用户名: 密码: 验证码:
番茄基因组文库及突变体库的构建与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum lycopersicum L.)是我国重要的蔬菜作物之一,然而番茄在种植过程中较易遭受病害侵蚀,影响产量,如番茄疮痂病、番茄黄化曲叶病毒病、霜霉病等。为了快速寻找抗病基因以及控制重要农艺性状的基因,培育持久抗病综合性状优良的品种,本论文在构建细菌人工染色体文库和突变体库两个方面开展工作,取得了以下结果。
     参考已经成熟的BAC文库构建方法,以PCC1BAC为载体,构建了野生醋栗番茄PI128216的基因组BAC文库,获得了61,440个单克隆。从384孔单克隆板的文库中随机挑取2,000个克隆,用碱裂解法提取质粒并用脉冲场凝胶电泳检测文库的质量,结果显示平均插入基因组DNA片段大小为94kb,空载率和重组率为5%,据此计算该文库包含约6,000Mb大小的DNA片段,是番茄基因组大小(950Mb)的6倍以上,这个文库为染色体步移及染色体登陆方法的图位克隆筛选基因提供可能性。
     为了丰富番茄遗传研究材料,本研究同时应用相同的野生醋栗番茄材料PI128216构建了甲磺酸乙酯(EMS)诱变的突变体库。经过预实验确定了构建突变体库所用化学诱变剂的两个处理浓度,利用这两个EMS诱变浓度处理14,000粒番茄种子(0.8%处理9,000粒种子,1.0%处理5,000粒种子),收获M1代种子种植自交获得了M2代种子,对M2代突变体库生育期内的所有能观察到的性状进行了相关调查,根据番茄种植资源描述规范和数据标准划分等级,将性状分为16个级和33个亚级,包括对种子、植株大小、植株习性、叶片形态、叶片颜色、开花期、花序、花形态、花颜色、果实大小、果实颜色、果实数量、不孕、胎萌以及抗病性等几个级别进行观察统计。结果显示,本研究所构建的突变体库中含有大量表型突变体,且会出现一个单株上出现多种突变性状现象,为利用番茄材料进行相关遗传研究提供了保障。
     鉴于PI128216是一个抗番茄疮痂病的材料,为了研究其抗性机理,期望从上述突变体库获得感病突变体。因此,采用注射接种的方法对M2代突变体库每个单株进行了抗番茄疮痂病菌T3小种的鉴定,在注射番茄疮痂病T3小种24h后观察发病情况,两次接种都没有发现感病突变单株,推测可能是由于突变群体较小导致的。
     总之,本研究构建了醋栗番茄材料PI128216的基因组BAC文库和EMS突变体库,既为番茄的遗传研究提供了突变体材料,也为基因的图位克隆提供了基础。
Tomato (Solarium lycopersicum), as one of the most popular vegetable crops in China, is suffering serious diseases, including bacterial spot, tomato yellow leaf curl virus, downy mildew and so on. In order to facilitate identifying genes conferring diease resistance and important horticultural traits for developing elite varieties with disease resistance, the work described here focus on constructing a BAC library and developing mutants.
     The S. pimpinellifolium accession PI128216was used for genomic BAC library construction. High weight molecular DNA was isolated, digested and ligated into the vector PCC1BAC. A total of61,440clones were obtained. The quality of the library was examined by isolating plasmid from two thousand randomly selected clones and Pulse field gel electrophoresis. The results showed that the average size of DNA fragment was94kb. The rate of empty vector and recombinant was5%. Thus, the total size of DNA fragments in the library was about6,000Mb, which covered more than6X of the tomato genome. This library will be useful for positional cloning and chromosomal landing of functional genes.
     In order to enrich the resources for research materialsgenetic study, a mutant library was also constructed using the tomato accession PI128216. Two concentrations of ethylmethane sulfonate (EMS) were adapted for seed treatment based on preliminary experiments. A total of9,000seeds were treated with0.8*EMS, and15,000seeds were treated with1.0%EMS. Morphological variations were recorded in the M1and M2generations using the descriptors and data standard for tomato. Sixteen classes and33sub-classess including seed, plant size, plant growth habit, leaf morphology, leaf color, blooming stage, inflorescence, flower morphology, flower color, fruit size, fruit color, fruit amount, infertility, viviparity and resistance. A large amount of mutants were obtained and some plants showed multiple mutations. These mutants provide a source for genetic study.
