高功率TE(A) CO2激光器的调谐理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文导出了描述可调谐脉冲TE(A)CO_2激光器任何一条或多条激光振荡线
    的六温度模型速率方程组。利用这个方程组,可以从理论上研究采用各种可调
    谐技术(如光栅调谐、F-P调制器调谐、注入锁模等)的TE(A)CO_2激光器的
    调谐特性。
     本文还解决了多频速率方程组中泵浦电子数密度的求解问题。指出利用
    CO_2-N_2-He-CO等分子的有关碰撞截面数据,求解Boltzmann方程,可得到电子
    碰撞电离系数、电子中性离子附着系数及电子漂移速度和放电E/N值的函数关
    系,然后结合具体的激光放电电路得到泵浦电子数密度随时间变化的关系。作
    为例子,文中详细计算了不同激光混合气组成和气压下,电容贮能的CLR放电
    电路和脉冲形成网络贮能的PFN放电电路的电压、电流和泵浦电子数密度随时
    间的变化关系。
     因此,本文解决了TE(A)CO_2激光器速率方程和实际激光放电泵浦电路之
    间的相互关联问题,系统地建立了可调谐激光器理论。作为该理论的具体应用,
    本文详细研究了光栅调谐、低锐度F-P调谐、注入锁模调谐和复合调谐高功率
    脉冲TE(A)CO_2激光器的调谐输出特性,得出了许多有意义的结果,并和一些
    初步的实验结果进行了比较。
In this paper, we deduced the six-temperature mode rate equations that can be applied to one or multi-frequency oscillation in a tunable TE(A) CO2 laser. By using these equations, the frequency-tuning characteristics of TE(A) CO2 lasers, using such techniques as grating, F-P modulator, or injection locking, can be investigated theoretically.
    Also, in this paper, a mathematical mode was set up to derive the pumping electron density from the laser discharge circuit. With all relevant collision cross-section data of C02-N2-He-CO molecules, the relationship of the electron collision ionization coefficient, electron-neutral particle attachment coefficient and electron drift velocity with the discharge parameter F/N could be obtained by solving Boltzmann equation, so the time evolution of the pumping electron density in any given laser discharge circuit could be solved numerically. For instance, the evolution of laser discharge voltage, current and pumping electron density, either in a CLR discharge circuit or a PFN discharge circuit, was studied in detail under different gas mixtures and pressures.
    In a word, we solved the correlation problem of the rate equations of a TE(A) CO2 laser and its actual discharge pumping circuit, and established a frequency-tuning theory systematically. As examples, we thoroughly investigated the tuning characteristics of a high power tunable TE(A) CO2 laser using grating, F-P modulator or injection locking tuning and obtained many valuable theoretical results. Some experiments were also carried out on a high power tunable TEA CO2 laser, which showed good agreement with the theoretical analyses.
引文
[1. 1] C.Patel,Phys.Rev.,1964,136(5A),PP.187
    [1. 2] K.Yasui,M.Kazumoto,S.Ogawa,M.Tanaka,S.Yaga,“Silent discharge excited TEM_(00) 2. 5kW CO_2 laser”,IEEE J.Quant.Electron., 1989,25(4) ,PP.836~839
    [1. 3] A.J.Beaulieu,“Transversely excited atmospheric pressure CO_2 lasers.”Appl.Phys.Lett.,1970,16,PP.504~505
    [1. 4] V.Yu.Baranov,S.A.Kazsakov,D.D.Malyuta,V.S.Mezhevov,A. P.Napartoich,V.G.Nisiev,M.Yu.Orlov,A.I.Starodubtev,and A. N.Starostin,Appl.Opt.,1980,19,PP.930
    [1. 5] K.R.Rickwood and J.Mclnnes,Rev.Sci.Instrum.1983,53,PP.1667
    [1. 6] 见《强激光技术进展》1999年第五期报道。
    [1. 7] T.F.Stratton,G.G.Erickson,C.A.Fenstermacher and E.O. Swickard,IEEE.J.Quant.Electron.,1973,QE-9,PP.157
    [1. 8] M.C.Richardson,A.J.Alcock,K.Leopold and P.Burtyn,“A 300J multigigawatt CO_2 laser”, IEEE J.Quant.Electron.1973,QE-9, PP.236-243
    [1. 9] H.J.J.Seguin,J.Tulip and D.C.McKen,IEEE J.Quant.Electron. 1974,QE-10,PP.311
