基于电流信息的列车不断电过分相技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:在单相工频交流供电的铁路牵引供电系统中,由于分相区的存在,在一定程度上制约了电气化铁路向更高速、更重载的方向发展。本文围绕列车过分相时实现不断电、无冲击两大目标,基于电流信息进行列车不断电过分相系统的研究,研究的问题主要包括系统方案、列车位置检测方案、列车过分相电气暂态过程、电子开关工程设计等几个方面。
     本论文对现有的列车自动过分相技术方案进行了对比,重点研究了地面自动过分相的现有系统方案和列车位置传感器,并分析了它们的优点与不足。在此基础上对电子开关列车不断电过分相进行系统优化,提出了列车不断电过分相系统的两种新方案,分别是中性区无位置传感器的系统方案和中性区安装一套位置传感器的系统方案。基于接触网电压和列车电流信息,进一步研究了地面电子开关的控制时序。本论文提出的方案,可有效缩短列车过分相的断电时间,列车过分相时可保持牵引力不丢失。
     本论文针对现有列车位置检测方法应用于电子开关系统中存在的不足,提出了基于接触网电流信息的列车位置检测方法。通过研究牵引供电方式、接触网结构分析了该方法的可行性。对接触网阻抗单元进行建模,得出了承力索电流和吊弦电流的分布规律。提出了一种基于承力索电流信息的列车位置检测方法和三种基于吊弦电流信息的列车位置检测方法。以上列车位置检测是通过监测接触网电流来实现的,因此本文设计了电流监测装置,并设计了将电流监测装置安装在支柱和腕臂上的安装方式。本文提出的列车位置检测方法可准确的定位列车受电弓的位置。
     本论文从理论上对列车过分相的电气暂态过程进行了研究,探讨了过电压和过电流产生的机理。通过对暂态过程的分析提出了地面开关切换过程中抑制过电流的解决方案,实现列车无冲击通过分相区。在电子开关控制过程中,接触网电压和开关负载电流的相位信息非常重要,本文对常见的几种相位检测方法进行了研究和对比,加权最小二乘法响应快,鲁棒性好,在谐波含量较大的电压波形中能准确的检测出基波相位,将该相位检测方法用于电子开关的列车带电过分相系统中检测电压、电流相位可以得到最优的结果。
     本论文进行了电子开关的器件选型和串联器件均压电路设计。并对晶闸管串联阀组的门极触发进行的研究,基于光隔离驱动技术研究了高压自取能技术,设计了从高压侧直接获取电能提供给晶闸管门极触发电路的取能电路,实验结果表明该取能电路可以满足高压晶闸管串联阀组的触发电路的电源需求。
ABSTRACT:In the traction power supply system, there are some sections without power supply, which is called neutral section. Trains pass through these sections without power supply, and speed of trains reduces greatly. Over-voltages occur when pantograph transits from catenary to neutral section or from neutral section to catenary. It is not only harmful to the equipments, and also makes passengers uncomfortable. Neutral section is bottle-neck in the traction power supply system to preclude development of high speed railway and heavy haul railway. This dissertation researches a new system to achieve trains passing neutral section with traction load, and no shock. Meanwhile a new position detection method is proposed and studied. Simulations and experiments demonstrate the correctness of the research results.
     In this dissertation, influnece of trains passing neutral section has been discussed. The existed systems and train position detect methods for trains passing neutral section were compared. Based on it, two improved system schemes of grouding switch passing neutral section with electronic switches are proposed, which are one position sensor installed in neutral section and no position sensor installed in neutral section respectively. Switching logic in different system conditions has been investigated based on voltage and current of train. Deadtime when grouding switches changing-over has been discussed. The conclusion is that trains pass neutral section with traction power in the new system.
     This dissertation researches simple chain catenary structure. Catenary impedance has been modeled by unit, which includes a length of carrier cable, hanger and contact wire. Based on current distribution of catenary, new train position detection methods are proposed, which monitor current changing in the catenary, to detect the position of pantograph. These methods don't need to install equipment on the train, nor interact with the train control signal, so it shows a high security performance. Then position sensor has been designed, it was based on new type current transformer and optical fibre transmission technique. The train's position signal can be transmitted to the control system on the ground accuratly and reliable.
