膨胀阻燃、纳米阻燃及其协同阻燃聚丙烯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯具有透明度高、无毒、易加工、吸湿性低、抗冲强度高、耐化学腐蚀、电绝缘性好及性价比高等优点,从而被广泛应用于化工、建筑、轻工、家电、包装等领域,在五大通用塑料中,消费量仅次于聚乙烯位于第二。但是,由于聚丙烯本身极易燃(极限氧指数仅约17.0)、发热量大,燃烧速度快及燃烧时伴随着滴落,从而限制了其在对阻燃级别要求较高行业中的应用,因此,对PP的阻燃研究就显得尤为重要。随着目前阻燃领域绿色环保的呼声日益高涨且阻燃法规日益苛刻,开发无卤阻燃聚丙烯的任务迫在眉睫。本文针对聚丙烯特殊的燃烧机理,对其开展了膨胀阻燃、纳米阻燃及其协同阻燃三大方面的研究。
     首先,从分子结构设计出发,采用三氯氧磷、4,4’-二氨基二苯甲烷和季戊四醇三种原料通过三步反应合成出了一种端氨基齐聚物型单组分(三源一体)膨胀型阻燃剂,聚(4,4-二氨基-二苯甲烷-O-双环季戊四醇磷酸酯-磷酸酯),缩写为PDBPP。采用红外、氢核磁及X-射线光电子能谱等手段表征了其分子结构。热重分析表明PDBPP无论在空气还是氮气中都具有良好的热稳定性及优异的膨胀成炭能力,如在空气中的600℃时的残炭高达55vt%,且与聚丙烯的加工及热解温度相匹配。随着PDBPP的加入,不仅使聚丙烯的热稳定性和极限氧指数大幅度提高,还使聚丙烯的热释放速率、总放热量及质量损失速率显著降低。当用相容剂-马来酸酐接枝聚丙烯来增容阻燃聚丙烯体系后,PDBPP在基体中的分散尺寸减小到原来的十分之一,增强了PDBPP与基体间的界面粘附力。另外,增容反应使聚丙烯的热稳定性和阻燃性能进一步提高。最为重要的是,增容反应使阻燃聚丙烯的拉伸强度维持了纯聚丙烯的拉伸强度值。
     其次,采用富勒烯(C_(60))阻燃聚丙烯。在低添加量时,即≤2wt%,热重分析和锥形量热分析表明C_(60)不仅使聚丙烯的热稳定性和热氧化稳定性显著提高,与碳纳米管对聚丙烯的热稳定性提高幅度相当,而且使聚丙烯燃烧时的热释放速率、质量损失速率大幅度降低。流变行为、热处理及残炭等研究揭示C_(60)之所以可以提高聚丙烯的热稳定性和阻燃性能,是因为其可以捕捉聚丙烯降解时产生的自由基及其衍生的高活性的H·和·OH自由基,同时使得熔体的粘度急剧上升,这就使降解的小分子产物需要更多的能量和时间逃逸到上层。另一方面,动态力学测试表明C_(60)在聚丙烯中体现了纳米粒子的增强效应。
     第三,利用C_(60)和PDBPP为原料,合成了一种树枝状大分子纳米/膨胀协同阻燃剂,即C_(60)-d-PDBPP。采用红外、氢核磁、X-射线光电子能谱、透射电镜等手段表征了其分子结构及形貌。扫描电镜和透射电镜观察显示C_(60)-d-PDBPP比纯C_(60)更容易分散在聚丙烯中。热重分析和锥形量热分析表明前者比后者能更进一步提高聚丙烯的热稳定性,同时还使聚丙烯燃烧时的热释放速率和质量损失速率值进一步减小,延缓其燃烧过程,体现了很强的协同阻燃效应。阻燃机理研究表明C_(60)超强的捕捉自由基能力及PDBPP的高成炭能力之间存在着协同效应,从而使的聚丙烯的热稳定性和阻燃性能得到进一步改善。
     第四,利用C_(60)和碳纳米管为原料,通过碳纳米管的羟基化、氨基化及C_(60)功能化三步反应合成了一种纳米/纳米协同阻燃剂,即C_(60)-d-CNTs。采用红外光谱、X-射线光电子能谱、透射电镜和扫描电镜等手段表征了其分子结构及形貌。由于C_(60)-d-CNTs中含有未反应的活性氨基和羟基,因此,通过添加马来酸酐接枝聚丙烯来进行原位增容反应使其比纯C_(60)和碳纳米管任何一者都更容易分散在聚丙烯基体中。阻燃机理研究表明C_(60)的捕捉自由基能力和碳纳米管形成的网络结构所产生的屏蔽效应具有协同作用,与纯碳纳米管相比,C_(60)-d-CNTs不仅能把聚丙烯的热降解温度移向更高温度,而且使其燃烧过程变得更加缓慢,热释放速率更小,表明两者之间存在着显著的协同阻燃效应。
     最后,采用碳纳米管的羟基化、磷酰化及原位缩聚三步法合成了一种膨胀型阻燃剂包覆碳纳米管协同阻燃剂,即IFR-w-CNTs。采用红外光谱、X-射线光电子能谱、透射电镜和扫描电镜等手段表征了其分子结构及形貌。通过调节IFR与碳纳米管两者的投料比,可以控制IFR-w-CNTs的管径,并为透射电镜观察所证实。由于IFR-w-CNTs表面含有活性氨基和羟基等官能团,通过添加马来酸酐接枝聚丙烯来进行原位增容反应可以使其在聚丙烯基体中均匀分散。当IFR与碳纳米管之间的重量比为1:2时,不仅两者的协同阻燃效应达到最大值,而且对聚丙烯力学性能的增强效应也达到了最大值,可使聚丙烯的拉伸强度由35.1 MPa提高到40.8 MPa。
Polypropylene (PP) is widely applied to various fields like chemical,construction,light industry,household appliance,and package due to its overwhelming advantagessuch as high transparency,nontoxicity,ease of processing,low hygroscopicity,highimpact-strength,resistance to chemical erosion,excellent electric insulation,and highperformance-price ratio.Currently,its consumption is only second to that ofpolyethylene among the top-five general plastics.Unfortunately,PP is ratherflammable with a limited oxygen index (LOI) value of around 17.0.In addition,itcombusts too fast and generates a great of heat accompanied by dripping,whichsignificantly limits its wide applications,thus it is of significance to reduce itsflammability.
     Firstly,based on the molecular design,we synthesized an amino terminatedoligomeric intumescent flame retardant,poly (4,4-diamino diphenylmethane-O-bicycli pentaerythritol phosphate-phosphate),PDBPP for short,on thebasis of phosphrous oxychloride,pentaerythritol,and 4,4'-diaminodiphenyl methane,and the chemical structure of PDBPP was characterized by IR,~1H-NMR,and XPS.The results of thermal analysis showed that PDBPP had excellent thermal stabilityand char-forming ability,yielding 55.0 wt% char residue at 600℃in air atmosphere.Besides,it could match well the processing temperature of PP.Incorporation ofPDBPP not only resulted in a remarkable improvement in the thermal stability andLOI values,but markedly reduced the heat release rate,total heat release and massloss rate of PP.Using maleic anhydride grafted polypropylene (PP-g-MA)as thecompatibilizer,the interfacial tension was improved and the sizes of PDBPP domainsin PP matrix were significantly reduced to one tenth of those of PP/PDBPP samplesbefore compatibilization.Moreover,compatibilization led to a further improvement inthe thermal stability and flame retardancy of PP,while tensile strengths of PP/PDBPPsystems were restored to the levels similar to that of pure PP even if with a 30 wt%PDBPP loading.
