. Polyacryamide as an Organic Nitrogen Source for Soil Microorganisms with Potential Effects on Inorganic Soil Nitrongen in Agricultural Soil[J]. Soil Biology and Biochemistry,1998,30(8/9):1045-1052.
    [61]黄峰,范汉香,董泽华等.硫酸盐还原菌对水解聚丙烯酰胺的生物降解性研究[J].石油炼制与化工,1999,30(1):33-36.
    [62]孙晓君,王志平,刘莉莉等.处理油田含聚废水的微生物研究[J].高技术, 2005,23(7):38-40.
    [63]孙晓君,王志平,刘莉莉等.油田驱采出水中聚丙烯酰胺在SBR中的生物降解特性研究[J].化学与生物工程,2005,22(2):16-17.
    [64] Scott G. Development in Polymer Degradation(I) [J].Appl Sci.,Publisher, London,1977:205.
    [65] Rachid EI-Mamouni,Jean-Claude Frigon,Jalal Hawari et al.Combining photolysis and bioprocesses for mineralization of high molecular weight polyacrylamides[J]. Biodegradation,2002,13(4):221-227.
    [66]陈颖,崔军明,王宝辉等.光催化氧化降解水中聚丙烯酰胺的可行性研究[J].大庆石油学院学报,2001,25(2):84~86.
    [67]陈颖,王宝辉,张海燕.纳米级TiO2光催化氧化聚丙烯酰胺[J]..催化学报, 1999,20(3):209-312.
    [68]陈颖,王宝辉,盖翠萍.不同半导体非均相光催化聚丙烯酰胺水溶液[J].黑龙江石油化工,2001,12(2):23-27.
    [69]秦普丰,杨仁斌,周惜时等.聚驱采油废水处理与回用试验[J].湖南农业大学学报(自然科学版),2005,31(3):324-327.
    [70]邓述波,郭春昱,陈忠喜.絮凝剂XN98处理油田聚合物驱含油废水[J].油气田环境保护,2001,11(1):21-23.
    [71]李大鹏,樊庆锌,周定等.铝盐混凝剂去除水溶液中HPAM的机理研究[J].环境化学,1997,16(6):552-559.
    [72]李大鹏,樊庆锌,周定.油田聚合物采油废水混凝处理方法的试验研究[J].环境科学学报,2000,20(增刊):64-67.
    [73]李桂华,张大雷.絮凝沉降法处理聚合物驱采出水[J].辽宁城乡环境科技,2000, 20(1):27-30.
    [74]荆国林,于水利,韩强.电渗析处理含聚合物污水研究[J].西安石油大学学报(自然科学版),2004,19(3):49-51.
    [75]王北福,于水利,魏泽刚.超滤和电渗析联合处理含聚废水的试验研究[J].给水排水,2006,32(5):45-48.
    [76]徐俊,于水利,梁春圃.超滤膜处理含聚合物采油废水的实验研究[J].工业水处理,2006,26(5):38-40.
    [77]温青,李凯峰,矫移山.油田含聚废水处理方法研究[J].应用科技,2002,29(8):64-66.
    [78]张伟,徐文杰,芦维年等.聚合物驱采出水的处理和利用[J].石油规划设计,2000,11(3):13-15.
    [79]乔玉芬.含油污水处理及注水系统综合治理建议[J].石油规划设计,1998,9(2):1-4.
    [80]任广萌,孙德智,李成钢.聚合物驱采油废水深度处理工艺[J].化工环保, 2004,24(增刊):202-205.
    [81]陈忠喜,邓述波,夏福军.横向流除油器处理油田含油污水的研究[J].工业水处理,2001,21(1):31-33.
    [82]邱辉,班辉.含聚污水处理组合工艺运行方式研究[J].油气田地面工程,2001,20(4):26-27.
    [83]蒋明虎.注聚采出水脱油用水力旋流器机理及试验研究[J].石油机械,1998,26(8):14-16.
    [84]夏福军,邓述波,张宝良.水力旋流器处理聚合物驱含油污水的研究[J].工业水处理,2002,22(2):14-16.