     The M2plant of mutant were subjected to evaluation of resistance to bacterial spot race T3via infiltration inoculation. Unfortunately, none of the1,924mutants were susceptible to the pathogen, which might be due to the population size was not enough to discover the change of resistance.
     In conclusion, a BAC library and a mutant library were constructed using the tomato accession PI128216. These materials will provide bases for genetic study, map-based cloning, and breeding.
引文
贝时璋.中国大百科全书生物学[M].中国上海:中国大百科全书出版社.1990.
    车骏.中国穿山甲细菌人工染色体文库的构建及其特征鉴定[D].硕士毕业论文,2007.
    崔霞,梁燕.EMS诱变番茄种子及悬浮细胞半致死浓度的确定[J].园艺学报,2012,39:2677.
    崔元玗,杨华,孙晓军,等.新疆加工番茄主要病害发生[J].新疆农业科学,2004,41(3):160-163.
    崔元玗,杨华,孙晓军,等.新疆番茄细菌性病害研究初报[J].新疆农业科学,2005,42,(4):229-231.
    蒋育昌,曾令芬.番茄疮痂病鉴定初报[J].云南农业科技,1983,(1):29-48.
    李明远.番茄疮痂病的识别与防治[J].蔬菜,1991,(3):26-27.
    李浩杰,蒲晓斌,张锦芳,等.甘蓝型油菜EMS诱变后代农艺性状观察及分子检测[J].核农学报,2012,26(2):0245-0249.
    刘权.玉米黄早四基因组细菌人工染色体文库的构建[D].硕士毕业论文,2006.
    孙福在,杜志强,焦志亮,等.辣椒、番茄细菌性疮痂病及生理小种鉴定[J].植物病理学报,1999,29:265-269.
    孙会军,刘小茜,李文慧,等.番茄材料LA1589抗疮痂病T3小种基因初步定位[J].河北农业大学学报,2011a,34(6):65-69.
    孙会军,张洁云,王园园,等.番茄疮痂病T3小种抗性的QTL分析[J].园艺学报,2011b,38(12):2297-2308.
    王凡.豫谷一号BAC文库的构建及鉴定[D].硕士学位论文,2009.
    王晓辉.新疆加工番茄细菌病害种类鉴定及防治研究[D].硕士毕业论文,2006.
    王琳清,陈秀兰,柳学余.小麦突变育种学[M].中国农业科学技术出版社,2004.
    王振学,王子勤,王广富.番茄疮痂病综合防治技术[J].西北园艺,2005,(7):30.
    徐冠仁主编.植物诱变育种学[M].中国农业出版社,1992.
    夏英武.作物诱变育种[M].中国农业出版社,1997.
    降云峰,刘永忠,李万星,等.甲基磺酸乙酯诱变技术在大豆育种上的应用[J].园艺与种苗,2012(6):12-15.
    阎双勇,谭振波,李仕贵.水稻插入突变体库构建研究进展[J].中国生物工程杂志,2004.24(6):48-52.
    杨文才.番茄疮痂病抗性遗传研究和基因定位最新进展[J].园艺学报,2013,40(9):1731-1740.
    杨文才,陈佳,张晓敏,等.番茄疮痂病病原菌分类、抗性遗传和分子标记辅助选择进展[J].中国农业科学,2007,40(2):283-290.
    殷冬梅,杨秋云,杨海棠,等.花生突变体的EMS诱变及分子检测中国农学通报[J].2009,25(05):53-56.
    张晓敏,王慧,杨文才.新疆和云南番茄疮痂病病原菌初步研究[M].园艺学进展(第八辑),上海:上海交通大学出版社,2008:530.
    张晓勤,薛大伟,周伟辉,等.用甲基磺酸乙酯诱变的大麦浙农大3号突变体的筛选鉴定[J].浙江大学学报,2011,37(2):169-174.
