混合动力汽车驱动用永磁同步电机的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁同步电机以其高效率,高功率密度的特点,成为目前混合动力汽车驱动电机中最有优势的电机类型,具有广阔的应用前景。
     与此同时,为了实现混合动力汽车动力性能和能源利用方面的要求,电机应具有良好的功率和效率特性,这使得混合动力汽车驱动用永磁同步电机在电机设计,参数计算以及相关关键技术的研究和应用方面还存在着许多需要改进的方面,如整个工作区域内多工作点的效率优化,提高弱磁扩速能力和峰值功率能力等,这些都与传统的电机设计和性能优化存在很大的不同。而现阶段,这些问题还没有得到合理而全面的解决,制约了混合动力汽车驱动用永磁同步电机的发展。
     本论文主要就混合动力汽车驱动用永磁同步电机的参数计算以及提高性能的设计方法展开研究。
     针对不同磁路结构的永磁同步电机模型,采用有限元仿真的方法,计算了矩角特性,在此基础上提出了磁阻转矩分析及电抗参数计算方法,并依此进行了磁路结构的选取。
     推导了恒功率区功率特性的数学表达式,分析了定子齿槽比变化对交轴同步电抗的影响,从优化交轴磁路饱和程度的角度提出了提高弱磁扩速能力的具体措施。提出了一种解析和有限元仿真相结合的确定转子偏心结构的方法,分别分析了偏心距、偏心圆半径以及极弧系数的变化对气隙磁密正弦性的影响,将多变量解耦分析,得到了各次谐波含量的变化规律。
     从电机本体的角度分析了绕组温升,永磁体稳定性等因素对电机峰值功率能力的制约,根据分析结果提出了改进永磁同步电机峰值功率能力的措施。
     通过分析永磁同步电机的似V形曲线,从效率优化的角度提出了电机设计时空载反电势的选取方法。总结了适合不同工作点效率分析的损耗计算公式,提出了高效率区间位置和范围的评价指标,在此基础上分析了基速点移动对高效率区间的影响。采用上述的电机设计方法,结合相关关键技术的理论分析设计并制造了样机,搭建了试验台架,对电机的电抗参数,效率MAP图,温升,转矩波动等进行了测试,通过理论分析结果,仿真结果和测试结果的对比,验证了上述分析的正确性。
Thanks to the characteristics of high efficiency and power density, permanent magnet synchronous motor has become the most dominant type used as a HEV traction motor and has a wide application prospect.
     At the same time, in order to achieve the propulsion performance and energy use requirements, the motor should have excellent power and efficiency characteristics. Therefore there are still many areas for improvements in aspects of motor design, parameters calculation and research of related key technologies such as multi-points efficiency optimization in the whole work area, improvement of flux-weakening and peak power abilities. These are very different from traditional motor design and performance optimization. Currently, these issues have not been resolved comprehensively and reasonably so that the development of PMSM in HEVs is restricted.
     This paper will focus on parameters calculation and design method for performance improvements of PMSM in HEVs.
     For the PMSM models of different magnetic circuit structure, the torque-power angle characteristic is calculated and a analysis method of reluctance torque and reactance is proposed. Based on this a rational magnet circuit structure is selected for the prototype.
     Combined with related control strategy, the mathematical expressions of power characteristics in constant power area are derived. The effects on q-axis synchronous reactance of the ratio of tooth and slot width are analyzed. A specific measure is put forward to improve the flux-weakening ability based on optimization of saturation level of q-axis magnetic circuit.
     A design method of rotor eccentric circle based on analytical method and FEM is proposed. The effects on sine level of air-gap flux density of eccentric length, radius of eccentric circle and pole-arc coefficient are respectively analyzed so that the variation law of various of harmonic content is obtained.
     The restrictions to peak power ability of winding temperature rise and permanent magnet stability are analyzed. According to the results some measures of improving peak power ability of PMSM are proposed.
     A selection method of no-load back EMF in motor design process is put forward by analyzing the v-shaped curve from the point of efficiency optimization. The loss equations suitable for efficiency analysis at different operating points and the measure principle of location and extent of high efficiency zone are proposed. The effects on high efficiency area of movement of base-speed point are analyzed based on the principle.