    [85]陈绍炳,李学军,张树平等.聚合物聚采出液游离水沉降脱除试验[J].油气田地面工程,1997,16(2):16-18.
    [86]余庆东.射流气浮机处理油田含聚污水[J].国外油田工程,2001,17(6):50.
    [87]陈玉成,蒲富永,陈庭树.氨基酸厂的清洁生产工程技术[J].农业环境保护,1995,14(6):245-246.
    [88]陈玉成,陈庭树.氨基酸生产废水的资源化途径[J].农业环境保护,1995,14(6):247-249.
    [89]陈玉成,蒲富永,皮广洁等.胱氨酸生产废水的效益型资源化研究[J].农业环境保护,1995,14(6):252-256.
    [90]李良红,陈武,梅平.氨基酸废水处理技术研究进展[J].氨基酸和生物资源,2006,28(2):63-66.
    [91]钟学文.电渗析处理氨基酸废水[J].华东化工学院学报,1988,14(5):564~567.
    [92]刘跃进.电渗析法处理制药厂酸性氨基酸废水[J].化学工程,1991,19(1):49~54.
    [93]张永奇,王洋,赵瑞华.电渗析处理氨基酸废水的试验研究[J].太原理工大学学报,2002,33(5):537~539.
    [94]赵瑞华,凌开成.电渗析处理L-谷氨酸废水[J].石化技术与应用,2003,21(2):137~139.
    [95] Montiel V,Gonzate-Garcia T.A recovery by means of electrodialysis of an aromatic acid and an inorganic salt by electro dialysis charge-mosaic membranes[J]. J. Membrane Sci.,1995,100(3):209 .
    [96]赵敏,杨向民,杨洪万等.电渗析用于猪毛水解液脱酸的研究[J].氨基酸和生物资源,1999,21(3):49~51.
    [97]雷智平,凌开成.双极膜电渗析法处理谷氨酸水溶液的过程性能研究[J].环境污染治理技术与设备,2003,4(2):33~35.
    [98]郑宗坤,高孔荣.超滤净化谷氨酸发酵废水的研究[J].工业水处理,1997,17(3):24~25.
    [99] Itoh M P, Thien H . A Liquid Emulsion Membrance Process for the Separation of Amino Acids[J]. Biotechnol and Bioeng,1990,35:853.
    [100] Seong-Ahn Hong. Concentration of Amino Acids by a liquid Emulsion Membrane with a Cationic Extractant[J].J. Membrane Sci.,1992,70:225.
    [101] Thien M P,Hatton T A,Wang DIC.Separation and Concentranon of Amino Acids Using Liquid Emulsion Membrane[J].Biotechnel. and Rioing,1988,32:604.
    [102] Leodidis E B, Hatton T A . Amino Acid in Aot Reversed Micelles[J].J Phys Chem,1990,94(1):6400.
    [103] Behr J P, lehn J M. Transport of Acids through Organic Liquid Membrane[J].J Amer Chem Soc,1973,95:6105.
    [104] Yagodin G A, Yurtov E V,Golubkcv A S. Liquid Membrace Extraction of Amico Acids[A]. Proceedings of the International Solvent Extraction Conference,Vo1. Munichen,September,1986,11-16:677.
    [105]韩伟,严忠,吴子生等.液膜法提取浓缩氨基酸[J].水处理技术,1995,21(2):77~80.
    [106]徐占林,严忠,张河哲等.乳状液膜法萃取氨基酸的研究[J].环境化学,1997, 16(4):369~373.
    [107]谢少雄,黄功浩.氨基酸废水的回收利用及处理[J].工业水处理,2001,21(2):38~39.
    [108]雷智平,凌开成.双极膜电渗析法处理谷氨酸水溶液的实验研究[D].太原理工大学硕士论文,2003,11~12.
    [109]亓平言,祝万鹏,叶伟等.氨基酸发酵废水的厌氧生物处理研究[J].给水排水, 1998,24(5):37~39.
    [110]叶伟,亓平言,祝万鹏等.厌氧生物法处理氨基酸发酵废水的实验研究[J].上海环境科学,1998,17(9):11~13.