     Equivalent circuits of traction power supply system and train has been modeled, and electrical transient state process has been researched theorily. The reason of over-voltage and over-current has been discussed. Then the control strategy to avoid over-voltage and over-current is proposed. Base on the analysis and control, the new system utilizing electronic switches can eliminate over-voltage and over-current completely, so trains pass neutral section smooth and steady.
     This dissertation researched and contrasted several phase detection method to detect voltage phase and current phase. Through the analysis and comparison, weighted least squares method has high precision and good robustness when phase or amplitude of voltage changing suddenly, and also it has outstanding ability to obtain the phase of fundamental voltage accurately, even if voltage contains rich harmonic content. This method is the most suitable phase detection method in the electronic switches system.
     Finally, engineering of electronic switches were designed, including device selection, parameters design, and series thyristor drive. An improved gate driver circuit topology is proposed, in which DC power is self-created from high voltage side. It is fit for drive thyristors connected in series through experimental verification.
引文
[1]刘友梅.交流传动电力牵引发展的基础性技术[J].机车电传动.2001.1(1):3-6.
    [2]黄德胜,张巍.地下铁道供电[M].北京.中国电力出版社.2010.
    [3]刁心宏.城市轨道交通概论[M].北京.中国铁道出版社.2009.
    [4]刘建强.直线电机轨道交通牵引传动系统研究[D].2008.北京交通大学.
    [5]陈伯时.交流调速系统[M].北京.机械工业出版社.2005.
    [6]连级三.电力牵引控制系统[M].北京.中国铁道出版社.1994.
    [7]郑琼林.电牵引传动系统研究[D].2002.北方交通大学.
    [8]杨中平,吴命利.轨道交通电气化概论[M].北京.中国铁道出版社.2013
    [9]钱立新.世界高速铁路技术[M].北京.中国铁道出版社.2003.
    [10]叶斌.电力电子应用技术[M].北京.清华大学出版社.2006.
    [11]B.K. Bose. Modern Power Electronics and AC Drives.2001. Prentice Hall PTR.
    [12]谭秀炳.交流电气化铁道牵引供电系统(第二版)[M].成都.西南交通大学出版社.2007.
    [13]吴命利.牵引供电系统电气参数与数学模型研究[D].2006.北京交通大学.
    [14]郑州铁路局.高速铁路供电M].北京.中国铁道出版社.2012.
    [15]Morimoto H, Ando M, Mochinaga Y, et al. Development of railway static power conditioner used at substation for Shingansen[C]. Power Conversion Conference, Osaka, Japan,2002(3): 1108-1111.
    [16]Benslimane. A, Bouchnaif. J. Study of a STATCOM used for unbalanced current compensation caused by a high speed railway (HSR) sub-station[C]. International Conference on Renewable and Sustainable Energy (IRSEC).2013:441-446.
    [17]支刚,郑琼林等.三端口双向直流变换器的负序平衡应用[J].北京交通大学学报:自然科学版.2011.35(5):124-130.
    [18]马伏军,帅智康,罗安.一种新颖的铁路静止功率调节器双环控制方法[J].电工技术学报.2012.27(12):129-137.
    [19]Liu Shu-ming, Chen Dong-xin, Li Qiong-lin, et al. The Impact of 350km/h High-Speed Railway to Grid Power Quality[C]. Asia-Pacific Power and Energy Engineering Conference (APPEEC),2012:1-4.
    [20]W.V.Lyon. Translent analysis of alternating current machinery[M].1963.
    [21]《水轮发电机运行规程》.中华人民共和国电力行业标准DL/T751-2001.
    [22]马浩宇,郑琼林,冉旺.地面自动过分相系统应用于重载列车的研究[J].铁道机车车辆.2012.32(4):120-126.
    [23]Han Zhengqing, Liu Shuping, Gao ShuPing. An Automatic System for China High-speed Multiple Unit Train Running Through Neutral Section with Electric Load[C]. Asia-Pacific Power and Energy Engineering Conference(APPEEC).2010:1-3.
    [24]张雪原,吴广宁等.高速铁路自然过分相方案[J].西南交通大学学报.2007.42(6):680-684.
    [25]Goto, M, Nakamura.T, et al. Static negative-phase-sequence current compensator for railway power supply system[C]. International Conference on Electric Railways in a United Europe.1995: 78-82.
