双功能飞轮控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双功能飞轮储能及姿态控制系统是近年来发展极为迅速的一种集成化能量存储和姿态控制设备,它是一个集光、机、电于一体的复杂系统。本文以相关理论与实验为基础,对双功能飞轮储能及姿态控制系统能量存储与姿态控制的解耦问题、速度反馈测量的有效方法、控制策略以及系统误差等方面进行了深入研究。
     本文首先系统地论述了利用飞轮同时完成能量存储与姿态控制方案的可行性、研究意义及国内外的发展现状和趋势。给出了单轴储能与调姿控制器的设计方法,简要介绍了单轴双功能飞轮姿态控制系统的基本构成及工作原理。
     系统中速度反馈测量方法的正确性以及反馈元件的测量精度对控制系统的控制性能影响很大。分析了传统测速方法所存在的不足,从误差分析的角度提出了一种速度测量方法,并设计了相应的速度测量系统,满足了系统能量存储与姿态调整过程中飞轮速度测量范围宽、精度高的要求。
     分析了系统储能与姿态调整控制过程中所存在的问题,对上、下飞轮电机单元的差异通过串联校正的方法进行了补偿,提出了积分分离式分段PID复合控制算法,显著地提高了系统控制精度,并抑制了超调,取得了满意的控制效果。在系统放能与姿态调整实验过程中,采用可控恒流源与PD控制相结合的方法,实现了系统在高转速、宽范围内的稳定控制。
     分析了影响系统姿态控制精度的主要因素,推导并建立了单自由度气浮转台角度与各影响因素之间的误差关系式,并进行了误差合成;结合实际实验系统,算出了各项误差,并针对该系统提出了提高系统姿态控制精度的主要方法。
     最后对本文提出的理论和方法进行了实验研究,取得了与理论分析相一致的结果,证明了本文理论分析的正确性及工程实用价值。
The double function flywheel energy storage and attitude control system is a kind of integrated energy storage and attitude control equipment that is developing rapidly in recent years. It is a complicated system composed of optics, mechanism and electronics. Basing on theories and experiments, the following respects have been studied deeply for IPACS in this paper: decoupling of energy storage and attitude control, effective measurement method of feedback speed, effective control strategies, and system errors.
     The feasibility and significance of using flywheels to provide energy storage and attitude control simultaneously are discussed, as well as the developing status and trend in the domestic and foreign are described. The design methods of controller used in single axis flywheel energy storage and attitude control system are given. The basic structure and work principle of single axis attitude control system with double function flywheels are introduced simply.
     In system, the validity of feedback speed measurement method and accuracy of feedback elements affect control performance greatly. A kind of speed measurement method is put forward basing on the analysis of errors and insufficiencies of traditional speed measurement methods. Consequently, the corresponding speed measurement system with the advantages of high precision and wide range has been designed, which can meet the demand of the integrated flywheel energy storage and attitude control system.
     Some problems in the experiment of energy storage and attitude control are discussed. According to those problems, the difference between the up flywheel-electrical machinery unit and the down unit are compensated through the series correction; the PID compound control algorithm with integral separation and formula partition is put forward. The system control precision is increased greatly, and overshoot is restrained effectively at the same time. As a result, system control effect is content terrifically. In the experiment of energy release and attitude control, the stable control is realized in high speed and wide range by using controllable constant current circuit and PD control algorithm.
     The primary factors that influence system attitude control precision are analyzed. The equations between platform angular error and every influence factor are done, respectively. And then every piece of errors is compounded. The experiment system being combined
引文
[1] 王炳金. 现代小卫星姿态控制系统设计方法及其应用研究[D]. 哈尔滨工业大学. 1999.
    [2] 王晓海. 蓬勃发展的现代小卫星[J]. 中国航天, 2002. (1): 9-14.
    [3] 高云国. 现代小卫星及其相关技术[J].光学精密工程,1999,7(5):16-21.