    [111]李静,姚传忠,季民等.厌氧-好氧组合工艺处理制药废水的试验研究[J].工业水处理,2004,24(1):24~26.
    [112]冯垦玉.猪毛水解生产胱氨酸工艺探讨[J].氨基酸杂志,1989,(1):11~15.
    [113]木文宇.胱氨酸生产废水的综合利用[J].化工时刊,1992,(3):43~45.
    [114]张关永,金鑫荣,刘宏等.溶剂萃取法制备氨基酸[J].华东理工大学学报,1996,22(4):480~485.
    [115]张开诚.利用胱氨酸废液生产复合氨基酸营养粉作饲料添加剂[J].饲料研究, 2000,(7):30~31.
    [116]沙伟.胱氨酸生产及废水的综合开发利用探讨[J].上海化工,1994,2(19):8-11.
    [117]张运徽.从提取胱氨酸的母液制备赖氨酸[J].三明大学学报,1997,(2):67~69.
    [118]柳燕,赵宗信.胱氨酸生产废水综合利用技术研究[J].中国环境管理干部学院学报.1997,4(3):48~50.
    [119]郭密亮.氨基酸废液的处理和应用[J].环境保护,1991.(10):11~12.
    [120]朱光明.氨基酸复合肥[J].科学技术成果公报,1993,(7):1.
    [121]陈玉成,牟树森,蒲富永.氨基酸厂废水促进紫色旱坡地土壤生态建设的研究[J].农业环境保护,1995,14(2):62~66.
    [122]杨新科.利用胱氨酸废水制备工业酸洗缓蚀剂[J].化工环保,2002,22(4):241.
    [123]熊英键,范娟,朱锡海.三维电极电化学水处理技术研究现状及方向[J].工业水处理,1998,18(1):5~8.
    [124]朱丽宏,王书惠.三元电极电解在水处理中的应用[J].环境科学,1985,6(6):36~40.
    [125] Kreysa G . Purification and Recycling of Metal-containing Waste Waters by Packed Bed Electrolytes[J]. MO Metalloberflache Beschichten von Metall und Kunststoff,1980,34(12):494-501.
    [126] Kreysa G,Reynvaan C. Optimal Design of Packed Bed Cells for High Conversion [J].Jouranl of Applied Electrochemistry,1982,12(2):241-251.
    [127] Westinghouse Electric Corp (US). Procede et Installation Pour Enleverles Contaminants Oxydables D'un Mili EU[P].FR2311760,1976.
    [128] Leone IND INC (US). Electrochemical inactivation of pathogens[P]. FR2215399,1974.
    [129] Glenu E.Stoner,Charlottesville,Va. Electrochemical inactivation of pathogens[P].US3725226,1972.
    [130] Coeuret F,Paulin M. Experiments on Copper Recovery in a Pulsed Granular Fixed Bed Electrode[J]. Jouranl of Applied Electrochemistry, 1988,18(1):162-165 .
    [131] Tennakoon C L K,Bhardwajrc,Bockrisjom. Electrochemical treatment of human wastes in a packed bed reactor[J]. J.Appl Electrochem,1996,26(1):18-29.
    [132] Tison R P,Howie B J. Copper Recovery From Dilute Solutions Using a Barrel Plater [J]. Plating and Surface Finishing,1984,71(9):54-56.
    [133] Stankovic V D,Wragg A A. Particulate Vortex Bed Cell For Electrowin-ning: Operational Modes and Current Efficiency [J]. J Appl Electrochem,1984,14(5):615-621.
    [134] Stankovic V D,Stankovic Z D,Vukovic DV. Improvement of the Current Efficiency in the Three-Dimensional Vortex Bed Cell [A]. Meeting-InternationalSociety of Electrochemistry,1981,2:1077-1080.
    [135] Stankovic V D,Stankovic S. An investigation of the spouted bed electrode Cell for the electrowining of metal from dilute solution[J]. Journal of Applied Electrochemistry,1991,21:124-129.
    [136] Scott K. Metal Recovery Using a Moving-Bed Electrode[J].Journal of AppliedElectrochemistry,1981,11(3):339-346.