    [1. 10] A.J.Palmer,“A physical model on the initiation of atmospheric pressure glow discharge.”Appl.Phys.Lett.1974,25,PP.138~140
    [1. 11] H. J. Seguin, J.Tulip and D. C. Mcken, “Ultraviolet photoionization in TEA laser.”IEEE J.Quant.Electron.,1974,QE-10. PP.311-319
    [1. 12] V.M.Borisov,Yu.A.Satov,and V.V.Sudakov,“Influence of preionization on the discharge characteristics of a CO_2 laser.”Sov. J.Quant.Electron.,1976,6(11) ,PP.1343-1344
    [1. 13] W.J.Wittmann,“The CO_2 Lasers”,Springer-Verlag,1987
    [1. 14] 楼棋洪,徐捷,傅淑芬,庄斗南,“脉冲放电气体激光器”,科学出版社, 1993年
    [1. 15] Holger M.Jaenisch and Gary D.Spiers,“Modifications to the LP-140 pulsed CO_2 lasers for lidar use.”SPIE 1411 Pulse Power of Lasers Ⅲ, 1991. DD.127-134
    
    
    [2. 1] W. J. Wittmann, “The CO_2 Lasers”, Springer-Verlag, 1987
    [2. 2] A.K.Levine,A.J.DeMarria, “Lasers”,Vol.3,pp120,Marcel Dekker, Inc, New York, 1971
    [2. 3] K. Smith and R. M. Thomson, “Computer modeling of gas lasers,” Plenum Press. 1978
    [2. 4] 周炳琨、高以智,“激光原理”,国防工业出版社,1994年
    [2. 5] G. J.Ernst,W. J.Wittmann,Ⅷ Intl.Quantum Electronics Conf., San Francisco (1974) , Paper S-8
    [2. 6] T. M. Hard, “Laser wavelength selection and output coupling by a grating”, Appl. Opt.,1970, 9(8) , pp.1825-1830
    [2. 7] Kanstand and G. Wang, “Laser resonators folded by diffraction grating”, Applied Opt.,1978, Vol. 17, pp.87
    [2. 8] 万重怡等,“紫外预电离高气压可调谐CO_2激光器”,电子学报,1978,No.1, pp.1
    [2. 9] 姚建铨,《非线性光学频率变换及激光调谐技术》,科学出版社,1995, pp.264-266
    [2. 10] 郑辉,“闪耀光栅对厄米-高斯光束的衍射”,中国激光,1983,10(1) , pp.1
    [2. 11] 彭先兆、吴谨、万重怡,“柱面镜-光栅谐振腔模式及频率选择特性”,光 学学报,1999,19(9) ,pp.1189-1192
    [2. 12] 万朋、谭荣清等,“TEA CO_2激光器跃迁带的选择”,应用激光,1999,19 (6) , pp.338-340
    [3. 1] J. D. Evans, B. J.Thompson. “Selected papers on CO_2 lasers”, SPIE. MS 22(1990)
    [3. 2] C. K. N. Patel. “Selective excitation through vibration energy transfer and optical maser action in N_2-CO_2”.Phys.Rev.Lett. 1994, Vol.13, pp.617-619
    [3. 3] G. C. Vlases and W. M. Money, “Numerical modeling of pulsed electrical CO_2 lasers”. J. Appl. Phys. ,1972, 43(4) , pp.1840-1844
    [3. 4] S.J.Kast and C.Cason.“Performance comparison of pulsed discharge and E-beam controlled CO_2 lasers”. J. Appl. Phys. 1973, 44(4) , pp.1631-1637
    [3. 5] K. R. Manes and H. J. Seguin. “Analyses of the CO_2 TEA laser”, J. Appl. Phys. 1972, 32(12) , pp.5073-5078
    [3. 6] K. J. Andrews, P. E. Dyer and D. J. James. “A rate equation model for the design of TEA CO_2 oscillators”, J. Phys. E:Sci. Instrum. 1975, Vol.8, pp.493-497
    
    
    [3. 7] D. L. Lyon. “WA2-Comparison of theory and experiment for transversely excited high pressure CO_2 laser”, IEEE J. Quant. Electron. 1973, 9(1) , pp.139-153
    [3. 8] J. Gilbert, J. L. Lachambre, F. Rheault, and R. Fortin. “Dynamics of the CO_2 atmospheric laser with transverse pulse excitation”, Canadian J. Phys. 1972, Vol.50, pp.2532-2535
    [3. 9] K. Smith and R. M. Thomson, “Computer modeling of gas lasers,” Plenum Press, 1978, pp.1-78
    [3. 10] W. J. Wittemann, The CO_2 Lasers, Springer-Verlag, 1987, pp.167
    [3. 11] A. R. Davies, K. Smith and R. M. Thomson, “TLASER-A CO_2 Laser Kinetics Code”, Computer Physics Communications, 1975, Vol.10, pp.117-132