     Secondly,we employed fullerene (C_(60)) to reduce the flammability of PP.TGA andcone calorimeter measurements displayed that at very low loading ((?)2wt%),C_(60)could remarkably improve the thermal stability and dramatically reduce the heatrelease rate and mass loss rate,in which it could match carbon nanotubes (CNTs).Investigations on rheological analysis,heat-treatment and char residue demonstratedthat C_(60) could trap the free radicals created by the decomposition of PP and otherderivative free radicals like H·and·OH,which will make the melt viscositydramatically increase and consequently make the small molecules need much moreenergy and time to spread into the flame zone to support the combustion as fuels.Inthis way,C_(60) improved the thermal stability and flame retardancy of PP.Dynamicmechanical thermal analysis (DMA) exhibited that C_(60) had the reinforcing effect butaccompanied by the plasticization effect for PP.
     Thirdly,we employed C_(60) to decorate PDBPP and fabricated a dendrimer-likemacromolecular nano/intumescence synergistic flame retardant,C_(60)-d-PDBPP,whosechemical structure and morphology were characterized by IR,XPS,TEM and SEM.C_(60)-d-PDBPP could readily disperse well in PP matrix through employing PP-g-MAas the compatibilizer since many active amino and hydroxyl groups existed inC_(60)-d-PDBPP molecule.The combination of the high free-radical-trapping ability ofC_(60) and excellent char-forming ability of PDBPP further heightened the thermalstability and reduced the flammability of PP,evidenced by the observation of muchhigher thermal degradation temperature and much lower peak heat release rate.
     Subsequently,through the hydroxylation,amino-functionalization,and C_(60)-functionalization of CNTs,we synthesized a novel nano/nano synergistic flameretardant,C_(60)-d-CNTs which was characterized by IR,XPS,TEM and SEM.Compared with C_(60) and CNTs,C_(60)-d-CNTs was much easier to disperse in PP matrixbecause its structure contained plenty of active amino and hydroxyl groups and thusthe interfacial adhesion could be improved through compatibilization reaction withPP-g-MA as the compatibilizer.Synergistic flame retardancy effects could beobserved from the further reduction in peak heat release rate of PP.Both the highfree-radical-trapping ability of C_(60) and the barrier effect caused by the CNTs network were responsible for the elevation of thermal stability and the improvement in theflame retardancy of PP.
     Finally,through hydroxylation and phosphorylation of CNTs,and in-situcondensation polymerization,we fabricated an intumescent-flame-retardant wrappedCNTs,IFR-w-CNTs,which was characterized by IR,XPS,TEM and SEM.Thediameter of IFR-w-CNTs could be controlled through adjusting the feed ratio of IFRto CNTs.Due to the fact that IFR-w-CNTs contains active amino and hydroxyl groups,we employed PP-g-MA as the compatibilizer to reduce the interfacial tension betweenIFR-w-CNTs and PP,thus IFR-w-CNTs could disperse better in PP matrix relative topristine CNTs.The cone calorimeter measurements clearly indicated that,comparedwith CNTs,IFR-w-CNTs could make the peak heat release rate reduce to a greaterextent at the same loading level,which was due to the fact that the char residuecreated by the decomposition of IFR adhered onto the surface of CNTs andconsequently made the CNTs network more compact.Interestingly,when the ratio ofIFR and CNTs was 1:2,not only the optimum synergistic flame retardancy achieved,but the reinforcement effect also reached the peak value,for the tensile strength of thePP/IFR-w-CNTs sample increased up to 40.8 MPa relative to 35.1 MPa of pure PP.
引文
[1]何曼君;陈维孝;董西侠.高分子物理.复旦大学出版社.上海.2000.
    [2]邸曼;张明.电气火灾成因分析.火灾与消防. 2006.1.34-41.
    [3]Moore,G.R.;Kline,D.E..Properties and processing of polymers for engineers,Prentice-Hall,Inc.,1984:209.
    [4]Davis,J.Pritchard,G.Plastics Additives:An AZ Reference,Chapman & Hall,London.1998.
    [5]徐应麟;王元宏.高聚物材料的使用技术,化学工业出版社.北京.1994.
    [6]欧育湘.实用阻燃燃技术,化学工业出版社.北京.2002.
    [7]Tramn,H.;Clar,C.;Kuhnel,P.;Schuff,W.Fireproofing of wood.US patent 2106938,1938.
    [8]Olsen,J.W.;Bechle,C.W.Wire covering machine.US patent 2442706,1948.
    [9]Jones,G.;Soll,S.Fire-retardant composition and process.US patent 2452054,1948.
    [10]Vandersall,H.L.Intumescent coating systems,their development and chemistry.Journal of Fire Flammability 1971,2,97-140.
    [11]Rudi,R.;Orville,J.S.Some chemical reactions of 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphos-phaspiro [5.5]undecane 3,9-dioxide,Journal of Organic Chemistry 1963,28,1602-1608.
    [12]Halpern,Y.;Mott,D.M.;Nlswander,R.H.Fire retardancy of thermoplastic materials by intumescence.Industrial Engineering Chemical Product Research and Development 1984,23,233-238.
    [13]Halpern,Y.Pentate salts of amino-s-triazines.US patent 4154930,1979.
    [14]刘键;罗志强.季戊四醇二磷酸酯蜜胺盐的合成新方法.化学世界2002,4,203-205.
    [15]Halpern,Y.Flame-retardant polymer compositions US patent 4491644.
    [16]吕彤;吴赞敏;等.季戊四醇双磷酸酯二磷酰氯缩三聚氰胺的合成.塑料工业 2001,29,1-2,7.
    [17]Halpen,Y.;Niswander,R.H.Process for preparing pentaerythritol phosphate.US 4454064.
    [18]欧育湘.新型磷-氮系膨胀型阻燃剂的性能、合成与应用.江苏化工.1998,26(3),6-10.
    [19]Halpen,Y.Mott,D.M.Flame-retardant polymer compositions.US patent 4491644.
    [20]李昕;欧育湘;等.三(1-氧代-1-磷杂-2,6,7-三氧杂双环[2.2.2]辛烷-4-亚甲基)磷酸酯的合成、晶体结构及热性能.高等学校化学学报2002,23,695-699.
    [21]Li,X.;Y.X.,Ou.;Zhang,Y.Synthesis and structure of a novel caged bicyclic phosphate flame retardant.Chinese Chemical Letters 2000,11,887-890.
    [22]李昕;欧育湘;等.膨胀型双环笼状磷酸酯阻燃乙烯-醋酸乙烯酯共聚物的研究.北京理工大学学报 2002,22,650-654.
    [23]Camino,G.;Martinasso,G.;Costa,L.Effect of the fire-retardant,ammonium polyphosphate,on the thermal decomposition of aliphatic polyamides.Ⅱ:Polyamide 6.Polymer Degradation and Stability 1990,27,285-296.
    [24]Camino,G.;Costa,L.Study of the mechanism of intumescence in fire retardant polymers.Ⅱ:Mechanism of action in polypropylene-ammonium-polyphosphate-pentaerythritol mixtures.Polymer Degradation and Stability 1984,7,25-31.
    [25] Camino, G; Martinasso, G; Costa. L.: Cobetto, R. A detailed investigation of the products of the thermal degradation of polystyrene. Polymer Degradation and Stability 1990,28, 17-22.
    [26] Bourbigot, S.; Le Bras, M.; Delobel. R.; Breant, P.; Tremillon, J. M. Mechanistic study of thermal behaviour and combustion performance of carbon fibre-epoxy resin composites fire retarded with a phosphorus-based curing system. Polymer Degradation and Stability 1996,54, 275-287.