    [137] Scott A. Consideration of Circulating Bed Electrodes for the Recovery of Metal From Dilute Solutions[J]. Jouranl of Applied Electrochemistry, 1988,18(4):504-510.
    [138]汪群慧.电化学法处理化工废水的新进展——粒子群电极法[J].化工时刊,1987,(6):32-33.
    [139] Kusakabe K,Morooka S,Kato Y. Current Paths and Electrolysis Efficiencyin Bipolar Packed-Bed Electrodes[J]. Journal of chemical Engineerof Japan, 1982,15(1):45-50.
    [140]董献堆,陈平安,陆君涛等.三维电极体系的研究与进展[J].化学通报, 1997,(5):12~19.
    [141]阎桂蕃,张蕴璧.流化态阴极沉积铜的电极过程[J].西北大学学报,1986, 16(2):33~36.
    [142]汪群慧,张海霞,马军等.三维电极处理难生物降解有机废水[J].现代化工, 2004,24(10):56-59.
    [143] Kreysa G. Theoretical Fundamentals Technical Stand and Possibilities for the Application of Packed and Fluidized Bed Electrodes[J]. Erzmetall: Journal for Exploration,Mining and Metallurgy,1975,28(10) :440-446 .
    [144]陈武,李凡修,梅平.废水处理的电化学方法研究进展[J].湖北化工,2001,18(1):10-12.
    [145] Chen W G,Zhu X H. Mechanism of Production H2O2 and·OH in ESC and Its Application to Organic Degradation [J].China Environ. Sci.,1998,18:148- 150.
    [146] Alverez-Gallbergos A,Pletcher D. The Removal of Low Level Organics via Hydrogen Peroxide Formed in a Reticulated Vitreous Carbon Cathode Cell. Part 2:The Removal of Phenols and Related Compounds from Aqueous Effluents[J]. Electrochim Acta.,1999,44:2483-2492.
    [147] Rajeshwar K,Ibanez J G,Swain G M. Electrochemistry and the Environment [J]. J Appl Electrochem,1994,24:1077-1091.
    [148] Cominellis C H,Pulgarin C. Electrochemical Oxidation of Phenol for Wastewater Treatment Using SnO2 Anodes [J]. J Appl Electrochem,1993,23:108-112.
    [149] Kreysa G . Modeling of Fixed-Bed and Fluidized-Bed Electrodes[J]. Dechema Monographien,1983,94(1932-1947):123-137.
    [150] Fleischmann M,Oldfield J W. Fluidised bed electrodes,part1:polarizationpredicted by simplified models[J]. J ElectroChem,1971,29:211;part2: the effective resistivity of the discontinuous metal phase[J]. J Electroanal Chem.,1971,part3: the cathodic reduction of oxygen on silverina fluidized bed electrode[J]. J. Electro. Chem.,1971,29:241.
    [151] Bisang J M,Kreysa G. Study of the Effect of Electrode Resistance on Current Density Distribution in Cylindrical Electrochemical Reactors[J]. Journal of Applied Electrochemistry,1988,18(3):422-430.
    [152] Kreysa G.,Pionteck S,Heitz E. Comparative Investigations of Packed and Fluidized Bed Electrodes With Non-Conducting and Conducting Particles[J]. Journal of Applied Electrochemistry,1975,5(4):305-312.
    [153] Goodridge F,Wright A R. Porous flow-through and fluidized-bed electrodes[J].Comp. Treat Electrochem,1983,6:393.
    [154] Trainham J A,Newman J. A comparison between flow-through and flow by porous electrodes for redox energy storage trochim[J]. Electrochim Acta,1981,26:455.
    [155] Hampson N A,Mcniel A J S.The electrochemistry of porous electrode: flow-through and three-phase electrode.Echemistry,1984,9:1.
    [156] Leroux F,Coeuret F. Flow-by electrodes of ordered sheets of expanded metal[J].Electrochim Acta,1985,30:159-165.
    [157] Walsh F,Reade G. Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part2. Typical reactors and their performance[J]. Analyst,1994,119:797.