    郑拥民.棉花品种细菌人工染色体文库的构建[D].硕士学位论文,2005.
    周高峰.玉米自交系1145 BAC文库的构建及抗甘蔗花叶病毒基因Scmvl区域BAC克隆的筛选[D].硕士学位论文,2006.
    Sambrook J, Green M R.分子克隆指南[M].科学出版社,2009.
    Antoine LF Gady, Freddy W, Marion H B, Van de Wal, et al. Implementation of two high through-put techniques in a novel application:detecting point mutations in large EMS mutated plant Populations [J]. Plant Methods.2009,5:1-13.
    Antoine LF Gady, Wim V, Marion H, et al. Induced point mutations in the phytoene synthase 1 gene cause differences in carotenoid content during tomato fruit ripening [J]. Mol Breeding,2012, 29:801-812.
    Arumuganathan K, Earle E. Estimation of nuclear DNA content of plants by flow cytometry [J]. Plant Mol Biol Rep,1991,9:229-233.
    Budiman M A, Mao L, Wood T C, et al. A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing [J]. Genome Res,2000,10(1): 129-136.
    Cai W W, Reneker J, Chow C W, et al. An anchored framework BAC map of mouse chromosome 11 assembled using muhiplex oligonucleotide hybridization [J]. Genomics,1998,54(3):387-397.
    Cox R S. The role of bacterial spot in tomato production in south Florida [J]. Plant Dis Rep,1966,50: 699-700.
    Colbert T, Till B J, Henikoff S, et al. High-throughput screening for induced point mutation [J]. Plant Physiol,2001,126:480-484.
    Cooper J L, Till B J, Laport R G, et al. TILLING to detect induced mutations in soybean [J]. BMC Plant Biol,2008,8:9.
    Costa J R, Araujo E R, Becker W F, et al. characterization of the species complex causing tomato bacterial spot in "Alto Vale do Rio do Peixe", SC, Brazil [J]. Trop Plant Pathol,2012,37(2): 149-154.
    Doidge E M. A Tomato Canker [J]. Ann Appl Biol,1921, (7):407-430.
    Erwin D, Lukas A M, Robert B, et al. Comparative BAC and sequence analysis of tomato and potato reveals over representation of specific gene families in potato [J]. BMC Plant Biol,2008,8:34.
    Erika A, Kenta S, Hideki H, et al. Mapping of Micro-Tom BAC-End sequences to the reference tomato genome reveals possible genome rearrangements and polymorphisms [J]. Int J Plant Geno,2012, 10:1-8.
    Frijters A C, Zhang Z, van Damme M,Wang G. L, et al. Construction of a bacterial artificial chromosome library containing large EcoRI and Hind Ⅲ genomic fragments of lettuce [J].Theor Appl Genet,1997,94,390-399.
    Gardner M W, Kendrick J B. Bacterial spot of tomato [J]. J Agr Res,1921,21:123-156.
    Gilchrist EJ, Haughn G W. TILLING without a plough:a new method with applications for reverse genetics [J]. Plant Biol,2005,8:211-215.
    Greene E A, Codomo C A, Taylor N E, et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis [J]. Genetics,2003.164:731-740.
    Hamilton C M, Frary A, Xu Y M, et al. Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector [J]. Plant J,1999,18 (2):223-229.
    Hamza A A, Robene-Soustrade I, Boyer C, et al. A new type of strain of Xanthomonas euvesicatoria causing bacterial spot of tomato and pepper in Grenada [J]. Plant Dis,2010a,94:1264.
    Hamza A A, Robene-Soustrade I, Jouen E, et al. Genetic and pathological diversity among Xanthomonas strains responsible for bacterial spot on tomato and pepper in the Southwest Indian Ocean region [J]. Plant Dis,2010b,94:993-999.
    Ibrahim Y E, Al-Saleh M A. Occurrence of tomato bacterial spot disease in Saudi Arabia, and effect of salicylic acid treatments on disease incidence [J]. Acta Hortic,2011,914:47-51.