    [26]周勇,王绪雄等.阻抗匹配平衡变压器的负序电流[J].郑州大学学报:工学版.2002.23(4):43-45.
    [27]李群湛,贺建闽.牵引供电系统分析[M].成都.西南交通大学出版社.2012.
    [28]乔光尧,丁宁等.基于V/v牵引变压器的高速铁路电能质量调节器[J].电气自动化.2012.34(2):74-77.
    [29]吴俊勇.高速铁路牵引供电系统概论课程教案.北京交通大学
    [30]王金浩,薛磊等.不同牵引变压器接线方式的应用研究[J].现代电力.2009.26(1):33-39.
    [31]曾国宏,郝荣泰.基于有源滤波器和阻抗匹配平衡变压器的同相供电系统[J].铁道学报.2003.25(3):49-54.
    [32]Seungwon An, Condren J, Gedra T W. An Ideal Transformer UPFC Model, OPF First-Order Sensitivities, and Application to Screening for Optimal UPFC Locations [J]. IEEE Transactions on Power Systems,2007.22(1):68-75.
    [33]段胜朋.同相供电系统牵引负荷过程仿真[D].2012.西南交通大学.
    [34]Zhenhua Zhang. Multi-function Integrated FACTS Devices and its Application in the Development of Smart Grid[C]. International Conference on Electrical and Control Engineering (ICECE),2010:5349-5352.
    [35]Keri A.J.F, Mehraban A.S. Unified power flow controller (UPFC):modeling and analysis[J]. IEEE Transactions on Power Delivery.1999.14(2):648-654.
    [36]张秀峰,连级三.利用电力电子技术构建的新型牵引供电系统[J].变流技术与电力牵引.2007(3):49-55.
    [37]张曙光.京沪高速铁路系统优化研究[M].北京.中国铁道出版社.2009.
    [38]顾绳谷.电机及拖动基础(下册)第三版[M].北京.机械工业出版社.2003
    [39]孙琳琳.HX-D1型电力机车LOCOTROL系统测试平台的研制[D].2008.北京交通大学.
    [40]姚孝刚.自动过分相系统设计与改进[J].机车电传动.2009(4):4l-43.
    [41]方鸿波,于萧寒,李芳芳.对受电弓离线产生过电压的分析[J].铁道技术监督.2009(1):38-39.
    [42]李银生,陈唐龙,牛大鹏.电力机车过分相电弧放电现象的研究与探讨[J].电气化铁道.2008(3):2l-23.
    [43]赵峰,张泰伟,张忠.接触网关节式电分相过电压的研究[J].兰州交通大学学报.2009.28(1):52-55.
    [44]郭育华,连级三.自动过电分相过电压仿真分析[J].铁道学报.1999.21(A05):53-56.
    [45]李宗智.电力机车过电分相跳闸分析及预防措施的研究[J].电气化铁道.2008(4):l0-12.
    [46]刘孟恺.电力机车过分相暂态过程分析[D].2010.西南交通大学.
    [47]董志杰.地面自动过分相技术及方案研究[D].2004.西南交通大学.
    [48]孙万启,单圣熊,郑国藩.国内外自动过分相装置的比较[J].电气化铁道.2002(2):12-16.
    [49]严云升.电力机车和电动车组自动过分相方案的发展方向[J].机车电传动.2004(6):7-l0.
    [50]史瑞兵.网上断载机车自动过分相装置施工技术浅析[J].山西建筑.2004.30(13):180.181.
    [5l]罗文骥.地面带电自动过分相系统技术[J].世界轨道交通.2008(6):62.63.
    [52]Delgado. E. Aizpuru. I, Canales. J M. et al. Static switch based solution for improvement of Neutral Sections in HSR systems[C]. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS).2012:1-7.
    [53]Chen Dixiang, Mengchun Pan, Wugang Tian. et al. Automatic neutral section passing control device based on image recognition for electric locomotives[C]. IEEE International Conference on Imaging Systems and Techniques(IST).2010:385-388.
    [54]冉旺,李雄,刘冰,郑琼林.地面自动过分相中开关切换的瞬态过程研究[J].电工技术学报.2011.26(11):150-154.