    [158] Soltan E A,Nosier S A,Salem A Y et al. Mass transfer behavior of a flow-by Fixed bed electrochemical reactor under different hydrodynamic conditions[J].Chem Eng J,2003,91(15):33-44.
    [159] Kreysa G. Kinetic Behaviour of Packed and Fluidized Bed Electrodes[J]. Electrochim Acta,1978,23(12):1351-1359.
    [160] Matsuno Y,Tsutsumi A,Yoshida K.Electrode performance of fixed and fluidized bed electrodes for a molten carbonate fuel cell anode[J]. Int.J. Hydrogen Energy,1996,21(8):663-671.
    [161] Hadismajlovi? D? E,Popov K I, Pavlovi? M G. The visualization of the electrochemical behaviour of metal particles in spouted,fluidized and packed beds[J]. Powder Technology,1996,86:145-148.
    [162]张一先,胡志彬.处理含铬(Ⅳ)废水的填充铁屑阳极的行为[J].北京师范大学学报,1984,(2):45-53.
    [163] Lee J K, Shemilt L W, Chun H S. Studies of bipolarity in fluidized bed electrode. Journal of Applied Electrochemistry[J]. 1989,19:877~881.
    [164] Kreysa G.,üttner K J,Bisang J M. Cylindrical three-dimensional electrodes under limiting current conditions[J]. J Appl Electrochem,1993,23:707-714.
    [165] ?erbula S M,Stankovi? V D. Influence of an electrochemically generated gas phase on pressure drop in a three-dimensional electrode and an inert bed [J].J Appl Electrochem,2002,32:389–394.
    [166] Njau K N,Woude M vd,Jvisser L G,et al.Electrochemical removal of nickel ions from industrial wastewater[J].Chemical Engineering Journal, 2000,79:187-195.
    [167] Christiane A R Ragnini,Rosana A Di Iglia,Waldir Bizzo,et al. Recycled niobium felt as an efficient three-dimensional electrode for electrolysis metal ion removal[J]. Wat. Res.,2000,34(13):3269-3276.
    [168] Carlo Solisio,Marco Panizza,Piergiorgio Paganelli,et al. Electrochemical remediation of copper(Ⅱ)from an industrial effluent partⅠ:momopolar plate electrodes[J]. Resources,Conservation and Recycling,1999,27:299-307.
    [169] Panizza Marco,Solisio Carlo,Cerisola Giacomo. Electrochemical remedi-ation of copper(Ⅱ)from an industrial effluent partⅡ:three-dimensional foam electrodes [J]. Resources Conservation and Recycling,1999,27:299-307.
    [170] El-Deab M S,Saleh M M,El-Anodouli B E,et al. Electrochemical removal oflead ions from flowing electrolytes using packed bed electrodes[J]. J. Electrochem Soc.,1999,146:208.
    [171] Bisang J M. Electrochemical treatment of waste solution containing ferrous sulfate by anodic oxidation using an undivided reactor[J]. J Appl.Electrochem, 2000,30:399.
    [172] Grau J M,Bisang J M. Cadmium removal from aqueous sulfate solutions by treatment with iron fielts[J]. J Chem,Technol.Biotechnol,1998,73 :398.
    [173] Kenedy I F,T Das Gupta. First Annual Conf.,on Advanced Pollution Control for the Metal Finishing Ind. [A].1983.
    [174] Simonsson D. A flow -by Packed-bed electrode for removal of metal ions from wastewater[J]. J Apple Electrochem,1984,(14):595~604.
    [175]陈志荣.流化床电极技术及在治理含金属废水中的应用[J].工业水处理, 1996,16(6):3-5.
    [176]覃奇贤,于德龙.三维电极在电镀废水处理中的应用[J].电镀与环保,1994,14(2):23-26.
    [177]郝学奎,王三反.三维电极法处理含铜废水的方法研究[J].兰州铁道学院学报(自然科学版),2002,21(6):96-98.
    [178]袴田晴夫.被处理水の电気化学的处理方法[P].JP平4-16286,1992.
    [179]郭玉风,催建升,韩忠霄等.三维电极电解法处理生活污水的研究[J].河北科技大学学报,2003,24(2):27-30.