    [3. 12] J.L.Lachambre,P.Lavigne,G.Otis and M.Noel,“Injection locking and mode selection in TEA CO_2 laser oscillators”, IEEE J. Quant. Electron., 1976, 12(12) , pp.756-764
    [3. 13] M. Soukieh, B. Abdul Ghani, M. Hammadi, “Mathematical modeling of CO_2 TEA laser”, Optics & Laser Technology, 1998, Vol.30, pp.45l-457
    [4. 1] T. Y. Chang, “Improved uniform-field electrode profiles for TEA laser and high voltage applications.”, Rev. Sci. Instrum., 1973, 44(4) , pp.405-407 G.J.Ernst, “Uniform-field electrodes with minimum width”, Optics Commun., 1984, 49(4) , pp.275-277
    [4. 2] 绳宇纲,万重怡,“三维均匀场电极设计”, 中国激光,2000,A27(12) , pp.1093-1096
    [4. 3] S. Howells, J. V. Gridland and R. H. Derrick, “A medium PRF UV preionized TEA CO_2 laser”, J.Phys.E:Sci.Instrum.,1981,Vol.14, pp.293-295
    [4. 4] J. J. Lowke, A. V. Phelps, and B. W. Irwin, “Predicted electron transport coeficients and operating characteristics of CO_2-N_2-He laser mixtures”, J. Appl. Phys., 1973, 44(10) , pp.4664-467l
    [4. 5] Y.Sakai,S Kaneko,H.Tagashira and S Skamoto,“A Boltzmann equation analysis of electron swarm parameters in CO_2 laser mixtures.”J.Phys. D:Appl. Phys., 1979, Vol.12, pp.23-3l
    [4. 6] C. S. Lakshminarasimha, J Lucus, J L Moruzzi, and I J Spalding, “Electron swarm parameters in CO_2 laser gas mixtures,” J. Phys. D: Appl. Phys., 1976, Vol.9, pp.1727-1734
    
    
    [4. 7] K. Midorikawa, K. ffakabayashi, K. Nakamura, M. Obara, and T. Fujioka, "Discharge parameters of a high pressure, ultraviolet-preionized, transversely excited CO2 laser" , J. Appl. Phys. 1982, 53(5) , pp. 3410-3417
    [4. 8] G. J. Ernst and A. G. Boer, "Experimental determination of the electron-avalanche and the electron-ion recombination coefficient", Optics Commun., 1980, 34(2) , pp.235-239
    [4. 9] U. Nundy, N. S. Shikarkhane and U. K. Chatterjee, "Measurement of recombination coefficient in a transverse electric atmospheric CO2 laser gas discharge", 1981, Appl. Phys. Lett. 38(2) , pp. 69-71
    [4. 10] M. S. Trtica and G. N. Ostojic, " Numerical modelling of self-sustained TEA CO2 laser operation", SPIE, 1999, Vol.3612, pp.7-14
    [4. 11] G. J. Ernst and A. G. Boer, "Kinetic modelling of a self-sustained TEA CO2 laser", Optics Commun., 1980, 35(2) , pp. 249-254
    [4. 12] Yang Xiaola, "Discharge characteristics of a UV-preionized TEA CO2 pulsed laser", Master thesis of the Institute of Electronics, Chinese Academy of Sciences, 1989
    [4. 13] V. M. Borisov, Yu. A. Satov, and V. V. Sudakov, "Influence of preionization on the discharge characteristics of a CO2 laser", Sov. J. Quantum. Electron. 1976, 6(11) , pp. 1343-1344
    [4. 14] Imre Santa, Laszlo Kozma, Bela Nemet, Janos Hebling, and M. R. Gorbal, "Experimental and theoretical investigation of a traveling wave excited TEA N2 laser", IEEE Quant. Electron. ,1986, 22(11) , pp.2174-2180
    [4. 15] P. Persephonis, A. Ionnou, J. Parthenious, et al, "Numerical analysis of the electrical and optical behavior of a pusled nitrogen laser through time-dependent resistances ang inductances", Appl. Phys. B: Lasers and Optics, 1998, Vol.66, pp. 39-46
    [4. 16] L. E. Kline, and L. J. Denes, "Investigation of glow discharge formation with volume preionization", J. Appl. Phys., 1975, 46(4) , pp.1567-1574