    Du H S, Li W H, Wang Y Q, et al. Identification of Genes Differentially Expressed between Resistant and Susceptible Tomato Lines during Time-Course Interactions with Xanthomonas perforans Race T3[J]. PloS One.2014,3(9).
    Jones J B, Stall R E, Somodi G C, et al. A third tomato race of Xanthomonas campestris pv. Vesicatoria [J]. Plant Dis,1995,79:395-398.
    Jones J B, Lacy G H, Bouzar H, et al. Reclassification of the Xanthomonas associated with bacterial spot disease of tomato and pepper [J]. Sys App Mic,2004,27:755-762.
    Jones J B, Lacy G H, Bouzar H, et al. Bacterial spot-world wide distribution, importance and review [J]. Acta Hortic,2005,695:27-34.
    Julien P, Matthieu B, Catherine C, et al. The structural and molecular analysis of endoreduplicated nuclei in tomato (Solanum lycopersicum) fruit provides evidence for a ploidy-dependent increase in transcriptional activity [J]. Plant Biotech,2013,30:301-307.
    Kavitha R, Umesha S. Prevalence of bacterial spot in tomato fields of Kamataka and effect of biological seed treatment on disease incidence [J]. Crop Protect,2007,26:991-997.
    Kim S H, Olson T N, Peffer N D, et al. First report of bacterial spot of tomato caused by Xanthomonas gardneri in Pennsylvania [J]. Plant Dis,2010,94:638.
    Kornev K P, Matveeva E V, Pekhtereva E S, et al. Xanthomonas species causing bacterial spot of tomato in the Russian Federation [J]. Acta Hortic,2009,808:243-245.
    Lamichhane J R, Balestra G M, Varvaro L. First report of bacterial spot caused by Xanthomonas campestris pv. vesicatoria race 2 on tomato in Nepal [J]. New Dis Rep,2010,22:25.
    Lue Y S, Deng W L, Wu Y F, et al. Characterization of Xanthomonas associated with bacterial spot of tomato and pepper in Taiwan [J]. Plant Pathol Bull,2010,19(3):181-190.
    Lukyanenko A N. Disease resistance in tomato. In Genetic Improvement of Tomato [M]. Spring-Verlag, Berlin, Germany,1991:99-119.
    Maluszynski, M. Application of in vivo and in vitro mutation techniques for crop improvement [J]. Euphytica,1995, (85):303-315.
    Masaaki K, Hideki N, Virginie G,et al. Genome-Wide Analysis of Intraspecific DNA Polymorphismin 'Micro-Tom', a Model Cultivar of Tomato (Solanum lycopersicuum) [J]. Plant Cell Physiol, 2014,1:1-10.
    Ma X, Ivey M L Lewis, Miller S A. First report of Xanthomonas gardneri causing bacterial spot of tomato in Ohio and Michigan [J]. Plant Dis,2011,95:1584.
    Ma Z Y, Song W N, Sharp P J, et al. Non-gddded library:a new approach for BAC(bacterial artificial chromosome)exploitation in hexaploid wheat (Triticum aestivum) [J]. Nucleic Acids Res,2000,28: 106.
    Menda N, Semel Y, Peled D, et al. In silico screening of a saturated mutation library of tomato [J]. Plant J.2004,38:861-872.
    Mei M, Deng H,Lu Y Zhuang C,et al. Mutagenic effects of heavy ion radiation in plants [J]. Adv Space Res,1994,14:363-372.
    Michaelson M J, Price H J, Ellison J R,et al. Comparison of plant DNA contents determined by Feulgen microspectrophotometry and laser flow cytometry [J]. AM J Bot,1991,78(2):183-188.
    Miyao A, Iwasaki Y, Kitano H, et al. A large-scale collection of phenotypic data describing an insertional mutant population to facilitate functional analysis of rice genes [J]. Plant Mol Biol, 2007,63:625-635.
    Myung I S, Moon S Y, Jeong I H, et al. Bacterial spot of tomato caused by Xanthomonas perforans, a new disease in Korea [J]. Plant Dis,2009,93(12):1349.