    [27] Almeras, X.; Le Bras, M.; Hornsby, P.; Bourbigot, S.; Marosi, G; Anna. P.; Deloble, R.Artificial weathering and recycling effect on intumescent polypropylenebased blends.Journal of Fire Sciences 2004, 22, 143-161.
    [28] Bourbigot, S.; Duquesne, S.; Leroy, J. M. Modeling of heat transfer of a polypropylene-based intumescent system during combustion. Journal of Fire Sciences 1999, 17, 42-56.
    [29] Le Bras, M.; Bourbigot, S.; Delporte, C; Siat, C; Tallec, Y. L. New intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire and Materials 1996, 20, 191-203.
    [30] Bourbigot, S.; Le Bras, M.; Duquesne, S.; Rochery, M. Recent advances for intumescent polymers. Macromolecular Materials and Engineering 2004, 289, 499-511.
    [31] Bourbigot, S.; Flambard, X. Heat resistance and flammability of high performance fibres: A review. Fire and Materials 2002, 26, 155-168.
    [32] Le Bras, M.; Bourbigot, S. New intumescent formulations of fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire and Materials 1996, 20, 39-49.
    [33] Jimenez, M.; Duquesene, S.; Bourbigot, S. Multiscale experimental approach for developing high-performance intumescent coatings. Industry and Engineering Chemistry Research 2006,45, 4500-4508.
    [34] Bugajny, M.; Le Bras, M.; Bourbigot, S. Short communication: new approach to the dynamic properties of an intumescent material. Fire and Materials 1999, 23, 49-51.
    [35] Le Bras, M.; Bourbigot, S.; Delporte, C; Siat, C; Le Tallec, Y. Ignitability test for building materials: influence of fuel gases and the design of the Burner's flame stabilizer on test results. Fire and Materials 1999, 20, 191-203.
    [36] Bourbigot, S.; Le Bras, M.; Dabrowski, F.; Gilman, J. W.; Kashiwagi, T. PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire and Materials 2000, 24, 201-208.
    [37] Le Bras, M.; Bourbigot, S.; Le Tallec, Y.; Laureyns, J. Synergy in intumescence-application to β-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethylene formulations. Polymer Degradation and Stability 1997, 56, 11-21.
    [38] Dabrowski, F.; Le Bras, M.; Cartier, L.; Bourbigot, S. The use of clay in an EVA-based intumescent formulation. comparison with the intumescent formulation using polyamide-6 clay nanocomposite as carbonisation agent. Journal of Fire Sciences 2001, 19, 219-241.
    [39] Bugajny, M.; Le Bras, M.; Cartier, L.; Bourbigot, S.; Delobel, R. Thermal behaviour of ethylene-propylene rubber/polyurethane/ammonium polyphosphate intumescent formulations-a kinetic study. Polymer Degradation and Stability 1999,64, 157-163.
    [40] Siat, C; Bourbigot, S.; Le Bras, M. Thermal behaviour of polyamide-6-based intumescent formulations: a kinetic study. Polymer Degradation and Stability 1997, 58, 303-313.
    [41] Bugajny. M.; Le Bras, M; Bourbigot, S.; Poutch, F.; Lefebvre, J. M. Thermoplastic polyurethanes as carbonization agents in intumescent blends. Part 1: Fire of polypropylene/thermoplastic polyurethane/ammonium blends. Journal of Fire Sciences 1999. 17.494-513.
    [42] Bugajny. M.; Le Bras, M.; Bourbigot, S. Thermoplastic polyurethanes as carbonziation agents in intumescent blends. ?. Thermal behavior of polypropylene/thermoplastic polyurethane/ammonium polyphosphate blends. Journal of Fire Sciences 2000, 18, 7-27.
    [43] Bugajny, M.; Le Bras, M.; No(?)l, A.; Bourbigot, S. Use of thermoplastic polyurethanes as carbonisation agents in intumescent blends. Part 3: Modification of the dynamic properties of polypropylene/thermoplastic polyurethane/ammonium polyphosphate formulations with heat and stress. Journal of Fire Sciences 2000, 18, 104-129.
    [44] Bourbigot, S.; Le Bras, M; Delobel, R.; Gengembre, L. XPS study of an intumescent coating ?. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Applied Surface Science 1997, 120,15-29.
    [45] Bourbigot, S.; Le Bras, M.; Breant, P.; Tr(?)millon, J. M.; Delobel, R. Zeolites: New Synergistic Agents for Intumescent Fire Retardant Thermoplastic Formulations-Criteria for the Choice of the Zeolite. Fire and Materials 1996, 20, 145-154.
    [46] Bourbigot, S.; Le Bras, M.; Delobel, R. Fire Degradation of an Intumescent Flame Retardant Polypropylene Using the Cone Calorimeter. Journal of Fire Sciences 1995, 13, 3-22.
    [47] Almeras, X.; Dabrowski, F.; Le Bras, M..; Poutch, F.; Bourbigot, S.; Marosi, G; Anna, P.Using polyamide-6 as charring agent in intumescent polypropylene formulations. ?. Effect of the compatibilising agent on the fire retardancy performance. Polymer Degradation and Stability 2002,77,305-313.
    [48] Li, B.; Sun, C. Y.; Zhang, X. C. An investigation of flammability of intumescent flame retardant polyethylene containing starch by using cone calorimeter. Chemical Journal of Chinese Universities 1999, 20, 146-149.
    [49] Xie, F.; Wang, Y. Z.; Yang, B.; Liu, Y. A novel intumescent flame-retardant polyethylene system. Macromolecular Materials and Engineering 2006, 291, 247-253.
    [50] Marosi, G; Anna, P.; Balogh, I.; Bertalan, G; Tohl, A.; Maatoug, M. A. Thermoanalytical study of nucleating effects in polypropylene composites. Journal of Thermal Analysis 1997,48,717-726.
    [51] Ma, Z. L.; Gao, J. G; Niu, H. J.; Ding, H. T.; Zhang, J. Polypropylene-intumescent flame-retardant composites based on meleated polypropylene as a coupling agent. Journal of Applied Polymer Science 2002, 85, 257-262.
    [52] Ma, Z. L.; Pang, X. Y; Zhang, J.; Ding, H. T. Studies on compatibilization of intumescent flame-retardant/PP composites based on etched PP. Journal of Applied Polymer Science 2002, 84, 522-527.
    [53] Almeras, X.; Dabrowski, F.; Le Bras, M.; Delobel, R.; Bourbigot, S.; Marosi, G; Anna, P. Using polyamide 6 as charring agent in intumescent polypropylene formulations Ⅱ.Thermal degradation.Polymer Degradation and Stability 2002,77,315-323.
    [54]Ma,Z.L.;Zhao,M.;Hu,H.F.;Ding,H.T.;Zhang,J.Compatibilization of Intumescent Flame Retardant/Polypropylene Composites Based on a-Methacrylic Acid Grafted Polypropylene.Journal ofApplied Polymer Science 2002,83,3128-3132.
    [55]Almeras,X.;Le Bras,A.;Bourbigot,S.;Hornsby,P.;Marosi,G.;Anna,P.;Poutch,F.Intumescent PP blends.Polymers & Polymer Composites 2003,11,691-702.
    [56]Chen,Y.H.;Liu,Y.A.;Wang,Q.;Yin,H.A.;Aelmans,N.;Kierkels,R.Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology:effect of component ratio.Polymer Degradation and Stability 2003,81,215-224.
    [57]Ma,Z.L.;Gao,J.G.;Bai,L.G.Studies of polypropylene-intumescent flame-retardant composites based on etched polypropylene as a coupling agent.Journal of Applied Polymer Science 2004,92,1388-1391.
