混合动力汽车动力电池组的热管理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境问题与能源问题的日益恶化,传统汽车行业不得不向节能环保的新能源汽车行业转变。电机、动力电池、控制器等作为新能源汽车的核心技术,近年取得了突破性的进展。尤其动力电池技术的发展为新能源汽车的发展提供了一个新的平台。目前动力电池的比能量达到100-500Wh/kg,比功率达到315W/kg,寿命达到1000-2000次,基本可以满足新能源汽车的需要。铅酸动力电池、镍氢动力电池安全性较好,但比能量、比功率值不高。锂离子动力电池的比能量、比功率较高,但其热安全性仍然是制约新能源汽车产业化的一个重要因素,需要进一步的研究。目前,镍氢动力电池和锂离子动力电池为主流动力电池,故对其进行热特性研究非常必要,对新能源汽车的热管理系统(BTMS)的设计有着重要意义。
     动力电池的热分析主要包括热安全性、热效率和温度引起的单体电池之间的差异。主要任务是保证动力电池工作在适宜的温度范围,提高整车运行效率,同时不发生燃烧、爆炸等意外事故。本文研究的主要内容有:
     (1)分析了目前混合动力汽车的发展、动力电池的发展以及动力电池热特性研究现状。
     (2)研究了动力电池的产热原理与其影响因素,找到了研究动力电池的方法。
     (3)采用ANSYS商业有限元软件对国内某款锂离子动力电池进行了热分析研究。
     (4)分析了电池包的冷却方式,研究了电池包的冷却结构,并利用FLUENT流体分析软件进行了流体仿真。根据仿真结果,对冷却结构进行了相应的优化。
     (5)对分析对象进行了试验设计与试验验证。
     本文的研究结果对新能源汽车的热管理系统设计提供一定的理论基础,同时对电池组的结构设计提供一定的借鉴意义。
With the worsening of environmental problems and energy issues, the traditionalautomotive industry has to change to the new energy automotive industry. At the same time,motor, power battery, motor controller, etc., as the core technology of new energy vehicleshave made a breakthrough in recent years. In particular, the development of batterytechnology provides a new platform for the development of new energy vehicles. Currently,the energy density and specific power of the battery can reach to100-500Wh/kg,315W/kg.In addition, its life can reach to1000-2000cycles, so the battery’s performance basicallymeets the needs of new energy vehicles. The lead-acid battery and nickel hydrogen battery,have better security than lithium battery, but their specific energy and specific power value ismuch lower than lithium battery. Poor thermal safety of lithium ion, is an important factor,which still constrains the new energy automotive industry. The lithium-ion battery isincreasingly being applied to the new energy vehicles, so the thermal characteristics of thepower battery is necessary, which also is the base of the Thermal Management System(BTMS) of new energy vehicles.
     Power battery’s thermal characteristics contains the thermal safety, thermal efficiencyand the difference among the cells caused by temperature. The main objective is to ensure thatthe battery is running in the appropriate temperature range, the vehicle has good performance,without occurrence of combustion explosions and other accidents. The main content of thisstudy:
     (1) Research the development of hybrid vehicles, the development of power battery andthe status of thermal characteristics of the power battery.
     (2) Analyze the principle of heat production and its influence factors of the power battery,and find out a method to analyze the power battery.
     (3) Study a domestic lithium-ion battery on its thermal characters by using ANSYS,a commercial finite element software.
     (4) Study the battery pack cooling model, design the cooling structure of the battery pack,and make a simulation by using FLUENT.
     (5) Design the experiment about the analytical object, and make the verification.
     This study results provide a theoretical basis for the thermal management system designof new energy vehicles, at the same time to provide a reference for the structural design of thebattery pack.
引文
[1]曾小华,王庆年,王伟华.混合动力汽车混合度设计方法研究[J].农业机械学报.2006,37(12):8-12
    [2]张宾,林成涛,陈全世.动力锂离子电池离散特性分析与建模[J].电池工业.2008,13(2):103-108.
    [3]麻友良,陈全世.铅酸电池的不一致性和均衡充电的研究[J].武汉科技大学学报(自然科学版),2001,24(1):5-9
    [4]宫学庚,齐铂金.电动汽车电池组离散特性的建模与分析[J].汽车工程.2005,27(3):292-295
    [5]范美强,廖维林,吴伯荣等.MN-Ni蓄电池组一致性及分选技术[J].电源技术.2005,29(6).361-364
    [6]李腾,林成涛,陈全世.锂离子电池热模型研究进展[J].电源技术.2009,33(10):927-932
    [7]田坚,刘慎中.LiSOCl2电池热失效分析[J].电池.1994,24(3):110~112
    [8]韩鹏飞.锂电池可靠性分析[J].电子产品可靠性与环境试验.1997,(3):28~32
    [9]郭丽,彭元亭等.EV/HEV二次锂离子电池的热模拟[J].船舰技术.2004,(2):43~46
    [10]钱新明,周波.绝热加速量热仪研究锂离子电池电解液热安全性[J].安全与环境学报.2005,5(2):106~111
    [11]唐致远,陈玉红等.锂离子电池安全性的研究[J].电池.2006,36(1):74~76
    [12] BOTTE G G., JOHNSON B A.WHITE R E Influence of some design variables on the thermalbehavior of lithium—ion cell[J].J Electro—chemical Society.1999,146:3.