    Pei C C, Wang H, Zhang J Y, et al. Fine mapping and analysis of a candidate gene in tomato accession PI 128216 conferring hypersensitive resistance to bacterial spot race T3 [J]. Theor Appl Genet. 2012,124(3):533-42.
    Peters S A, Van Haarst J C, Jesse T P, et al. TOPAAS, a tomato and potato assembly assistance system for selection and finishing of bacterial artificial chromosomes [J]. Plant Physiol,2006,140(3): 805-817.
    Peterson D G, Lapitan N L, Stack S M. Localization of single-and low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH) [J]. Genetics,1999, 152(1):427-439.
    Pemezny K, Datnoff L E, Mueller T, et al. Losses in fresh-market tomato production in Florida due to target spot and bacterial spot and the benefits of protectant fungicides [J]. Plant Dis,1996, 80:559-563.
    Pereira R C, Araujo E R, Ferreira M A S V,et al. Occurrence of Xanthomonas species causing bacterial spot in fresh market tomato fields in Brazil [J]. Acta Hortic,2011,914:61-64.
    Rhee S Y, Beavis W, Berardini T Z, et al. The A rabidopsis information resource (TAIR):a model organism database providing a centralized curated gateway to Arabidopsis biology research materials and community [J]. Nucleic Acids Res,2003,31:224-228.
    Shin W, Tsuyoshi M, Koh Aoki, et al. Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens [J]. Plant Biotech,2007,24:33-38.
    Shizuya H, Birren B, Kim UJ, et al. Cloning and stable maintenance of 300-kilobase pair fragments of human DNA in Escherichia coli using an F-factor-based vector [J]. Proc Natl Acad Sci, USA,1992, 89:8794-8797.
    Sahin F, Miller S A. Characterization of Ohio strains of Xanthomonas campestris pv. vesicatoria, causal agent of bacterial spot of pepper [J]. Plant Dis,1996,80:773-778.
    Silvia M, Angelo P, Olimpia D, et al. A new mutant genetic resource for tomato crop improvement by TILLING technology [J]. BMC Res Not,2010,3:69.
    Slade A J, Fuerstenberg S I, Loeffler D, et al. A reverse genetic nontransgenic approach to wheat crop improvement by TILLING [J]. Nat Biotech,2005,23:75-81.
    Soderlund C, Lungden I, Mott R. FPC:A systenl for building eontigs from restriction finger printed clones[J]. Comput Appl Biosci,1997,13(5):523-535.
    Song J, Dong F, Lilly J W, et al. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences [J].Genome,2001,44:463-469.
    Stall R E, Jones J B, Minsavage G V. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot [J]. Annu Rev Phytopathol,2009,47:265-284.
    Steven H, Bradley J T, Luca C. TILLING Traditional Mutagenesis Meets Functional Genomics [J]. Plant Physiol,2004,135:630-636.
    Subramaniam G, Palchamy K, Robert de la Pena P, et al. Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping [J]. Euphytica,2011,178:283-295.
    Tawfik A E, Shaimaa M M, Barakat M I E, et al. The occurrence of bacterial spot of tomato in Egypt [J]. Acta Hortic,2009,808:295-300.
    Till B J, Reynolds S H, et al. Large-scale discovery of induced point mutations with high throughput TILLING [J]. Genome Res,2003,13(3):524-530.
    Van der Hoeven R, Ronning C, Giovannoni J, et al. Deductions about the number,organization,and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing [J]. Plant Cell,2002,14(7):1441-1456.
    Vauterin L, Horste B, Kersters, et al. Reclassification of Xanthomonas [J]. Int J Syst Bacteriol,1995,45: 472-489.
    Wang H, Hutton SF, Robbins MD, et al. Molecular Mapping of Hypersensitive Resistance from Tomato cv. Hawaii 7981 to Xanthomonas perforans race T3 [J]. Phytopathology,2011,101:1217-1223.
    Wang Y, Tang X, Cheng Z, et al. Euchromatin and pericentromeric heterochromatin:Comparative composition in the tomato genome [J]. Genetics,2006,172 (4):2529-2540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700