    [180]伊藤健治.污液中の污染物质分离方法及处理装置[P].JP昭60-14987,1985.
    [181]许海梁,杨卫身,周集体等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-36.
    [182]熊蓉春,贾成功,魏刚.二维和三维电极法催化降解染料废水[J].北京化工大学学报,2002,29(5):1-5.
    [183]申哲民,王文华,贾金平等.不同形式电极与染料溶液的反应及其能耗[J].环境污染治理技术与设备,2000,1(2):21-25.
    [184]申哲民,贾金平,徐向荣等.三维电极法和Fenton试剂法对染料废水处理的效果比较[J].海交通大学学报,2000,34(11):1531-1534.
    [185] Pletcher D, Walsh F C. Industrial Electrochemistry[M].2nd edition. London:Chapman and Hall,1990,331-335.
    [186] Fockedey E, Lierde A Van. Coupling of anodic and cathodic reaction for phenol electro-oxidation using three-dimensional electrodes[J]. Water Research,2002,36:4169-4175.
    [187] Polcaro A M , Palmas S , Renoldi F,et al. Three-dimensional electrodes for the electrochemical combustion of organic pollutants[J]. Electrochimica Acta,2000,46:389-394.
    [188]杨庆,丁昀.三维电极电解含酚废水研究[J].甘肃科技,2002,18(10):23.
    [189]杨庆,王三反,王越.三维电极加入氯化钠电解含酚废水的研究[J].兰州铁道学院学报(自然科学版),2003,22(1):133-136.
    [190] Panizza M,Bocca C,Cerisola G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J].Water Research,2000,34(9):26
    [191] Sun Y P, Qiu O, Xu W L,et al. A study of the performance of a sparged packed bed electrode reactor for the direct electrochemical oxidation of propylene[J]. Journal of Electroanalytical Chemistry,2001,503:36–44.
    [192]何春,安太成等.三维电极电化学反应器对有机废水的降解研究[J].电化学, 2002,8(3):327-332.
    [193]五岛伸隆,佐藤美奈.被处理水の电気化学的处理方法[P].JP特开平6-86982,1994.
    [194] Augusto Porta. Process for the Electrochemical Decontamination of Water polluted By Pathogenic Germs with Peroxide Formed in Situ[P]. US4619745, 1986.
    [195]张红波,徐仲榆,莫孝文.流态电极电解法处理含氰废水[J].化工环保,1995, 15(4):224~227.
    [196] Vuorilehto K,Tamminen A,Ylasaari S. An electrode method of oxygen removal from water[J].J Appl.Electrochem,1995,25 (10) :973-977.
    [197] Tamminen A,Vuorilehto K. Application of a three-dimensional ionexchange electrolyte in the deoxygenation of low-conductivity water[J]. J. Appl. Electrochem,1997,27(11) :1095-1099.
    [198]周德瑞,郭垂根,王丽等.三维电极电化学去除水中溶解氧的研究[J].腐蚀科学与防护技术,2003,15(3):169-171.
    [199]曹莹,周育红,孙克宁等.三维电极在水处理技术中的应用[J].黑龙江电力, 2001,23(2):125-128.
    [200]邹鹏,王琼,胡将军.活性炭颗粒填充三维电极电化学烟气脱硫的研究[J].环境污染与防治,2006,28(3):191-193.
    [201]范彬,曲九辉,刘锁祥等.复三维电极一生物膜反应器脱除饮用水中的硝酸盐[J].环境科学学报,2001,21(1):39~43.
    [202]陈卫国,徐涛,彭玉凡等.电催化系统-电生物炭接触氧化床处理垃圾渗滤液[J].中国环境科学,2002,22(2):146-149.
    [203] Xiong Ya,Karlsson Hans T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor[J]. Advances in Environmental Research,2002,7:139-145.
    [204] Xiong Ya, Strunk Peter J,Xia Hongyun,et al. Treatment of dye wastewater containing acid orangeⅡusing a cell with three-phase three- dimensional electrode[J].Wat. Res.,2001,35(17) :4226-4230.
    [205] Xiong Ya,He Chun, Karlsson Hans T,et al. Performance of three- phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol[J].Chemosphere,2003,50:131-136.