    [4. 17] P. Persephonis, V. Giannetas, C. Georgiades, J. Parthenios, and A. Ioannou, "The inductance and resistance of the laser discharge in a pulsed gas laser" . IEEE J. Quant. Electron. 1995, 31(3) , pp.573-581
    [4. 18] L. J. Denes and J. J. Lowke, "V-I characteristics of pulsed CO2 laser discharges" , Appl. Phys. Lett., 1973, 23(3) , pp.130-133
    
    
    [4. 19] J. Gilbert, J. L. Lachambre, F. Rheault, and R. Fortin, "Dynamics of the CO2 atmospheric laser with transverse pulse excitation" , Canadian J. Phys. 1972, Vol.50, pp. 2532-2535
    [4. 20] W. J. Wittemann, The CO2 Lasers, Springer Press, 1987, pp.167
    [4. 21] K. R. Manes and H. J. Seguin, "Analyses of the CO2 TEA laser" , J. Appl. Phys. 1972, 32(12) , pp. 5073-5078
    [4. 22] A. R. Davis, K. Smith and R. M. Thomson, "Tlaser-A CO2 Laser Kinetics Code" , Computer Physics Communications, 1975, Vol. 10, pp.117-132
    [4. 23] L. J. Kieffer, "A compilation of electron collision cross section data for modelling gas discharge laser," JILA Information Center Report No. 13, Sept. 1973
    [4. 24] Y. Ohwadano and T. Sekiguchi, "Development and performance characteristics of a UV-preionized, high power TEA CO2 laser" , Japan. J. of Appl. Phys., 1980, 19(8) , pp. 1493-1504
    [4. 25] P. Persephonis, K. Vlachos, C. Georgiades, and J. Parthenios, "The inductance of the discharge in a spark gap" , J. Appl. Phys. 1992, 71(10) , pp.4755-4762
    [4. 26] Hirokazu Hokazono and Minoru Obara, " Theoretical operational life study of the closed-cycle transversely excited atmospheric CO2 laser", J. Appl. Phys., 1991, 69(10) , pp. 6850-6867
    [4. 27] G. J. Ernst and A. G. Boer, " Construction and performance characteristics of a rapid discharge TEA CO2 laser, " Optics Commun., 1978, 27(1) , pp.105-110
    [4. 28] M. Soukieh, B. Abdul Ghani, M. Hammadi, "Mathematical modeling of CO2 TEA laser", Optics & Laser Technology, 1998, Vol.30, pp.451-457
    [4. 29] A. Chakrabarti, and J. Reid, " Long-pulse transversely excited 12CO2 and 13CO2 lasers", J. Appl. Phys., 1989, 66(1) , pp. 37-42
    [4. 30] Y. Okita, K. Yasuoka, A. Ishii and T. Tamagawa, "Long-pulse, high-repetition-rate transversely excited CO2 laser for material processing", SPIE Vol.2118, 1994, pp. 22-31
    [5. 1] A. J. Palmer, " A Physical model on the initiation of atmospheric pressure glow discharges, " Appl. Phys. Lett., 1974, Vol.25, pp.138
    [5. 2] V. Hasson and H. M. Von Bergmann, " Spatial control of pulsed high pressure preionization stabilized glow discharges, " J. Phys. E: Sci. Instrum., 1977, Vol. 10, pp. 370
    
    
    [5. 3] A. Chakrabarti, and J. Reid, " Long-pulse transversely excited 12CO2 and 13CO2 lasers", J. Appl. Phys., 1989, 66(1) , pp. 37-42
    [5. 4] Y. Okita, K. Yasuoka, A. Ishii and T. Tamagawa, "Long-pulse, high-repetition-rate transversely excited CO2 laser for material processing", SPIE Vol. 2118, 1994, pp. 22-31
    [5. 5] R. C. Lind, J. Y. Wada, G. J. Dunning and W. M. Clark, Jr., "A long pulse high energy CO2 laser pumped by an UV-sustained electric discharge," IEEE J. Quant. Electron., 1974, QE-10(10) , pp. 818-821
    [5. 6] M. R. Harris and D. V. Willetts, "Transversely excited CO2 laser with long pulse duration discharge", Opt. Commun. 1991, 83(3) , pp. 227-230