     According to the above design method, a prototype is designed and manufactured combined with the theoretical analysis of related key technologies. A test bed is set up and the reactance, efficiency map, temperature rise and torque fluctuation of prototype are tested. The analysis is verified by the comparison of analysis, simulation and test results.
引文
1 Tae Jung, Sunghong Lee, Sungjun Park. The Development of Hybrid Electric Compressor Motor Drive System for HEV. Vehicle Power and Propulsion Conference, Arlington, 2007: 802~807
    2陈清泉,孙逢春.现代电动汽车技术.北京理工大学出版社. 2002: 1~23
    3徐衍亮.电动汽车用永磁同步电动机及其驱动系统研究.沈阳工业大学博士学位论文. 2001: 1~30
    4易将能,韩力.电动车驱动电机及其控制技术综述.微特电机, 2001, (4)
    5 Eisaku Yamada, Zhengming Zhao. Applications of Electrical Machine for Vehicle Driving System. IEEE Power Electronics and Motion Control Conference, 2000, 3: 1359~1364
    6窦汝振,李磊,宋建锋.电动汽车用驱动电机系统的现状及发展趋势.变频器世界, 2007, (2): 17~18
    7 Xu Yanliang, Xu Jiaqun, Wan Wenbin, Tang Renyuan. Development of Permanent Magnet Synchronous Motor Used in Electric Vehicle. IEEE Electrical Machines and Systems, 2001, 2: 884~887
    8许家群.电动汽车用永磁同步电动机传动控制系统的研究.沈阳工业大学博士学位论文. 2003: 24~28
    9唐任远.现代永磁电机理论与设计.机械工业出版社, 1997: 37~71
    10陈清泉,孙立清.电动汽车的现状和发展趋势.科技导报, 2004, 23(4):25~26
    11 Huang K. D, Tzeng S. C. Development of a Hybrid Pneumalic Power Vehicle. Applied Energy, 2005, 80(1): 56~57
    12麻友良,程全世.混合动力电动汽车的发展.公路交通科技. 2001, 18(1): 78~80
    13 Wyczalek F. A. Hybrid Electric Vehicles year 2000 status. IEEE ASE Systems Magazine. 2001, 16(3): 15~19
    14田光宇,彭涛,林成涛.混合动力电动汽车关键技术.汽车技术. 2002(1): 8~11
    15 Browning L, Unnasch S. Hybrid Electric Vehicle Commercialization issues. The 16th. Annual Battery Conference. 2001(2): 45~46
    16 Kyoungcheol Oh, Dongho Kim, Donghoon Cho. Optimal Power Distribution Control for Parallel Hybrid Electric Vehicles. Vehicular Electronics and Safty Conference, 2005, 3(2): 118~214
    17 Caratozzolo P, Serra M, Riera J.A Proposal for the Propulsion System of a Series Hybrid Electric Vehicle. Power Electronics Specialist Conference, 2003, 43(2):15~19
    18宋慧.电动汽车.北京:人民交通出版社, 2003:71~84
    19 Munehiro Kamiya. Development of Traction Drive Motors for the Toyota Hybrid System. EVS 17, Canada, 2000
    20 Wyczalek F. A. Hybrid electric vehicles in Europe and Japan. Energy Conversion Engineering Conference 1996, 16, (3):11~16
    21张卫青.混合动力汽车的发展现状及其关键技术.重庆工学院学报. 2006, (5): 8~10
    22岳东鹏,郝志勇,张俊智.混合动力电动汽车研究开发及前景展望.拖拉机与农用运输车. 2004, (4):1~2
    23 Namdoo Kim, Jeongmin Kim, Hyunsoo Kim. Motor Control for Power Variator in a Hybrid Electric Vehicle. Power Conversion Conference 2007, 12(2)
    24胡骅.混合动力源电动汽车和电动汽车的电动机.世界汽车, 2001, (3): 37~53
    25刘伟,程广伟,邓楚南.电动汽车驱动电机浅析.电机技术. 2006, (1):5~8
    26黄苏融.电动车用电机的技术发展概况.电器工业. 2003, (1): 7~12