    [4] 林来兴. 现代小卫星及其关键技术[J].中国空间科学技术,1995, (4):37-51.
    [5] 林来兴. 小卫星通讯技术发展综述及分析[A]. 小卫星技术发展论文集(一)[C], 1995: 10-11.
    [6] Wertz, J., and Larson, W. (eds.), Space Mission Analysis and Design [M]. Kluwer Academic, Boston, 1991, pp.349-369.
    [7] Hyungjoo Yoon. Spacecraft Attitude and Power Control Using Variable Speed Control Moment Gyros [D]. The Dr graduated paper in the school of Aerospace Engineering Georgia institute of Technology. December 2004.
    [8] Panagiotis Tsiotras, Haijun Shen, Chris Hall. Satellite Attitude Control and Power Tracking with Energy/Momentum Wheels [J]. Journal of Guidance, Control, and Dynamics. 2001,24(1):23-34.
    [9] Pieronek T J, Decker D K, Spector A. Spacecraft flywheel systems-benefits and issues [A]. In: Proceedings of the National Aerospace and Electronics Conference, Piscataway, 1997, 589-593.
    [10] 杨志轶. 飞轮电池储能关键技术研究[D]. 合肥工业大学. 2002,7.
    [11] Ginter S, Gisler G, Hanks J, et al. Spacecraft Energy Storage Systems [J]. IEEE AES Systems Magazine, 1998, 13 (5): 27-32.
    [12] Christopher D A, Beach R. Flywheel Technology Development Program for Aerospace Applications [J]. IEEE AES Systems Magazine. 1998, 13(6): 9-14.
    [13] 邓智泉, 孟小利, 严仰光. 飞轮储能系统在未来航天器中的应用[J]. 南京航天大学学报, 1995, 31(5): 539-544.
    [14] 程三海, 书忠朝, 王雪帆. 飞轮储能技术及其应用[J]. 电机电器技术, 2000, (6): 31-33.
    [15] Roes, John B. An Electro-Mechanical Energy Storage System for Space Application [J]. Energy Conversion for Space Power. Progress in Astronautics andRocketry, edited by Nathan W. Snyder. 613–622. New York: Academic Press, 1961.
    [16] Anderson, W. W., and Kechler, C. R. An Integrated Power/Attitude Control System (IPACS) for Space Application [A]. Proceedings of the 5th EFAC Symposium on Automatic Control in Space, Pergamon, New York, 1973, pp. 81-82.
    [17] Keckler, C. R., and Jacobs, K. A Spacecraft Integrated Power/Attitude Control System[A] Proceeding of the 9th Intersociety Energy Conversion Engineering Conference, American Society of Mechanical Engineering , New York, 1974, pp.20-25.
    [18] Will, R. W., Keckler, C. R., and Jacobs, K. L. Description and Simulation of an Integrated Power and Attitude Control System Concept for Space-Vehicle Application [A] NASA TN D-7459,1974.
    [19] Notti, J. E., Cormack Ⅲ,A., Schmill. W. C., and Klein, W. J. Integrated Power/Attitude Control System (IPACS) Study: Volume Ⅱ-Conceptual Designs[A] NASA CR-2384, 1974.
    [20] Gross, Sidney. Study of Flywheel Energy Storage for Space Stations. Technical Report NASA CR-171780, Seattle, Washington: Boeing Aerospace Co., 1984.
    [21] Rodriguez, G. E. GSFC Flywheel Status [A]. In Keckler et al., 23–34. Proceedings of a workshop held at NASA Goddard Space Flight Center[C], Greenbelt, Maryland, 1983.
    [22] Rice, Robert R. Space Station Energy Sizing [A]. In Keckler et al., 57–62. Proceedings of a workshop held at NASA Goddard Space Flight Center[C], Greenbelt, Maryland, August, 1983.