    [58]Le Bras,M.;Bourbigot,S.;Felix,E.;Pouille,F;Siat,C.;Traisnel,M.Characterization of a polyamide-6-based intumescent additive for thermoplastic formulations.Polymer 2000,41,5283-5296.
    [59]王慧芳;张立平;等.膨胀阻燃剂在尼龙66中的应用.中国塑料 2001,15,63-65.
    [60]欧育湘;吴俊浩;王建龙;冯美平;彭治汉.聚磷酸蜜胺系膨胀型阻燃剂阻燃PA6的燃烧行为及热裂解研究.中国塑料2003,17,61-64.
    [61]Riva,A.;Camino,G.;Fomperie,L.;Amigouet,P.Fire retardant mechanism in intumescent ethylene vinyl acetate compositions.Polymer Degradation and Stability 2003,82,341-346.
    [62]Wang,J.C.;Yang,S.L.;Li,G.;Jiang,J.M.Synthesis of a New-type Carbonific and Its Application in Intumescent Flame-retardant(IFR)/Polyurethane Coatings.Journal of Fire Sciences 2003,21,245-266.
    [63]Wang,J.C.;Li,G.;Yang,S.L.;Jiang,J.M.New intumescent flame-retardant agent:Application to polyurethane coatings.Journal of Applied Polymer Science 2004,91,1193-1206.
    [64]Kandola,B.K.;Horrocks,A.R.;Myler,P.;Blair,D.The effect of intumescents on the burning behaviour of polyester-resin-containing composites.Composites Part a-Applied Science and Manufacturing 2002,33,805-817.
    [65]Li,X.;Ou,Y.X.;Shi,Y.S.Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate.Polymer Degradation and Stability 2002,77,383-390.
    [66]Chen,G.H.;Yang,B.;Wang,Y.Z.A novel flame retardant of spirocyclic pentaerythritol bisphosphorate for epoxy resins.Journal ofApplied Polymer Science 2006,102,4978-4982.
    [67]Liu,Y.;Wang,D.Y.;Wang,J.S.;Song,Y.P.;Wang,Y.Z.A novel intumescent flame-retardant LDPE system and its thermo-oxidative degradation and flame-retardant mechanisms.Polymer for Advanced Technology 2008,1566-1575.
    [68]Wang,J.S.;Wang,D.Y.;Liu,Y.;Ge,X.G.;Wang,Y.Z.Polyamide-enhanced flame retardancy of ammonium polyphosphate on epoxy resin.Journal of Applied Polymer Science 2008,108,2644-2653.
    [69]Xie.F.;Wang,Y.Z.;Yang,B.;Liu,Y.A novel intumescent flame-retardant polyethylene system.Macromolecular Materials and Engineering 2006,291,247-253.
    [70]Wang.D.L.;Liu,Y.;Wang.D.Y.;Zhao,C.X.;Mou,Y.R.;Wang,Y.Z.A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol.Polymer Degradation and Stability 2007,92,1555-1564.
    [71]Ge,X.G.:Wang,D.Y.;Wang,C.;Qu,M,H.;Wang,J.S.;Zhao,C.S.;Jing,X.K.;Wang,Y.Z.A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy.European Polymer Journal 2007,43,2882-2890.
    [72]Wang,D.Y.;Ge,X.G.;Wang,Y.Z.;Wang,C.;Qu,M.H.;Zhou,Q.A novel phosphorus-containing poly(ethylene terephthalate)nanocomposite with both flame retardancy and anti-dripping effects.Macromolecular Materials and Engineering 2006,291,638-645.
    [73]Chang,Y.L.;Wang,Y.Z.;Ban,D.M.;Yang,B;Zhao,G.M.New Miscible Poly(ether imide)/Poly(phenyl sulfone)Blends.Macromolecular Materials and Engineering 2006,289,703-707.
    [74]Deng,Y.;Wang,Y.Z.;Ban,D.M.;Liu,X.H.;Zhou,Q.Burning behavior and pyrolysis products of flame-retardant PET containing sulfur-containing aryl polyphosphonate.Journal ofAnalytical and Applied Pyrolysis 2006,76,198-202.
    [75]Liu,W.;Chen,D.Q.;Wang,Y.Z.;Wang,D.Y.;Qu,M.H.Char-forming mechanism of a novel polymeric flame retardant with char agent.Polymer Degradation and Stability 2007,92,1046-1052.
    [76]Wang,D.Y.;Liu,Y.;Wang,Y.Z.;Artiles,C.P.;Richard Hull,T,Price,D.Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates.Polymer Degradation and Stability 2007,92,1592-1598.
    [77]Chen,D.Q.;Wang,Y.Z.;Hu,X.P.;Wang,D.Y.;Qu,M.H.;Yang,B.Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate)fabrics.Polymer Degradation and Stability 2005,88,349-356.
    [78]Qu,M.H.;Wang,Y.Z.;Liu,Y.;Ge,X.G.;Wang,D.Y.;Wang,C.Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO_4 nanocomposites.Journal ofApplied Polymer Science 2006,102,564-570.
    [79]Hu,X.P.;Li,W.Y.;Wang,Y.Z.Synthesis and characterization of a novel nitrogen-containing flame retardant.Journal of Applied Polymer Science 2004,94,1556-1561.
    [80]Wang,D.Y.;Wang,Y.Z.;Wang,J.S.;Chen,D.Q.;Zhou,Q.;Yang,B.;Li,W.Y.Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites.Polymer Degradation and Stability 2005,87,171-176.
    [81]Wang,Y.Z.;Yi,B.;WU,B.;Yang,B.;Liu,Y.Thermal behaviors of flame-retardant polycarbonates containing diphenyl sulfonate and poly(sulfonyl phenylene phosphonate).Journal ofApplied Polymer Science 2003,89,882-889.
    [82]Du,X.H.;Zhao,C.S.;Wang,Y.Z.;Zhou,Q.;Deng,Y.QU,M.H.;Yang,B.Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends.Materials Chemistry and Physics,2006,98,172-177.
    [83]Lewin,M.;Endo,M.Catalysis of intumescent flame retardancy of polypropylene by metallic compounds This paper is dedicated to professors Francesco Ciardelli and Emo Chellini of the University of Pisa.Italy on the occasion of their 65th birthdays.Polymer for Advanced Technology 2003.14.3-11.
    [84]Song,R.J.;Zhang.B.Y.:Huang,B.T.;Tang,T.Catalysis of intumescent flame retardancy of polypropylene by metallic compounds This paper is dedicated to professors Francesco Ciardelli and Emo Chellini of the University of Pisa,Italy on the occasion of their 65th birthdays.Journal ofApplied Polymer Science 2006,102,5988-5933.
    [85]Shehata,A.B.A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide.Polymer Degradation and Stability 2004,85,577-582.
    [86]Hassan,M.A.;Shehata,A.B.The effect of some polymeric metal chelates on the flammability properties of polypropylene.Polymer Degradation and Stability 2004,85,733-740.
    [87]张军;纪奎江;夏延致.聚合物燃烧与阻燃技术,化学工业出版社,北京:2005.
    [88]Fujiwara,S.;Sakamoto,K.T.Application on polyamide 6-montmorillonite.Pat 109998,1976.
    [89]Okada,A.;Kawasumi,M.;Kurauchi,T.Synthesis and Characterization of a Nylon 6-Clay Hybrid.Abstracts of Papers of the American Chemical Society 1987,28,447-452.
    [90]Giannelis,E.P.Polymer layered silicate nanocomposites.Advanced Materials 1996,8,29-35.
    [91]Giannelis,E.P.Polymer-layered silicate nanocomposites:synthesis,properties and applications.Applied Organometallic Chemistry 1998,12,675-680.