    [13] HALLAJ S.A.,MALEKI H,HONG J.S.,et al.Thermal modeling and design considerations of1ithium—ion batteries[J].J Power Sources.1999,83:1-8
    [14] HALLAJ S A., SELMAN J R.Thermal modeling of secondary lithium batteries for electric vehiclehybrid electric vehicle applications[J] J Power Sources.2002,110:341—348.
    [15] ONDA K.OHSHIMA T,NAKAYAMA M,et a1.Thermal behavior of small lithium—ion batteryduring rapid charge and discharge cycles[J]. J Power Sources.2006,158:535—542.
    [16]王晋鹏,胡欲立.锂离子蓄电池温度场分析[J].电源技术.2008,32(2):121-131
    [17] CHEN S C., WANG Y Y., WANG C C.Thermal analysis of spirally wound lithium batteries[J].JElectrochemical Society.2006,153(4):A637-A648.
    [18] Yue Ma, Ho Teng, Marina Thelliez.Electro-Thermal Modeling of a lithium-ion battery system[C].SAE,10/25/2010,2010-01-2204
    [19]张志杰,李茂德.锂离子动力电池温升特性的研究[J].汽车工程.2010,32(4):320-323
    [20]王青松,孙金华,姚晓林等.锂离子电池中的热效应[J].应用化学.2006,23(5):489-493
    [21]黄倩.锂离子电池的热效应及其安全性能的研究[D].复旦大学博士学位论文.2007:28.
    [22] CHEN Y S,HU C C, LI Y Y.The importance of heat evolution during the overcharge process and theprotection mechanism of electrolyte additives prismatic lithium-ion battery[J]. Journal PowerSources.2008,18(1):69-73.
    [23]冯祥明,郑金云,李荣富等.锂离子电池安全[J].电池技术.2009,33(1):7-9.
    [24]蔡群英.混合动力汽车用锂离子电池管理系统的研制[D]。北京交通大学硕士学位论文.2010:19.
    [25] Kawamura T, Kimura A, Egashira M, et al. Thermal stability of alkyl carbonate mixed-solventelectrolytes for lithium ion cells [J]. Journal Power Sources,2002,104:260-264.
    [26] Baba Y, Okada S, Yamaki J. Thermal stability of LixCoO2cathode for lithium ion battery [J]. SolidState Ionics.2002,148:311.
    [27]刘伶,张乃庆,孙克宁等.锂离子电池安全性能影响因素分析[J].稀有金属材料与工程.2010.39(5):936-940
    [28]何鹏林,乔月.锂离子电池热滥用试验研究[J].测试与测量,2010(4):44-46,61
    [29]覃宇夏,李奇,熊英等.锂离子电池高倍率放电特性的影响因素[J].电池.2009,l39(3):142-144
    [30]廖文明,戴永年,姚耀春等,4种正极材料对锂离子电池性能的影响及发展趋势[J].材料导报.2008,22(10):45-49,52
    [31]姚耀春.尖晶石LiMn2O4的制备及其电池制作技术与性能研究[D].昆明:昆明理工大学,2005.6
    [32] Ralf Benger, Heinz Wenzl, Hans-Peter Beck. et al. Electrochemical and thermal modeling oflithium-ion cells for use in HEV or EV application[J].World Electric Vehicle Journal.2009..3:1-10
    [33] W.B.Gu, C.Y.Wang. Thermal-Electrochemical Modeling of Battery Systems [J]. Journal ofElectrochemical Society.2000:1-41
    [34] Rachel Ellen Gerver.3D Thermal-Electrochemical Lithium-Ion Battery Computational Modeling[D].Austin:The University of Texas,2009:48-59
    [35] Kyu-Jin Lee, Gi-HeonKim, KandlerSmith.3D Thermal and Electrochemical Model for SpirallyWound Large Format Lithium-ion Batteries[C].218thECS Meeting, Las Vegas, NV, Oct14,2010.
    [36]刘昌国,黄学杰.一种方形锂电池[P].中国专利.200420078145.5.2004-07-26
    [37]张志杰,李茂德.锂离子电池内阻变化对电池温升影响分析[J].电源技术.2010,134:128-130
    [38] Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery system[J]. Journal ofElectrochemical Society,1985,132(1):5-12
    [39] Matteo Muratori. Thermal characterization of lithium-ion battery cell[D]. Italy: POLITECNICO DIMILANO,2008-2009,109-113
    [40]陈则韶,葛新石,顾毓沁.量热技术和热物性测定[M].中国科学技术大学出版社,1990年合肥,128-161
    [41]韩占忠,王敬,兰小平,FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:19
    [42]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700