    [23] Roriguez, G. E., Studer, P. A., and Baer, D.A. Assessment of Flywheel Energy Storage for Spacecraft Power Systems [A] NASA TM-85061,1983.
    [24] Flatley, T. Tetrahedron Array of Reaction Wheels for Attitude Control and Energy Storage[A] Proceedings of the 20th Intersociety Energy Conversion engineering Conference, Society of Automotive Engineers, Warrendale, PA,Vol,2, 1985, pp2353-2360.
    [25] Oglevie, R. E., and Eisenhaure, E. B. Advanced Integrated Power and Attitude Control System(IPACS) Technology[A] NASA CR-3912, Nov, 1985.
    [26] Oglevie, R. E., and Eisenhaure, E. B. Integrated Power and Attitude ControlSystem(IPACS)Technology[A] Proceeding of the 21st Intersociety Energy Conversion Engineering Conference , American Chemical Society , Washington, DC, Vol. 3, 1986, pp. 1834-1837.
    [27] Olmsted, D. R. Feasibility of Flywheel Energy Storage in Spacecraft Applications[A] Proceedings of the 20th Intersociety Energy Conversion Engineering Conference , Society of Automotive Engineers, Warrendale, PA, Vol.2, 1985, pp. 444-448.
    [28] Studer, P., and Rodriguez, E. High Speed Reaction Wheels for Satellite Attitude Control and Energy Storage [A] Proceedings of the 20th Intersociety Energy Conversion Engineering Conference, Vol.2, Society of Automotive Engineers, Warrendale, PA, 1985, pp. 349-352.
    [29] CHRISTOPHER D A, BEACH, R. Flywheel technology development program for aerospace applications [J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(6):9-14.
    [30] KENNY B H, KASCAK PE. DC Bus regulation with a flywheel energy storage system [P]. NASA/TM-2002-211897/REV1.
    [31] KASCAK P E. International space station bus regulation with NASA GLENN research center flywheel energy storage system development unit[C]. 36th Intersociety Energy Conversion Engineering Conference. 2001, Savannah, Georgia, 2001.
    [32] 贾宏光,白越,赵华兵等. 单轴储能及姿态控制一体化技术研究[J]. 光学 精密工程, 2004,12(5): 504-509.
    [33] http://www.pep.com.cn/200310/ca300248.htm.
    [34] 贾英宏,徐世杰. 采用变速控制力矩陀螺的一种姿态/能量一体化控制研究. 宇航学报, 2003,24(1): 32-37.
    [35] Hyungjoo Yoon. Spacecraft Attitude and Energy Control Using Variable Speed Control Momentum Gyros [D]. In the school of Aerospace Engineering, George institute of technology. December 2004.
    [36] C.D. Hall. High-Speed Flywheel for Integrated Energy Storage and Attitude Control[C]. Proc, American Control Conf. pp. 1894-1898, Albuquerque, NM, June 1997.
    [37] P. Tsiotras, H. Shen, C. Hall. Satellite Attitude Control and Power Tracking withEnergy/Momentum Wheels[C]. AAS/AIAA Astro-dynamics Conf. AAS Paper99-317, Girdwood, AK, Aug. 1999.
    [38] J.L. Fausz and D.J. Richie. Flywheel Simultaneous Attitude Control and Energy Storage Using a VSCMG Configuration[C]. Proc. Conf. Control Applications, Anchorage, AK, sept. 2000, pp.991-995.
    [39] Bret Thomas Costic. Energy Management and Attitude Control [D]. In the Graduate School of Clemson University. August, 2001.
    [40] M. Krstic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and Adaptive Control Design [M]. New York, NY: Wiley, 1995.
    [41] 贾宏光, 张洪华等. 集成化储能及姿控系统方案研究报告. 2001 年.
    [42] 张景瑞, 李俊峰. 航天器能量/姿控一体化控制器设计及功率规划[J]. 清华大学学报(自然科学版), 2005, 45(2): 280-284.