    [55]李明,雷勇,杨健熙.车载自动过分相装置测试仪.铁道机车车辆[J].2008.28(5):45-47.
    [56]李春阳,贺文,李小平.电力机车车载过分相装置的优化设计探讨[J].机车电传动.2002(5):10-12.
    [57]张鹏超.基于车载监测装置的机车自动过分相装置的研制[J].中国铁道科学.2009.30(2):141.144.
    [58]沈迪,田永洙,常振臣.CRH380CL型高速列车车载自动过分相控制策略[J].大连交通大学学报.3013:34(1):76-79
    [59]赵凯,康惊涛,曲保章.一种新的车载自动过分相装置的设计与实现[J].机车电传动.2004(1):28-30.
    [60]谢冰.地面带电自动过分相技术概述[J].世界轨道交通.2008(10):64-66.
    [61]罗文骥,谢冰.电气化铁道地面带电自动过分相系统技术的研究与应用[J].铁道机车车辆.2008.28(B12):27-33.
    [62]Erlangen. Concepts for automatic passing neutral section[C]. Siemens CRH3 350 2nd Design Liaison Meeting.2009.05.20.
    [63]孙鹏程,王帮田,壬其中.一种新型地面自动过分相系统研究[J].铁道机车车辆.2012:32(6):105-139.
    [64]N.Nakamura, The sectioning track circuit control system[J]. Railway and Electrical Engineering. 2001.12(11):20-23.
    [65]Tokuro Igarashi Takahito Matsuki. Kazunori Nemoto. New STCS (Sectioning Track circuit Control System) for Shinkansen using digital technology[J]. DAIDO Technical magazine.2005.
    [66]孟凡钟.真空断路器实用技术[M].北京.中国水利水电出版社.2009
    [67]李光泽.对电力机车不断电自动过分相方案的研究[D].2003.兰州交通大学.
    [68]周福林,李群湛.一种新的地面自动过分相方案的研究[J].西铁科技.2007(1):57-61.
    [69]田旭,姜齐荣等,电气化铁路无断电过分相方案研究[J].电力系统保护与控制.2012:40(21):14-18.
    [70]肖培龙,地面自动过分相系统列车位置检测及智能复原技术[J].铁路通信信号工程技术.2012.9(1):5-11.
    [71]Xue Song, Dai Chunhui, Long Zhiqiang. Research on location and speed detection for high speed maglev train based on long stator[C]. World Congress on Intelligent Control and Automation (WCICA).2010:6953-6958.
    [72]胡忠衡,员春欣等.谈计轴器的功能、可靠性和安全性[J].铁道机车车辆工人.1995(5):21.24.
    [73]李茁.机车信号自动识别与解调算法研究[D].2007.哈尔滨工程大学.
    [74]Matsumura. T, Ono.T. Research into a continuous type train location detection method with three-inductive wires for warning time optimum control of level crossing[C]. SICE Annual Conference.2008:643-646.
    [75]Ran Wang, Trillion Q.Zheng, Ma Haoyu. Analysis and Solution about Overvoltage of Automatically Passing Neutral Section System[J]. Advanced Materials Research.2012(2): 1248-1251.
    [76]马德明.电力机车/动车组通过关节式电分相的暂态过程分析[D].西南交通大学.2008.
    [77]潘卫国.电气化铁道牵引网地面开关式自动过分相装置暂态过程分析[D].西南交通大学.2008.
    [78]路清照.动车组不分闸自动过分相暂态过电压及抑制技术研究[D].北京交通大学.2011.
    [79]Valiviita. S. Zero-crossing detection of distorted line voltages using 1-b measurements[J]. IEEE Transactions on Industrial Electronics.1999.46(5):917-922
    [80]Valiviita S. Neural network for zero-crossing detection of distorted line voltages in weak AC-systems[C]. Instrumentation and Measurement Technology Conference(IMTC). IEEE Conference Proceedings.1998(1):280-285
    [81]李鹏.采用锁相环电路的建模与稳定性分析[D].广州.华南理工大学.2011:6-14
    [82]A. Eins Getin. Equiripple FIR filter design by the FFT algorithm[J]. IEEE Signal Processing Magazine.1997(4):60-64.