    [92]Giannelis,E.P.;Krishnamoorti,R.;Manias,E.Polymer-silicate nanocomposites:Model systems for confined polymers and polymer brushes.Polymers in Confined Environments 1999,138,107-147.
    [93]Gilman,J.W.;Harris Jr,R.H.;Shields,J.R.;Kashiwagi,T.;Morgan,A.B.A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite:layered silicate reinforced carbonaceous char.Polymer for Advanced Technology 2006,17,263-271.
    [94]Gilman,J.W.;Lomakin,S;Kashiwagi,T.;VanderHart,D.L.;Nagy,V.Characterization of flame-retarded polymer combustion chars by solid-state 13C and 29Si NMR and EPR.Fire and Materials 1998,22,61-67.
    [95]Morgan,A.B.;Gilman,J.W.Thermal and flammability properties of a silica-poly(methylmethacry late)nanocomposite.Journal of Applied Polymer Science 2003,87,1329-1338.
    [96]Zammarano,M.;Bellayer,S.;Gilman,J.W.;Franceschi,M.;Beyer,F.L.;Harris,R.H.;Meriani,S.Delamination of organo-modified layered double hydroxides in polyamide 6 by melt processing.Polymer 2006,47,652-662.
    [97]Kashiwagi,T.;Gilman,J.W.;Butler,K.M.;Harris,R.H.;Shields,J.R.;Asano,A.Flame retardant mechanism of silica gel/silica.Fire and Materials 2000,24,277-289.
    [98]Zhang,J.;Lewin,M.;Pearce,E.;Zammarano,M.;Gilman,J.W.Flame retarding polyamide 6 with melamine cyanurate and layered silicates.Polymer for Advanced Technology 2008, 19, 928-936.
    [99] Gilman, J. W. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science 1999, 15,31 -49.
    [100] Morgan, A. B.; Harris Jr, R. H.; Kashiwagi, T.; Chyall, L. J.; Gilman, J. W. Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire and Materials 2002, 26, 247-253.
    [101] Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris Jr, R. Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chemistry of Materials 2000,12, 1866-1873.
    [102] Zammarano, M.; Kramer, R. H.; Harris Jr, R. Ohlemiller, T. J.; Shields, J. R.; Rajatekar, S.S.; Lacerda, S.; Gilman, J. W. Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polymer for Advanced Technology 2008, 19, 588-595.
    [103] Wang, Z.; Jiang, D. D.; Wilkie, C. A.; Gilman, J. W. Further studies on fire retardant polystyrene by Friedel-Crafts chemistry. Polymer Degradation and Stability 1999, 66,373-378.
    [104] Nawani, P.; Desai, P.; Lundwall, M.; Gelfer, M. Y.; Hsiao, B. S.; Tsou, A. H.; Gilman, J. W.;Khalid, S. Polymer nanocomposites based on transition metal ion modified organoclays.Polymer 2007, 48, 827-840.
    [105] Zammarano, M.; Franceschi, M.; Bellayer, S.; Gilman, J. W.; Meriani, S. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer, 2005, 46, 9314-9328.
    [106] Bourbigot, S.; Vanderhart, D. L.; Gilman, J. W.; Bellayer, S.; Stretz, H.; Paul, D, R. Solid state NMR characterization and flammability of styrene-acrylonitrile copolymer montmorillonite nanocomposite. Polymer, 2004, 45, 7627-7638.
    [107] Zammarano, M.; Gilman, J. W.; Nyden, M.; Pearce, E. M.; Lewin, M. The Role of Oxidation in the Migration Mechanism of Layered Silicate in Poly(propylene) Nanocomposites. Macromolecular Rapid Communications 2006, 27, 693-696.
    [108] Awad, W. H.; Gilman, J. W.; Nyden, M.; Harris Jr, R. H.; Sutto, T. E.; Callahan, J.; Trulove,P. C. DeLong, H. C; Fox, D. M. Thermal degradation studies of alky1-imidazolium salts and their application in nanocomposites. Thermochimica Acta 2004, 409, 3-11.
    [109] Mantz, R. A.; Jones, P. F.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M.J. Thermolysis of polyhedral oligomeric silsesquioxane (POSS) macromers and POSS-siloxane copolymers. Chemistry of Materials 1996, 8, 1250-1259.
    [110] Dabrowski, F.; Le Bras, M.; Delobel, R.; Gilman, J. W.; Kashiwagi, T. Using clay in PA-based intumescent formulations. Fire performance and kinetic parameters.Macromolecular Symposia 2003, 194, 201-206.
    [111] VanderHart, D. L.; Asano, A.; Gilman, J. W. NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/clay nanocomposites. Marromolecules 2001,34,3819-3822.
    [112] VanderHart, D. L.; Asano, A.; Gilman, J. W. Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe ~(3+) on nuclear spins. Chemistry of Materials 2001, 13, 3781-3795.
    [113] Wang, D. Y.; Zhu, J.; Yao, Q.; Wilkie, C. A. Comparison of Various Methods for the Preparation of Polystyrene and Poly(methyl methacrylate) Clay Nanocomposites.Chemistry of Materials 2002, 14, 3837-3843.
    [114] Zanetti, M.; Camino, G.; Canavese, D.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Fire Retardant Halogen- Antimony- Clay Synergism in Polypropylene Layered Silicate Nanocomposites. Chemistry of Materials 2002, 14, 189-193.
    [115] Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Fire Properties of Polystyrene- Clay Nanocomposites. Chemistry of Materials 2001, 13, 3774-3780.
    [116] Zhang, J. G.; Jiang, D. D.; Wilkie, C. A. Fire properties of styrenic polymer-clay nanocomposites based on an oligomerically-modified clay. Polymer Degradation and Stability 2006, 91, 358-366.
    [117] Wilkie, C. A.; Chigwada, G; Gilman, J. W; Lyon, R. E. High-throughput techniques for the evaluation of fire retardancy. Journal of Materials Chemistry 2006, 16, 2023-2030.
    [118] Zhang, J. G; Jiang, D. D.; Wang, D. Y.; Wilkie, C. A. Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist. Polymer for Advanced Technology 2005, 16,800-806.
    [119] Su, S. P.; Jiang, D. D.; Wilkie, C. A. Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polymer Degradation and Stability 2004, 83, 321-331.
    [120] Zhang, J. G.; Jiang, D. D,; Wilkie, C. A. Polyethylene and polypropylene nanocomposites based on a three component oligomerically-modified clay. Polymer Degradation and Stability 2006,91. 641 -648.
    [121] Zhang, J. G; Wilkie, C. A. Polyethylene and Polypropylene nanocomposites based on polymerically-modified clay containing alkylstyrene units. Polymer 2006, 47, 5736-5743.
    [122] Zhang, J. G.; Jiang, D. D,; Wilkie, C. A. Polyethylene and polypropylene nanocomposites based upon an oligomerically modified clay. Thermochimica Acta 2005, 430, 107-113.
    [123] Zheng, X. X.; Jiang, D. D.; Wilkie, C. A. Polystyrene nanocomposites based on an oligomerically-modified clay containing maleic anhydride. Polymer Degradation and Stability 2006, 91,108-113.
    [124] Sepehr, M.; Utracki, L. A.; Zheng, X. X.; Wilkie, C. A. Polystyrenes with macro-intercalated organoclay. Part ?. Compounding and characterization. Polymer 2005,46, 11557-11568
    [125] Sepehr, M.; Utracki, L. A.; Zheng, X. X.; Wilkie, C. A. Polystyrenes with macro-intercalated organoclay. Part ?. Rheology and mechanical performance. Polymer 2005, 46,11569-11581.