    27 H. Murakami, H. Kataoka,Y. Honda. Highly efficient brushless motor design for an air-conditioner of the next generation 42V vehicle. IEEE Industry Applications Society Annu Meeting,2001
    28 Hongwei Gao, Yimin Gao, Ehsani M. A neural network based SRM drive control strategy for regenerative braking in EV and HEV. Electric Machines and Drives Conference,2001: 117~121
    29 J. W. Kim, B. T. Kim, B. I. Kwon. Experimental Test of Near Optimal Models for an Inverter-Fed Induction Motor. Electrical Machines and Systems, 2003, (3): 17~21
    30 Dong Hyeok Cho, Hyun-Kyo Jung, Cheol-Gyun Lee. Induction Motor Design for Electric Vehicle Using a Niching Genetic Algorithm. IEEE Transactions on Industry Applications, 2001: 102~106
    31汤蕴璆,史乃.电机学.机械工业出版社, 2001: 141~143
    32 Taro Genda, Ismet Rahmad Kartono, Makoto Yoneda. Basic Performance of Inset Type PMSM. International Conference on Electrical Machines, 2008:230~235
    33代颖,王立欣,崔淑梅.电动汽车用永磁同步电机评述.微电机. 2005, 38(3)
    34唐苏亚.电动车及其电机的发展概况.电机技术. 1996, (2):49~51
    35 Kenji Endo, Akihide Mashimo. A High Performance Permanent Magnet Motor for Electric Vehicles. EVS-14, 1997
    36 Kazuaki Shingo, Kaoru Kubo, Toshiaki Katsu. Development of Electric Motors for the TOYOTA Hybrid Vehicle PRIUS. EVS-17, 2000
    37 Erik Nordlund, Chandur Sadarangani.Four-Quadrant Energy Transducer Test Bench.EVS-19, 2002:77~79
    38游琳娟,吴汉光,雷徳森.电动车电机及其控制技术的发展.中小型电机. 2001,
    28(1): 35~38
    39杜雪飞,孙跃.混合电动车及其电气驱动系统.重庆大学学报. 2002, 25(9):14~16
    40 Onofre, J.O.P Lawler, J.S,Filho N.P.Extended Constant Power Speed Range of the Permanent Magnet Synchronous Machine Driven by Dual Mode Inverter Control.Power Electronics Specialists Conference,2005
    41尹华杰,蒋豪贤,谢运洋,汪凯.一种永磁同步电动机弱磁新方案.微电机. 1999, 32(2): 21~23
    42 K T Chau, Ming Cheng, C C Chan. A New Doubly Salient Permanent Magnet Motor for Electric Vehicles. EVS-16, 1999: 88~92
    43张亮亮.宽弱磁调速范围永磁同步电机的研究.哈尔滨工业大学硕士论文. 2009: 2~21
    44李春艳,寇宝泉,程树康.永磁同步电动机弱磁扩速概况.微特电机. 2008, 39(1): 14~15
    45 Czernin W, Aschenbrenner F, Weiss, H. Design of Power Electronics Driven PMSM with Constant Torque by Special Magnetic Circuit and Permanent Magnet Configuration. Actual Problems of Electronic Instrument Engineering Conference, 2006:110~114
    46 Yasufumi Ikkaii, Noriyoshi Nishiyaman, Taro Kishibe. IPM Motor for EV with Segmented Stator Cores with Concentrated Windings. EVS-17, 2000: 56~61
    47 W Xia, Philip S M Chin. Analysis of Different Permanent Magnet Brushless Motor Drives for Electronic Vehicles. EVS-16, 1999
    48黄苏融,曾凤,洪文成.混合动力汽车用起动发电一体化永磁同步电机控制系统设计与仿真.电机与控制应用. 2007, 34(11): 18-22
    49黄苏融,马睿,张琪,谢国栋.现代车用无刷永磁电机设计研究.微特电机. 2006: 37(2): 17~21
    50叶金虎.现代无刷直流永磁电动机的原理和设计.科学出版社, 2007: 72~78
    51王秀和.永磁电机.中国电力出版社, 2007: 110~125
    52 Eric Walton, Frost Van. Electromagnetic Computation Based on FEM. International ElectroMagnetic Field Computing Conference, 2007, 23(3): 7~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700