    [83]高鹰.一种基于最小二乘准则的自适应滤波算法[J].广州大学学报(综合版).2001.15(2):32-34
    [84]肖鹏韬.基于遗传算法的RLS自适应算法研究[J].电子测试.2010(5):16-19
    [85]Sahoo H.K, Sharma P, Rath N.P. Robust harmonic estimation using Forgetting Factor RLS[C].
    Annual IEEE.2011:1-5
    [86]于万聚.高速电气化铁路接触网[M].成都.西南交通大学出版社.2003
    [87]丁富华.真空开关的选相控制及其应用研究[D].2006.大连理工大学.
    [88]Kohji AJIKI, Yoshifumi. Investigation of Shinkansen Static Changeover Switch Capable of Suppression[J]. T. IEE Japan,2001.121-D(3):340-346.
    [89]刘冰.电子开关实现带电自动过分相的研究[D].2011.北京交通大学.
    [90]杨振龙.V/x接线与Scott接线牵引变压器的工程应用比较[J].电气化铁道.2006(3):4-7.
    [91]吕晓琴,张秀峰.基于有源滤波器和V/x结线的同相牵引供电系统[J].电力系统及其自动化学报.2006.18(6):73-78.
    [92]李群湛.连级三,高仕斌.高速铁路电气化工程[M].成都.2006.西南交通大学出版社.
    [93]《中长期铁路网规划(2008年修改版)》.铁道部.2008.
    [94]Chen Song, Wen Yinghong. Discussions on the generation mechanism of spark phenomenon when locomotive running through an electricity neutral section[C]. International Conference on Electromagnetics in Advanced Applications (ICEAA) 2011:749-752
    [95]刘黎.带续流电阻的电力电子开关地面自动过分相方案研究[D].西南交通大学.2012.
    [96]刘浩,王黎,高晓蓉.弓网离线对高速列车牵引功率的影响研究[J].自动化信息.2013.4:39-40,52
    [97]《铁道干线电力牵引交流电压标准》.GB 1402.
    [98]盛彩飞.电力机车和动车组谐波电流的仿真研究[D].北京交通大学.2009.
    [99]KieBling, Puschmann, Schmieder.中铁电气化局集团有限公司译.电气化铁道接触网.北京.中国电力出版社.2004
    [100]王鹏,梅生伟等.高压输电线路巡线机器人在线供电系统研制[J].电工电能新技术.2011.30(4):74-79
    [101]Colonel Wm.T. Mclyman.龚绍文译.变压器与电感器设计手册[M].北京.中国电力出版社.2009.
    [102]Wang Ran, Liang Ma, Fei Lin, Zheng, T.Q. Zero-sequence voltage injection for narrow pulse compensation and neutral point potential balancing of NPC inverter[C]. ECCE Asia 2009:887-891.
    [103]刘鸿渤.接触网电气参数的研究[D].西南交通大学.2001.
    [104]吴命利.电气化铁道牵引网的统一链式电路模型[J].中国电机工程学报.2010(28):52-58.
    [105]张曙光.HXD3型电力机车[M].北京.中国铁道出版社.2009.
    [106]张曙光.CRH3型动车组[M].北京.中国铁道出版社.2008.
    [107]张曙光.CRH2型动车组[M].北京.中国铁道出版社.2008.
    [108]郭蕾,李群湛等.交-直-交高速动车组机车的谐波模型及仿真分析[J].系统仿真学报.2012.24(5):943-946,951.
    [109]郑华熙.350km/h动车组牵引辅助系统的仿真分析与参数研究[D].2009.北京交通大学.
    [110]罗礼全,王毅,常广.电力机车自动过分相涌流分析[J].北京交通大学学报:自然科学版.2011:35(6):57-61
    [111]张雪松与何奔腾.变压器和应涌流对继电保护影响的分析[J].中国电机工程学报.2006.26(14):12-17.
    [112]Wang Ran, Triilion. Q Zheng. Research on power electronic switch system used in the auto-passing neutral section with electric load[C]. International Conference on Electrical Machines and Systems (ICEMS),2011:1-4
    [113]邵德军.大型变压器暂态机理与保护新原理研究[D].华中科技大学.2009.