    [126] Jang, B. N.; Wang, D. Y.; Wilkie, C. A. Relationship between the solubility parameter of polymers and the clay dispersion in polymer/clay. Macromolecules 2005, 38, 6533-6543.
    [127] Zhu, J.; Start, P.; Mauritz, K. A.; Wilkie, C. A. Silicon-methoxide-modified clays and their polystyrene nanocomposites. Journal of Polymer Science: Part A: Polymer Chemistry 2002,40, 1498-1503.
    [128] Zhu, J.; Uhl, F. M.; Morgan, A. B.; Wilkie, C. A. Studies on the mechanism by which the formation of nanocomposite enhances thermal stability. Chemistry of Materials 2001, 13,4649-4654.
    [129] Zhang, J. G.; Jiang, D. D.; Wang, D. Y.; Wilkie. C. A. Styrenic polymer nanocomposites based on an oligomerically-modified clay with high inorganic content. PolymerDegradation and Stability 2006, 91,2665-2674.
    [130] Costache, M. C; Wang, D. Y.; Heidecker, M. J.; Manias, E.; Wilkie, C. A. The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite. layered double hydroxides and carbon nanotubes. Polymer for Advanced Technology 2006, 17,272-280.
    [131] Zhang, J. G; Jiang, D. D.; Wilkie, C. A. Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. Polymer Degradation and Stability 2006, 91, 298-304.
    [132] Su, S. P.; Wilkie, C. A. Exfoliated poly(methyl methacrylate) and polystyrene nanocomposites occur when the clay cation contains a vinyl monomer. Journal of Polymer Science: Part A: Polymer Chemistry 2003, 41, 1124-1135
    [133] Tang, T.; Chen, X. C; Chen, H.; Meng, X. Y.; Jiang, Z. W; Bi, W. G. Catalyzing carbonization of polypropylene itself by supported nickel catalyst during combustion of polypropylene/clay nanocomposite for improving fire retardancy. Chemistry of Materials 2005, 17,2799-2802.
    [134] Wang, Z.; Du, X. H.; Song, R. J.; Meng, X. Y; Jiang, Z. W; Tang, T. Morphology evolutions of organically modified montmorillonite/polyamide 12 nanocomposites.Polymer 2007, 48, 7301-7308.
    [135] Song, R. J.; Wang, Z.; Meng, X. Y; Zhang, B. Y; Tang, T. Influences of catalysis and dispersion of organically modified montmorillonite on flame retardancy of polypropylene nanocomposites. Journal of Applied Polymer Science 2007, 106, 3488-3494.
    [136] Song, R. J.; Jiang, Z. W; Yu, H. O.; Liu, J.; Zhang, Z. J.; Wang, Q. W; Tang, T.Strengthening carbon deposition of polyolefin using combined catalyst as a general method for improving fire retardancy. Macromolecular Rapid Communications 2008, 29, 789-793.
    [137] Chen, X. C; Ding, Y. P.; Tang, T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polymer International 2005, 54, 904-908.
    [138] Song, R. J.; Zhang, B. Y; Huang, B. T; Tang, T. Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene. Journal of Applied Polymer Science 2006, 102, 5988-5993.
    [139] Kashiwagi, T.; Harris, R. H.; Zhang, X.; Briber, R. M.; Cipriano, B. H.; Raghavan, S. R.;Wad, W. H.; Shields, J. R. Flame retardant mechanism of polyamide 6-clay nanocomposites.Polymer 2004, 45, 881-889.
    [140] Tang, Y; Lewin. M.; Pearce, E. M. Effects of annealing on the migration behavior of PA6/clay nanocomposites. Macromolecular Rapid Communications 2006, 27, 693-696.
    [141] Lewin, M. Some comments on the modes of action of nanocomposites in the flame retardancy of polymers. Fire and Materials 2003, 27, 1-7.
    [142] Lewin, M. Unsolved problems and unanswered questions in flame retardance of polymers.Polymer Degradation and Stability 2005, 88, 13-19.
    [143] Du, J. X.; Zhu, J.; Wilkie, C. A.; Wang, J. Q. An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites. Polymer Degradation and Stability 2002, 77, 377-381.
    [144] Du, J. X.; Wang, D. Y.; Wilkie, C. A.; Wang, J. Q. An XPS investigation of thermal degradation and charring on poly(vinyl chloride)-clay nanocomposites. Polymer Degradation and Stability 2003, 79, 319-324.
    [145] Wang, J. Q.; Du, J. X.; Zhu, J.; Wilkie, C. A. An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polymer Degradation and Stability 2002, 77, 249-252.
    [146] Zanetti, M.; Camino, G; Reichert, P.; M(?)lhaupt, R. Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromolecular Rapid Communications 2001, 22,176-180.
    [147] Zanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chemistry of Materials 2002,14,881-887.
    [148] Qin, H. L.; Zhang, S. M.; Zhao, G G; Hu, G. J.; Yang, M. S. Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer 2005, 46, 8386-8395.
    [149] Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Fire properties of polystyrene-clay nanocomposites. Chemistry of Materials 2001, 13, 4649-4654.
    [150] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58.
    [151] Xie, X. L.; Mai, Y. W.; Zhou, X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Materials Science and Engineering: R: Reports 2005, 49,89-112.
    [152] Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 2005, 4,928-933.
    [153] Kashiwagi, T.; Grulke, E.; Hilding, J.; Harris, R.; Awad, W.; Douglas, J. Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites.Macromolecular Rapid Communications 2002, 23, 761-765.
    [154] Cipiriano, B. H.; Kashiwagi, T.; Raghavan, S. R.; Yang, Y; Grulke, E.; Yamamoto, K.;Shields, J. R.; Douglas, J. F. Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 2007, 48, 6086-6096.
    [155] Kashiwagi, T.; Mu, M.F.; Winey, K.; Cipriano, B.; Raghavan, S. R.; Pack, S.; Rafailovich,M.; Grulke, E.; Shields, J.; Harris, R.; Douglas, J. Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 2008, 49, 4358-4368.
    [156] Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.;Kharchenko, S.; Douglas, J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004, 45, 4227-4239.
    [157] Kashiwagi, T.; Harris, R.; Zhang, X.; Briber, R. M.; Cipriano, B. H.; Raghavan, S. R.; Awad,W.; Shields, J. R. Effect of nanoparticles on flammability of flexible polyurethane foams.Polymer 2004, 45, 881-891.
    [158] Kashiwagi, T.; Du, F. M.; Winey, K. I.; Groth, K. M.; Shields, J. R.; Bellayer, S. P.; Kim, H.;Douglas, J. F. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes:effects of nanotube dispersion and concentration. Polymer 2005, 46, 471-481.
    [159]Beyer,G.Short communication:Carbon nanotubes as flame retardants for polymers.Fire and Materials 2002,26,291-293.
    [160]Beyer,G.Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system.Fire and Materials 2005,29,61-69.
    [161]Beyer,G.Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium.Polymers for Advanced Technologies 2006,17,218-225.
    [162]Peeterbroeck,S.;Alexandre,M.;Nagy,J.B.;Pirlot,C.;Fonseca,A.;Moreau,N.;Philippin,G.;Delhalle,J.;Mekhalif,Z.;Sporken,R.;Beyer,G.;Dubois,P.Polymer-layered silicate-carbon nanotube nanocomposites:unique nanofiller synergistic effect.Composites Science and Technology 2004,64,2317-2323.
    [163]Peeterbroeck,S.;Laoutid,F.;Swoboda,B.;Lopez-Cuesta,J.M.;Moreau,N.;Nagy,J.B.;Alexandre,M.;Dubois,P.How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites.Macromolecular Rapid Communications 2007,28,260-264.