    [206] Xiong Ya,He Chun,An Tai Cheng,et al. Removal of formic acid from waste water using Three-phase three-dimensional electrode reactor[J]. Water,Air, and Soil Pollution,2003,144:67–79.
    [207]安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究[J].催化学报,2001,22(2):193-197.
    [208]安太成,顾浩飞等.三维电极电助光催化降解直接染料的可行性研究[J].中山大学学报(自然科学版),2000,39(6):131-132.
    [209]安太成,张文兵,肖贤明等.连续循环流式固定床三维电极光电催化反应器[P].CN1526652A,2004
    [210] An Tai-Cheng,Zhu Xi-Hai,Xiong Ya. Feasibility study of photoelectron- chemical degradation of methylene blue with three-dimensional electrode- photocatalytic reactor[J].Chemosphere,2002,46:897-903.
    [211]熊亚,安太成,何春等.三相三维电极光电反应器[P]. CN1377728A,2002.
    [212] Lorimer J P,Mason T J.Some recent studies at coventry university sonochemistry centre[J].Ultrasonics Sonochemistry,1995,2(2):81-86.
    [213]孙宝盛,薛松宇,朱文亭等.具有电位测控功能的三维电极-膜反应器[P]. CN1477064A,2004.
    [214]陈平安,董献堆,陆君涛等.双极电极极化行为的模拟分析方法[J].物理化学学报,1997,(6):1.
    [215]陈武,李凡修,梅平.三维电极方法处理石油工业废水COD的实验研究[J].环境科学与技术,2001,24(增):6-9.
    [216]陈武,李凡修,梅平.三维电极方法降解模拟废水COD机理研究[J].环境科学与技术,2002,25(1):11~12. [217陈武,艾俊哲,李凡修,梅平.电化学反应器-三维电极中粒子电极应用研究[J].荆州师范学院学报,2002,25(5):76-78.
    [218]陈武,艾俊哲,李凡修,梅平.利用扫描电镜研究三维电极主电极表面腐蚀状况[J].江汉石油学院学报,2002,24(3):108-110.
    [219] GB11914-89,水质化学需氧量的测定-重铬酸盐法[S].
    [220]张春光,王果庭,姚克俊等.聚丙烯酰胺泥浆的成分和性能的研究[M].北京:地质出版社,1981.113.
    [221] GB12005.1-89,聚丙烯酰胺特性粘数测定方法[S].
    [222]鲁光四.水质分析方法[M].北京:学术书刊出版社,1989,200-201.
    [223]中岛保夫.金属酸化物型电极によゐ着色染料废液の电解脱色法の检讨[J].电气化学(日),1994,62(11):1086-1087.
    [224]陶龙骧,谢茂松.电催化和粒子群电极用于处理有机工业污水[J].工业水处理, 2000,20(9):1-4.
    [225] H.T.库特利雅夫采夫等著,陈国亮等译.应用电化学[M].复旦大学出版社,1992,3-5.
    [226]周抗寒,周定.用涂膜活性炭提高复极性电槽电解效率[J].环境科学,1994,15(2):38~40.
    [227]兰淑澄编著.活性炭水处理技术[M].北京:中国环境科学出版社,1991:7-12.
    [228] Mcclung S M, Lemley T. Electrochemical treatment and HPLC analysis of wastewater containing acid dyes[J]. Textile Chemistand Colorist,1994,26(5): 17-22.
    [229]黄志宏,方积乾主编.数理统计方法[M].人民卫生出版社,1987:203-210.
    [230] GB8978-1996,污水综合排放标准[S].
    [231] SY/T5523—2000,油气田水分析方法[S].
    [232]沈淑娟著.波谱分析方法[M].上海:华东化工学院出版社,1992,32~66.
    [233]孟令芝,龚淑玲编著.有机波谱分析[M].武汉大学出版社(第二版),2003,194-238.
    [234]徐荃,袁秀顺.分光光度法测定雨水中痕量H2O2[J].分析化学,1988,16(7):595~598.
    [235]贾之慎,邬建欧,唐孟成.比色法测定Fenton反应产生的羟自由基[J].生物化学与生物物理进展,1996,23(2):184-186.