    [114]Douglas I Taylor. Single-Phase Transformer Inrush Current Reduction Using Prefluxing[J]. IEEE transactions on power delivery.2012.27(1):245-252
    [115]Ketabi A, Hadidi Zavareh A.R. New method for inrush current mitigation using series voltage-source PWM converter for three phase transformer[C]. Power Electronics, Drive Systems and Technologies Conference (PEDSTC).2011:501-506.
    [116]袁宇波,李德佳,陆于平等.变压器和应涌流的物理机理及其对差动保护的影响[J].电力系统自动化.2005.29(6):9-14.
    [117]白全林.电力变压器励磁涌流的分析与研究[D].2010.西安科技大学.
    [118]王阳光,尹项根,游大海等.影响变压器和应涌流的各种因素[J].电工技术学报.2009.24(9):78-85,106.
    [119]Zheng T, Gu J, Huang S.F. A New Algorithm to Avoid Maloperation of Transformer Differential Protection in Substations With an Inner Bridge Connection[J]. IEEE Transactions on Power Delivery.2012.27(3):1178-1185
    [120]张雪松,何奔腾.变压器和应涌流对继电保护影响的分析[J].中国电机工程学报.2006.26(14):12-17.
    [1121]翁汉琍,林湘宁,刘沛.变压器有载合闸时纵联差动保护误动的分析[J].中国电机工程学报,2006.26(20):27-32.
    [122]Ebner, Andreas, Bosch M. Controlled switching of transformers-effects of closing time scatter and residual flux uncertainty[C]. Universities Power Engineering Conference(UPEC).2008: 1-5.
    [123]Brunke J.H, Frohlich K.J. Elimination of transformer inrush currents by controlled switching. I. Theoretical considerations. IEEE Transactions on Power Delivery.2001.16(2):276-280.
    [124]Brunke J.H, Frohlich K.J. Elimination of transformer inrush currents by controlled switching.
    Ⅱ. Application and performance considerations. IEEE Transactions on Power Delivery.2001.16(2): 281-285.
    [125]Moraw G. Richter W, Hutegger H. et al. Point-on-wave controlled switching of high voltage circuit breakers[J]. CIGR Session.1988,13(2):1-7
    [126]李雄,冉旺,刘冰,郑琼林.电子开关抑制关节式电分相过电压的研究[J].电力电子.2011(2):17-20,16
    [127]郑琼林.伴随电力电子器件一起发展中国轨道交通变流技术[J].变频器世界.2010(11):49-54.82
    [128]Das S. et al. Wavelet transform application for zero-crossing detection of distorted line voltages in weak AC-systems.[C] Proceedings of the IEEE INDICON.2004:464-467
    [129]刘静章,王进旗,王凤波.过零检测技术在相位测量中应用[J].电子测量技术,2004(5):67-68.
    [130]刘俊俊,廖小松,袁嫣红.提高过零检测精度的方法研究[J].工业控制计算机,2009(10):80-81.
    [131]Adrian Z Amanci, Francis P Dawson. Synchronization System with Zero-Crossing Peak Detection Algorithm for Power System Applications[C]. The International Power Electronics Conference.2011:2984-2991.
    [132]Da Silva S.A.O,. Novochadlo R. Modesto R.A. Single-phase PLL structure using modified p-q theory for utility connected systems[J]. IEEE Power Electronics Specialists Conference(PESC). 2008:4706-4711
    [133]Vikram Kaura, Vladimir Blasko. Operation of a phase locked loop system under distorted utility conditions[J]. IEEE Transactions on Industry applications.1997:703-708
    [134]Choi J.W, Y.K Kim, H.G. Kim. Digital PLL control for single-phase photovoltaic system[J]. Electric Power Applications,2006.153(1):40-46
    [135]Shinnaka S. A Robust Single-Phase PLL System With Stable and Fast Tracking[J]. IEEE Transactions on Industry Applications,2008.44(2):624-633.
    [136]Santos C.H.G, S.M. Silva, B.J.C. Filho. A fourier-based PLL for Single-Phase grid connected systems[C]. IEEE Energy Conversion Congress and Exposition (ECCE).2010:2626-2632
    [137]Hong-Seok Song, Kwanghee Nam, Mutschler P. Very fast phase angle estimation algorithm for a single-phase system having sudden phase angle jumps[C]. Industry Applications Conference(IAS).2002(2):925-1231.