    [164]Peeterbroeck,S.;Laoutid,F.;Taulemesse,J.M.;Monteverde,F.;Lopez-Cuesta,J.M.;Nagy,J.B.;Alexandre,M.;Dubois,P.Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites.Advanced Functional Materials 2007,17,2787-2791.
    [165]Bonduel D.;Mainil,M.;Alexandre,M;Monteverde,F.;Dubois,P.Supported coordination polymerization:a unique way to potent polyolefin carbon nanotube nanocomposites.Chemical Communications 2005,781-783.
    [166]Ma,H.Y.;Tong;L.F.;Xu,Z.B.;Fang,Z.P.Synergistic effect of carbon nanotube and clay for inproving the flame retardancy of ABS resin.Nanotechnology 2007,18,1-8.
    [167]Ma,H.Y.;Tong,L.F.;Xu,Z.B.;Fang,Z.P.;Jin,Y.M.;Lu,F.Z.A novel intumescent flame retardant:Synthesis and application in ABS copolymer.Polymer Degradation and Stability 2007,92,720-726.
    [168]Ma,H.Y.;Tong,L.F.;Xu,Z.B.;Fang,Z.P.Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant:Nanocomposite Synthesis,Morphology,Rheology,and Flammability.Advanced Functional Materials 2008,18,414-421.
    [169]Qiu,L.Z.;Chen,W.;Qu,B.J.Morphology and thermal stabilization mechanism of LLDPE /MMT and LLDPEVLDH nanocomposites.Polymer 2006,47,922-930.
    [170]Wang,Z.Y.;Han,E.H.;Ke,W.Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating.Progress in Organic Coatings 2005,53,29-37.
    [171]Du,L.C.;Qu,B.J.;Zhang,M.Thermal properties and combustion characterization of nylon 6/MgAI-LDH nanocomposites via organic modification and melt intercalation.Polymer Degradation and Stability 2007,92,497-502.
    [172]杨新斌;傅相锴;牛丽明;饶小平.磷酸氢锆及其衍生物的插层研究进展.化学通报2005,68,1-8.
    [173]张蕤;胡源;汪世龙.原位插层聚合法制备聚丙烯酰胺/α-磷酸锆纳米复合材料及其结构表征,高等学校化学学报,2005,26,2173-2175.
    [174]Laachachi,A.;Cochez,M.;Ferriol,M.;Lepez-Cuesta,J.M.;Leroy,E.Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate)(PMMA).Materials Letters 2005,59.36-39.
    [175]#12
    [176]Fina,A.;Abbenhuis,H.C.L.;Tabuani,D.;Camino,G.Metal functionalized POSS as fire retardants in polypropylene.Polymer Degradation and Stability 2006,91,2275-2281.
    [177]Fina,A.;Tabuani,D.;Frache,A.;Camino,G.Polypropylene-polyhedral oligomeric silsesquioxanes(POSS)nanocomposites.Polymer 2005,46,7855-7866.
    [178]Fina,A.;Bocchini,S.;Camino,G.Catalytic fire retardant nanocomposites.Polymer Degradation and Stability 2008,93,1647-1655.
    [179]欧育湘;李建军.阻燃剂——性能、制造及应用.化学工业出版社,北京,2006.
    [180]Yang,D.D.;Hu,Y.;Song,L.;Nie,S.B.;He,S.Q.;Cai,Y.B.Catalyzing carbonization function of a-ZrP based intumescent fire retardant polypropylene nanocomposites.Polymer Degradation and Stability 2008,93,2014-2018.
    [181]Zhou,S.;Song,L.;Wang,Z.Z.;Hu,Y.;Xing,W.Y.Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate.Polymer Degradation and Stability 2008,93,1799-1806.
    [182]Tang,Y.;Hu,Y.;Zhang,R.;Gui,Z.;Wang,Z.Z.;Chen,Z.Y.;Fan,W.C.Investigation on polypropylene and polyamide-6 alloys/montmorillonite nanocomposites.Polymer 2004,45,5317-5326.
    [183]Tang,Y.;Hu,Y.;Song,L.;Zong,R.W.;Gui,Z.;Fan,W.C.Preparation and combustion properties of flame retarded polypropylene-polyamide-6 alloys.Polymer Degradation and Stability 2006,91,234-241.
    [184]Song,L.;Hu,Y.;Lin,Z.H.;Xuan,S.Y.;Wang,S.F.;Chen,Z.Y.;Fan,W.C.Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite.Polymer Degradation and Stability 2004,86,535-540.
    [185]Cai,Y.B.;Wu,N;Wei,Q.F.;Zhang,K.;Xu,Q.X.;Gao,W.D.;Song,L.Hu,Y.Structure,surface morphology,thermal and flammability characterizations of polyamide6/organic-modified Fe-montmorillonite nanocomposite fibers functionalized by sputter coating of silicon.Surface and Coating Technology 2008,203,264-270.
    [186]Tang,Y.;Hu,Y.;Wang,S.F.;Hui,Z.;Chen,Z.Y.;Fan,W.C.Intumescent flame retardant-montmorillonite synergism in polypropylenelayered silicate nanocomposites.Polymer International 2003,52,1396-1400.
    [187]Marosi,G.;M(?)rton,A.;Sz(?)p,A.;Csontos,I.;Keszei,S.;Zimonyi,E.;Toth,A.;Almeras,X.;Bras,M.L.Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer.Polymer Degradation and Stability 2003,82,379-385.
    [188]胡小平;赵国明;杨冰;王玉忠.膨胀型阻燃聚乙烯MWNT复合材料的阻燃性及燃烧性能研究.阻燃材料与技术2006,3,6-9.
    [189]胡小平.聚乙烯用新型膨胀型阻燃剂的合成与应用及阻燃机理研究(D).四川大学,成都,2005.
    [190]马海云.膨胀阻燃及纳米阻燃ABS树脂的研究(D).浙江大学,杭州,2007.
    [191]韩飞,聚丙烯的国内外生产现状和市场预测.工程塑料应用2005,33,63-66.
    [192]盛立新,国内聚丙烯供需现状和市场预测.石油化工技术经济2007.23.24-26.
    [193]胡萍,刘佐民,姜明,陈猛.聚丙烯热降解性能研究.合 成材料老化与应用,2006,35,27-30.
    [194]孟鑫,辛忠,蔡智.苯并呋喃酮在抑制聚丙烯降解过程中的作用.中国塑料2006,20,77-81.
    [195]Fox,E.E.Ph..D thesis,Metal Complexes as Potential Fire Retardants for Polymers.University of Massachusetts,1981.
    [196]谢飞.新型改性剂的制备及对塑料改性的研究.博士后研究工作报告浙江大学,杭州,2005.
    [197]Gao,F.;Tong,L.F.;Fang,Z.P.Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate).Polymer Degradation and Stability 2006,91,1295-1299.
    [198]Kannan,P.;Kishore,K.G.Novel photocrosslinkable flame retardant polyvanillylidene arylphosphate esters.Polymer 1997,38,4349-4355.
    [199]Toldy,A.;T(?)th,N.;Anna,P.;Marosi,G.Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin.Polymer Degradation and Stability 2006,91,585-592.
    [200]Giraud,S.;Bourbigot,S.;Rochery,M.;Voman,I.;Tighzert,L.;Delobel,R.;Poutch,F.Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating.Polymer Degradation and Stability 2005,88,106-113.
    [201]Lu,S.Y.;Hamerton,I.A review of flame retardant polypropylene fibres.Progress in.Polymer Science 2002,27,1661-1672.
    [202]Jimenez,M.;Duquesne,S.;Bourbigot,S.Multiscale experimental approach for developing high-performance intumescent coatings.Industrial & Engineering Chemistry Research2006,45,4500-4508.