    [43] JIA Ying-hong, XU Shi-jie. spacecraft Attitude Tracking and Energy Storage Using Flywheels[J]. Chinese Journal of Aeronautics, 2005, 18(1): 1-7.
    [44] 贾英宏 徐世杰. 采用变速控制力矩陀螺的一种姿态/能量一体化控制研究[J]. 2003, 24(1): 32-37.
    [45] 汤亮,徐世杰. 灵敏小卫星能量/姿态一体化控制研究[J]. 北京航空航天大学学报, 2005, 31(6): 668-672.
    [46] JIA Ying-hong, XU Shi-jie, TANG Liang. Bios Momentum Attitude Control System Using Energy/Momentum Wheels [J]. Chinese Journal of Aeronautics, 2004, 17(4): 193-199.
    [47] Peter E. Kascak, Walter Santiaqo, Barbara H. Kenny. International Space Station Bus Regulation with NASA Glenn Research Center Flywheel Energy Storage System Development Unit[C]. Proceedings of IECEC 36th Intersociety Energy Conversion Engineering Conference July 29-August 2, 2001, Savannah, Georgia.
    [48] Barbara H. Kenny, Peter K. Kascak, Ralph Janwen, Timothy Dever. A flywheel energy storage system demonstration for space application. http://www.nasa.gov/. http://www.kepu.com.cn/gb/technology/telecom/satellite/stl106.html.
    [49] 吴一辉, 贾宏光等. 飞轮储能与姿态控制一体化技术研究报告. 2004 年.
    [50] 潘建.无刷直流电机控制器 MC33035 的原理及应用.[J]. 国外电子元器件, 2003, (8):38-41.
    [51] 杨宁, 王昊, 田蔚风, 糜长军. 高精度飞轮控制系统方案分析研究[J]. 航天控制, 2004, 22(3): 50-53.
    [52] 屠善澄等编著. 卫星姿态动力学与控制(1)[M]. 北京: 宇航出版社 1999.
    [53] 王永刚, 刘玉文. 军事卫星及应用概论[M]. 北京: 国防工业出版社 2003.
    [54] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998.
    [55] 张建成. 飞轮储能系统及其运行控制技术研究[D]. 华北电力大学. 2000.
    [56] PHILIPS SEMICONDUCTORS. P89v51RD2 DATASHEET. 2004.
    [57] 张万峰, 孙力, 刘亚光. 交流伺服电动机速度与位置传感器的分析[J]. 微电机, 1996,29(1): 19-22.
    [58] 赵松年 张奇鹏编. 机电一体化机械系统设计[M]. 北京: 机械工业出版社,1996(第 1 版).
    [59] 黄贤武等编著 传感器实际应用电路设计[M]. 成都: 电子科技大学出版社,1997(第一版).
    [60] 赵韩, 杨志轶. 飞轮储能装置设计初探[J]. 太阳能学报, 2002,23(4): 493-497.
    [61] Paul P A, Barrie C M, James S B, et al. Design Principles for A Flywheel Energy Store for Road Vehicles[J]. IEEE Transactions on Industry Application, 1996,32(6): 1402-1408.
    [62] Asper H K. Inverter FED 10kW advanced reluctance machine for flywheel energy storage system operating from 12000 to 24000 rpm[A]. In: Advancing Toward Technology Breakout in Energy Conversion, Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, Washington, American Chemical Society. 1986.pp889-894.
    [63] Acarnley P P, Mecrow B C, Burdess J S, et al. An integrated flywheel/machine energy store for road vehicles[J]. In: IEEE Colloquium on New Topologies for Permanent Magnet Machines, 1997, 91-96.
    [64] 舒立, 马波, 刘晓芳等. 飞轮蓄能系统中磁阻发电机的运行机理及其数字仿真[J]. 现代电力, 2001,18(4): 58-63.