    [5. 7] P K. Bhadani and R. G. Harrison, " Efficient long pulse TE-CO2 laser using magnetic-spiker sustainer excitation", Rev. Sci. Instrum. 1992, 63(12) , pp. 5543-5545
    [5. 8] Holger M. Jaenisch and Gary D. Spiers, "Modifications to the LP-140 Pulsed CO2 laser for Lidar use, " SPIE Vol. 1411 Pulse Power for Lasers (1991) , pp.127-134
    [5. 9] Eric C. Koschmann, "Uniform energy discharge for pulsed lasers", SPIE Vol.1411 Pulse Power for Lasers III, 1991, pp. 118-126
    [5. 10] K. J. Andrews, P E Dyer and D. J. James, "A rate equation model for the design of TEA CO2 oscillators". J. Phys. E: Sci. Instrum., 1975, Vol.8, pp. 493-497
    [6. 1] T. Okada, F. Nishimura, S. Inoue, K. Muraoka and M. Akazaki, Jpn. J. Appl. Phys., 1984, Vol. 23, pp. 1045
    [6. 2] T. Okada, S. Inoue, T. Ohga, K. Muraoka and M. Akazaki: Int. J. Infrared & Millimeter Waves, 1985, Vol.6, pp.883
    [6. 3] K. Sasaki and T. Tsukishima, "Numerical simulation of elongating the pulse duration of a TEA CO2 laser", Jpn. J. Appl. Phys., 1990, 29(2) , pp.277-283
    [6. 4] J. L. Lachambre P. Lavigne G. Otis and M. Noel, " Injection locking and mode selection in TEA CO2 laser oscillators", IEEE J. Quant. Electron. 1976, 12(12) , pp. 756-764
    [6. 5] T. Okda, Y. Manabe, K. Muraoka and M. Akazaki, "Off-line center operation of an injection-locked single mode TEA CO2 laser", Appl. Optics, 1981, 20(23) , pp. 2176-2178
    [6. 6] W. J. Witteman, "The CO2 Lasers", Springer-Verlag, 1987
    [6. 7] V. Yu. Baranov, S. A. Kazakov, V. V. Likhanskii, et al,
    
     “Stabilization of the frequency of a pulse periodic TEA CO_2 laser by injection of a signal from a low pressure CW laser,”Sov.J.Quant. Electron.,1979,Vol.9,pp.1456-1458
    [6. 8] P.E.Dyer and I.K.Perara,“Injection mode locking of a TEA CO_2 laser on P and R transitions in the 9-and 10-um bands”,Opt.Lett., 1979,4(8) ,PP.250-252
    [6. 9] Chongyi Wan,Rongqing Tan,Jin Wu,Shiming Liu,Jinwen Zhou,jilan Qi,Donglei Wang,Peng Wan,Xianzhao Peng,Wenjie Xie,“High averrage power TEA CO_2 laser with rotating spark switch”,2000,SPIE, Vol.3889,PP.725-731
    [7. 1] 赵凯华、钟锡华,“光学(下)”,北京大学出版社,1984年,pp.24
    [7. 2] A.Hardy and D.Treves,“Modes of a diffraction grating optical resonator”,Appl.OptiCS,1975,Vol.14,pp.589
    [7. 3] 彭先兆、吴谨、万重怡,“柱面镜-光栅谐振腔模式和频率选择特性”,光 学学报,1999,19(9) ,PP.1189-1192
    [7. 4] M.Born,E.Wolf,“The Principles of Optics”,Pergamon press,1975
    [7. 5] 万 朋,“TEA CO_2激光器跃迁带选择”,中国科学院电子学研究所内部资料, 1999年6月24日
    [7. 6] W.H.Steel,“Interferometry”,Cambridge Univ.Press,1967
    [7. 7] 赵凯华、钟锡华,“光学(上)”, 北京大学出版社,1984年,pp337
    [7. 8] 万朋、谭荣清、吴谨、万重怡,“TEA CO_2激光器跃迁带选择”,应用激光, 1999,19(6) ,PP.338-340
    [7. 9] T.M.Hard,“Laser wavelength selection and output coupling by a grating,”Appl.Opt.,1970,9(8) ,PP.1825-1830
    [8. 1] 《高平均功率高重复频率TEA CO_2激光器研制报告》(内部资料),中国科 学院电子学院电子学研究所,1994年11月
    [8. 2] 吴谨,彭先兆,万重怡,刘世明,“用转镜扫描系统系统测量脉冲激光的 二维光强分布”,应用激光,1998,18(3) ,PP.122-124
    [8. 3] 吴谨,彭先兆,谭荣清,谢文杰,万重怡,“高平均功率脉冲TEA CO_2激光 器输出光束质量评价”,中国激光,1999,26(7) ,PP.589-593
    [8. 4] T.M.Hard, “Laser wavelength selection and output coupling by a grating,”Appl.Opt.,1970,9(8) ,PP.1825-1830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700