    [203]Cai,Y.B.;Hu,Y.;Song,L.;Xuan,S.Y.;Zhang,Y.;Chen,Z.Y.;Fan,W.C.Catalyzing carbonization function of ferric chloride based on acrylonitrile-butadiene-styrene copolymer/organophilic montmorillonite nanocomposites.Polymer Degradation and Stability 2007,92,490-496.
    [204]Duesberg,G.S.;Blau,W.J.;Byrne,H.J.;Muster,J.;Burghard,M.;Roth,S.Experimental observation of individual single-wall nanotube species by Raman microscopy.Chemical Physics Letters 1999,310,8-14.
    [205]Zhang,L.;Kiny,V.U;Peng,H.Q.;Zhu,J.;Lobo,R.F.M.;Margrave,J.L.;Khabashesku,V.N.Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties.Chemistry of Materials 2004,16,2055-2061.
    [206]Huang,W.J.;Lin,Y.;Taylor,S;Gaillard,J.;Rao,A.M.;Sun,Y.P.Sonication-assisted functionalization and solubilization of carbon nanotubes.Nano Letters 2002,2,231-234.
    [207]Lv,P.;Wang,Z.Z.;Hu,K.L.;Fan,W.C.Polymer Degradation and Stability 2005,90,523-534.
    [208]Wu,Q.;Qu,B.J.Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene.Polymer Degradation and Stability 2001,74.255-261.
    [209]Liang,H.B.;Shi,W.F.;Gong,M.Expansion behaviour and thermal degradation of tri(acryloyloxyethyl)phosphate/methacrylated phenolic melamine intumescent flame retardant system.Polymer Degradation and Stability.2005,90,1-8.
    [210]Bugajny,M.;Bourbigot,S.;Le Bras,M.;Delobel.R.The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750.Polymer International 1999,48,264-270.
    [211]Ma,H.Y.;Tong,L.F.;Xu,Z.B.;Fang,Z.P.;Jin,Y.M.;Lu,F.Z.A novel intumescent flame retardant:Synthesis and application in ABS copolymer.Polymer Degradation and Stability 2007,92,720-726.
    [212]Uotila,R.;Hippi,U.;Paavola,S.;Sepp(a|¨)l(a|¨),J.Compatibilization of PP/elastomer/microsilica composites with functionalized polyolefins:Effect on microstructure and mechanical properties.Polymer 2005,46,7923-7930.
    [213]Asthana,H.;Jayaraman,K.Rheology of reactively compatibilized polymer blends with varying extent of interfacial reaction.Macromolecules 1999,32,3412-3419.
    [214]Cho,K.;Li,F.Reinforcement of Amorphous and Semicrystalline Polymer Interfaces via in-Situ Reactive Compatibilization.Macromolecules 1998,31,7495-7505.
    [215]Jose,S.;Francis,B.Morphology and mechanical properties of polyamide 12/polypropylene blends in presence and absence of reactive compatibiliser.Thomas,S.:Kocsis,J.K.Polymer 2006,47,3874-3 888.
    [216]Roeder,J.;Olivera,R.V.B.;Goncalves,M.C.;Soldi,V.;Pires,A.T.N.Polypropylene/polyamide-6 blends:influence of compatibilizing agent on interface domains.Polymer Testing 2002,21,815-821.
    [217]卢红斌,杨玉良.填充聚合物熔体的流变学.高分子通报2001,6,18-26.
    [218]郑强,杨碧波,吴刚.聚甲基丙烯酸甲酯/聚(苯乙烯-马来酸酐)共混体系相分离的流变学行为.高等学校化学学报1999,20,1483-1490.
    [219]郑强,赵铁军.粒子填充HDPE复合体系动态流变行为研究.材料研究学报1998,12,225-231.
    [220]曹艳霞,杜淼,郑强.粒子填充聚合物的特征粘弹行为.高分子材料科学与工程 2003,19,17-20.
    [221]Kroto.H.W.;Heath.J.R.;O'Brien.S.C.et al.C_(60):Buckyminister-fullerene.Nature 1985,318,162-163.
    [222]Curl,R.F.;Smalley,R.E.Fullerene.Scientific Amercian 1991,10,54-63.
    [223]Kr(a|¨)schmer,W.;Lanb,L.D.;Forstiropous,K.;Huffman,D.R.Solid C60:a new form of carbon.Nature 1990,347,354-357.
    [224]朱宏伟,吴德海,徐才录,碳纳米管.机械出版社,北京.2003.
    [225]Krusic,P.J.;Wasserman,E.;Keizer,P.N.;Morton,J.R.;Preston,K.F.Radical Reactions of C60.Science 1991,254,1183-1185.
    [226] Wu, Z. C; Jelski. D. A.; George, T. F. Vibrational motions of buckminsterfullerene.Chemical Physics letters 1987, 137, 291-294.
    [227] Kraschmer, W.; Forstiropous, K.; Huffman, D. R. The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule.Chemical Physics Letters 1990, 170, 167-170.
    [228] Weeks, D. E. and Harter. W. G Rotation-vibration spectra of icosahedral molecules. 2.Icosahedral symmetry, vibrational eigenfrequencies. and normal modes of buckminsterfullerene. Journal of Chemical Physics 1989, 90. 4744-4771.
    [229] Ma, H. Y.; Tong, L. F.; Fang, Z. P.;et al. A novel intumescent flame retardant: Synthesis and application in ABS copolymer. Polymer Degradation and Stability 2007, 92, 720-726.
    [230] Zhang, S. and Horrocks, A. R. Substantive intumescence from phosphorylated 1,3-propanediol derivatives substituted on to cellulose. Journal of Applied Polymer Science 2003,90,3165-3172.
    [231] Song, P. A. and Fang, Z. P. Effects of metal chelates on a novel oligomeric intumescent flame retardant system for polypropylene. Journal of Analytical and Applied Pyrolysis 2008,82, 286-291
    [232] Sahoo, R. R. and Patnaik, A. Surface confined self-assembled fullerene nanoclusters: a microscopic study. Applied Surface Science 2005, 245, 26-38.
    [233] Onoe, J.; Nakao, A.; Takeuchi, K. XPS study of a photopolymerized C-60 film. Physical Review B 1997, 55, 10051-10056.
    [234] Qian, L.; Norin, L.; Guo, J. H.; Sathe, C; Agui, A.; Jansson, U.; Nordgren, J.; Formation of titanium fulleride studied by x-ray spectroscopies. Physical Review B 1999, 59, 12667-12671.
    [235] Kashiwagi, T.; Mu, M. F.; Winey, K.; Cipriano, B.; Raghavan, S. R.; Pack, S.; Rafailovich,M; Yang, Y.; Grulke, E.; Shields, J.; Harris, R.; Douglas, J. Relation between the viscoelastic and flammability properties of polymer nanocomposites. Polymer 2008, 49,4358-4368.
    [236] Ramanathan, T.; Fisher, F. T.; Ruoff, R.; S. Brinson, L. C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chemistry of Materials 2005, 17,1290-1295.
    [237] Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Opening and Purification of Carbon Nanotubes in High Yields. Advanced Materials 1995, 7, 275-276.
    [238] Viswanathan, H.; Rooke, M. A.; Sherwood, P. M. A. X-ray photoelectron spectroscopic studies of carbon-fiber surfaces. 21. Comparison of carbon fibers electrochemically oxidized in acid using achromatic and monochromatic XPS. Surface and Interface Analysis 1997,25,409-417.
    [239] Shofner, M. L.; Khabashesku, V. N.; Barrera, E. V. Processing and mechanical properties of fluorinated single-wall carbon nanotube-polyethylene composites. Chemistry of Materials 2006, 18,906-913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700