    [236]宋卫锋,吴斌,马前等.电解法降解有机污染物机理及动力学的研究[J].化工环保,2001,21(3):131-136.
    [237]刁惠芳,白玮,李晓岩等.电化学消毒中羟基自由基的测定[J].给水排水,2004,30(9):59-62.
    [238]邝生鲁,奚强.洁净环境中的电化学[J].化学进展,1999,4(11):430-439.
    [239] Jackson V C,Mickelson J K, Stringer K,et al. Electrosis induced Myocardial dysfunction[J]. Journal of Pharmacological Methods,1986, 15:305-320.
    [240]邝生鲁.应用电化学M].武汉:华中理工大学出版社,1994:111-119.
    [241]陆兆锷.电极过程原理和应用M].北京:高等教育出版社,1992:163-165.
    [242]王士龙等.用陶粒处理含铅废水[J].济南大学学报(自然科学版),2003,17(3):295~297.
    [243]张书廷,杜惟玮,谢建治.极板材料对三维电极反应器中电极电位分布形式的影响[J].天津大学学报,2004,37(9):753-758.
    [244]张苗苗,王立九.污水处理用陶粒滤料的工艺研究和应用[J].西南给排水,2005,27(1):32-35.
    [245]石玲,薛松宇,孙宝盛. PLC扩展模块在三维电极反应器内电位分布测量中的应用[J].工业水处理,2006,26(4):24-27.
    [246]余冰宾主编.生物化学实验指导[M].北京:清华大学出版社,2004.
    [247]陆正清.薄层层析法测定调味品中氨基酸含量综述[J].中国调味品,2005,(7):42~47.
    [248] Zhang Hong,Zhai Suodi,Li Yongmin,et al. Effect of Different Sample Pretreatment Methods on the Concentrations of Excitatory AminoAcids in Cerebrospinal Fluid Determined by High-performance Liquid Chromatography [J]. Journal of Chromatograph B,2003,784: 131-135.
    [249]王宝瑄,张金龙,任红波等.不同氨基酸自动分析仪氨基酸分析结果之比较[J].饲料博览,2005,(9):36~37.
    [250]王礼琛主编.有机化学[M].东南大学出版社,2004,7-156.
    [251]刘勇弟,徐寿昌.几种类Fenton试剂的氧化特性及在工业废水中的应用[J].上海环境科学,1994,13(3):26~28.
    [252]吕仁庆等.不同构型氨基酸甜味与其量子化学参数的相关研究[J].化学世界, 2006,(2):74~77.
    [253]张乃东,郑威.Fenton法水处理中的发展趋势[J].化工进展,2001,(12):1~3.
    [254] Hsiao Y,Nobe K. Oxidative reactons of phenol and chlorobenzene with in situ electro generated Fentons’s reagent[J].Chem. Eng. Common,1993, 126 (1):97~110.
    [255] Brillas E,Calpe J,Casado J, et al. Mineralization of 2,4-D by advanced electrochemical oxidation process[J] Water Res,2000,34(8):2256~2262
    [256] Huang Yaohui,Chou Shanshan,et al. Case study on the bioeffluent of petroc-hemical wastewater by electro-fenton method[J] Water Sci Technology,1999, 39(10-11):145~149.
    [257]张乃东,郑威.电Fenton法处理难降解有机物研究进展[J].上海环境科学, 2002,21(7):440~441.
    [258] Marco panizza Giacomo cerisola.Removal of organic pollutants from industrial wastewater by electro generated Fentons’s reagent[J] Wat. Res.,2001,35(16): 2987~3992.
    [259]熊忠,林衍.Fenton氧化法在废水处理中的应用[J].新疆环境保护,2002,24(2):35~39.
    [260] Francisco J R,Fernando J B.Oxidation of p-hydroxybenzoic acid By Fenton’s reagent[J]. Wat. Res.,2001,(2):387~396.
    [261]张翼,张晖.超声Fenton法处理耦氮染料橙黄Ⅱ的研究[J].环境污染治理技术与设备,2003,4(11)48~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700