    [138]ZhangYa-jing,Gao Ji-lei,Lin fei.TrillionQ.Zheng. Performance analysis and comparison of phase angle estimation schemes for four-quadrant converters of high speed train[C], IEEE Conference on Industrial Electronics and Applications (ICIEA).2010:831-934
    [139]Hong-Seok S. P. Hyun-Gyu, N. Kwanghee. An instantaneous phase angle detection algorithm under unbalanced line voltage condition[C]. Annual IEEE in Power Electronics Specialists Conference(PESC).1999:533-537
    [140]Song H-S, Nam K, Blaabjerg F. Instantaneous phase-angle estimation algorithm under unbalanced voltage-sag conditions. Generation Transmission and Distribution[J]. IEE proceedings. 2000:409-415
    [141]李国勇,徐殿国等.一种电网电压基波分量的实时监测方法[J].中国电机工程学报.2002.22(2):83-88
    [142]Muhammad H Rashid. Power electronics:circuits devices and applications.北京.2003.人民邮电出版社影印版.
    [143]翁洪杰,姚佳,徐柏榆,陈蓓蓓,朱良合.一种中高压串联电子开关[P].中国.CN202663374U.2013-01-09.
    [144]Hughes K B. High-Power Solid-State Switch Test Facility:applications and capabilities[C]. IEEE Annual Meeting of Industry Applications Conference(IAS).1993(2):1305-1311
    [145]Jae-Sun Huh, Hee-Sang Shin, Woon-Sik Moon. Study on Voltage Unbalance Improvement Using SFCL in Power Feed Network With Electric Railway System[J]. IEEE Transactions on Applied Superconductivity.2013:23(3):3601004
    [146]余琳.用于高压脉冲电场杀菌的IGBT串联型高压脉冲发生器研究[D].浙江大学.2012
    [147]刘建强,郑琼林,郭超勇,游小杰.高速动车组牵引变流器热容量[J].电工技术学报.2011:26(10):205-210
    [148]Motto J W, Karstaedt W H, Sherbondy J M, Leslie S G. Thyristor (diode) transient thermal impedance modeling including the spatial temperature distribution during surge and overload conditions[C]. IEEE Annual Meeting of Industry Applications Conference(IAS).1995(2):959-966
    [149]张波,邓小川.宽禁带功率半导体器件技术[J].电子科技大学学报.2009.38(5):618-623.
    [150]郑琼林,李威.8K型电力机车IGBT辅助逆变器的控制与驱动[J].铁道学报.2000.22(1):22-24.
    [151]徐德鸿.现代电力电子器件原理与应用技术[M].北京.机械工业出版社.2008.
    [152]Nagata K, Tamura K. Growth of GaN on SiC/Si substrates using AlN buffer layer under low III/V source gas ratio by hot-mesh CVD[C]. International Conference on Enabling Science and Nanotechnology (ESciNano).2010:1-2
    [153]刘志刚.电力电子学[M].北京.北京交通大学出版社.2009.
    [154]张斌.高压晶闸管阀在牵引供电网自动过分相中的应用研究[D].湖南大学.2003.
    [155]华伟,周文定.现代电力电子器件及其应用[M].北京.北方交通大学出版社.2002
    [156]Sakai I, T Kawakubo, M Suetake. A new system to trigger fast rise thyristors[C]. Proceedings of IEEE Accelerator Science and Technology.1989:2005-2307
    [157]Sanders H, Glidden S. High power solid state switch module[C]. International Conference of Power Modulator Symposium and High-Voltage Workshop.2004:563-566
    [151]李雄.机车带电过分相关键技术研究[D].北京交通大学.2012.
    [158]杨杰.29kV高压晶闸管阀触发系统隔离技术和晶闸管过电压保护方法[J].机车电传动.2000(2):23-26.
    [159]高卓.高压变频器前侧逆变晶闸管自供电驱动系统研究与设计[硕士学位论文].济南.山东大学.2009:33-43
    [161]Ahangir Afsharian, Wu Bin. et al. Self-powered Supplies for SCR,IGBT,GTO and IGCT Devices[C]. Electrical and Computer Engineering Conference,2009(9):920-925
    [162]Dusan Raonic, David S.Maclennan. Self-powered Gate Driver Board. US. Patent, US005796599A. Aug.18.1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700