    [65] 赵韩, 杨志轶, 王忠臣. 新型高效飞轮储能技术及其研究现状[J]. 中国机械工程, 2002, 13(17): 1521-1524.
    [66] 庞勇, 贺益康, 方卫中. 基于专用控制芯片的永磁无刷直流电机控制器[J].微电机, 199932(3): 16-17.
    [67] 靳达. 单片机应用系统开发实例导航[M]. 北京: 人民邮电出版社, 2004.
    [68] 杨胜波, 于春梅. 使用 8253/8254 定时计数器测量脉冲量的软硬件实现方法[J]. 应用科技, 2003, 30(10): 33-35.
    [69] 费业泰. 误差理论与数据处理[M]. 第五版, 北京: 机械工业出版社, 2004.
    [70] 唐清安, 伊希荣. 采用 8253 定时器实现转速测量的方法[J]. 电脑学习,1999(2): 37-38.
    [71] 阎石主编. 数字电子技术基础[M]. 北京: 高等教育出版社, 1995.
    [72] OKI SEMICONDUCTOR. MSM82C53-2RS/GS/JS DATASHEET, 1998.
    [73] MAXIM. MAX333 DATASHEET, 1995.
    [74] 钟平,续志军. 一种对空间突发性强闪光目标的测角方法[J]. 光学 精密工程, 2002,10(6): 644-648.
    [75] 谭浩强著. C 程序设计(第二版)[M]. 北京: 清华大学出版社, 2000.
    [76] 徐爱钧, 彭秀华. 单片机高级语言 C51 Windows 环境编程与应用[M]. 北京: 电子工业出版社, 2003.
    [77] 陶永华. 新型 PID 控制及其应用[M]. 北京: 机械工业出版社, 2003.
    [78] 李华, 孙晓民, 李红青等. MCS-51 系列单片机实用接口技术[M]. 北京: 北京航空航天大学出版社, 2003.
    [79] 韩邦成. 单轴飞轮储能/姿态控制系统的仿真及其实验研究[D]. 中国科学院长春光学精密机械与物理研究所, 2004.
    [80] Peter E. Kascak, Ralph H.Jansen, Barbara Kenny, Timothy P.Dever. Single Axis Attitude Control and DC Bus Regulation with Two Flywheels[R]. IECEC 2002-20078.
    [81] 唐任远等著. 现代永磁电机[M]. 北京: 机械工业出版社, 2002.
    [82] 白浩, 崔建华, 徐晓辉. 永磁无刷直流电机控制器研究及展望[J]. 机电工程, 2004, 21(4): 59-61.
    [83] 谢锡祺, 杨焕明. 位置伺服系统中伺服电机的实验建模[J]. 北京理工学学报, 1996, 16(3): 323-327.
    [84] 胡寿松主编. 自动控制原理(第四版)[M]. 北京: 科学出版社, 2003.
    [85] 陈铮主编. 自动控制基础[M]. 西安: 西北工业大学出版社, 1994.
    [86] 刘坤, 刘翠响, 李研. MATLAB 自动控制原理习题精解. 北京: 国防工业出版社, 2005.
    [87] Barbara H. Kenny, Peter E. Kascak. DC Bus Regulation With a Flywheel Energy Storage System [A]. NASA/TM-2002-211897/REV1, Glenn Research Center, 2003.
    [88] Carlos M. Roithmayr. International Space Station Attitude Control and Energy Storage Experiment: Effects of Flywheel Torque [A]. NASA/TM-1999-209100, Langley Research Center, Hampton, Virginia, 1999.
    [89] 胡明. 三杆并联平动机器人运动学、力学及误差的若干研究[D]. 沈阳:东北大学, 1999.
    [90] 夏永江, 张云, 牛睿. 卫星储能/姿控一体化飞轮构型及其误差分析[J]. 上海航天, 22(1): 19-23.
    [91] 刘巧伶. 理论力学[M]. 长春: 吉林科学技术出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700