卟啉、偶氮苯与蒽衍生物的界面组装:超分子手性与光电、离子响应特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性超分子功能组装体在性能调控方面具有多样、灵活的特点,在分子识别、手性催化、材料科学尤其是纳米科学领域有良好应用前景,是手性学科发展的一个重要方向。手性超分子材料的性能一方面取决于分子本身,另一方面取决于分子的堆积方式。相应地,如何在分子水平上设计构筑单元,在超分子层次上控制构筑基元的排列方式,进而有效地控制材料的性能在有机纳米材料领域具有重要的意义。
     本论文选择卟啉、偶氮苯与蒽衍生物作为模型分子,通过界面组装可控地制备了手性超分子组装体,探讨了分子间相互作用力的强度、分子构型和分子排列方式对手性超分子材料的光学和电学性质的影响。
     首先,发展了一种从非手性卟啉制备手性超分子组装体的普适性方法,对其他大环共轭分子的组装具有指导意义,拓展了适用于通过界面上对称性打破方法制备手性超分子材料的构筑基元的范围。
     其次,对超分子手性产生机理进行了探究。选择了卟啉和偶氮苯两种响应性功能分子,分别通过改变抗衡离子种类和光致异构,对组装体的超分子手性进行调控。该研究证明了强度合适的分子间相互作用和平面型分子构型对手性超分子组装体的构筑至关重要。
     构筑基元的普遍化和对超分子手性机理的深入理解为手性超分子材料的功能化奠定了基础。
     在上述研究的基础上,我们选择了一种蒽衍生物分子,通过调节界面组装过程的表面压,在分子水平上控制构筑基元的排列方式和调控分子间π-π交叠程度,进而可控地制备了具有不同形貌、超分子手性特征及光电性质的有机纳米材料。该研究表明,有机构筑基元的界面组装为控制纳米材料的形貌及光电性质提供了一种简便的方法,同时也表明,圆二色光谱不仅可以用来表征组装体的手性,也可用来关联功能共轭分子之间的相互作用。
Chiral supramolecular functional assemblies with great chemical structure variety and property tunability, are of crucial importance in the field of molecular recognition, asymmetric catalysis, material sciences, and especially nanotechnology and nanosciences. Chiral supramolecular functional materials play an important role in chiral subject. The properties of chiral supramolecular materials are not only determined by the molecules themselves, but also depend on the molecular packing statues. To control the function of materials by designing the building blocks at molecular level and regulating packing manners of building blocks at supramolecular level is essential and meaningful in the field of organic nanomaterials.
     In this dissertation, we employed porphyrin, azobenzene and anthracene derivatives as model molecules, and constructed chiral supramolecular assemblies which are controllable by interfacial organization. We discussed the effect of intermolecular interaction, molecular configuration, and packing statues of molecules on the optical and electrical properties of chiral supramolecular assemblies.
     Firstly, we developed a general method for constructing chiral supramolecular assemblies from achiral porphyrins, which are of guiding significance to other conjugated macrocyclic molecules, and expanded the scope of building blocks which are suitable for constructing chiral supramolecular materials through symmetry breaking at interface.
     Secondly, we explored the mechanism of suprmolecular chirogenesis. We used two responsive functional molecules, porphyrin and azobenzene, and controlled the supramolecular chirality of assemblies by changing counterion and photoisomerization, respectively. Our investigation confirmed that proper strength of intermolecular interaction and planar molecular configuration are essential to the formation of chiral supramolecular assemblies.
     The expansion of scope of building blocks and deeper insight into the mechanism of supramolecular chirogenesis provide foundation of functionalizing chiral supramolecular materials.
     Based on the research mentioned above, we selected an anthracene derivative and adjusted the surface pressure during the interfacial organization process to control the packing manners of building blocks and the degree of intermolecularπ-πoverlapping, and further controllably fabricated organic nanomaterials exhibiting distinct morphology, supramolecular chirality and photoswitching properties. Our research indicated that, interfacial organization of organic building blocks provided a facile way to control the morphology and photoelectric properties, and also suggested that CD spectrum can be apply not only to characterize the chirality of assemblies, but also to correlate the interactions between conjugated functional molecules.
引文
[1]. Collins, A. N.; Sheldrake, G. N.; Crosby, J., Chirality in Industry. Wiley: Chichester, 1997; Vol. II.
    [2]. Green, M. M.; Nolte, R. J. M.; Meijer, E. W., Topics in Stereochemistry 24. Chiral Materials. Wiley: Chichester, 2003.
    [3]. Lehn, J.-M., Supramolecular Chemistry - Concepts and Perspectives. VCH Publishers: Weinheim, 1995.
    [4]. Lehn, J.-M., Supramolecular Chemistry– Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
    [5].沈家骢;孙俊奇,超分子科学研究进展.中国科学院院刊2004, 19, 420-424.
    [6].张希;沈家骢,超分子科学认识物质世界的新层面.科学通报2004, 48, 1477-1478.
    [7]. Perez-Garcia, L.; Amabilino, D. B., Spontaneous resolution under supramolecular control. Chem. Soc. Rev. 2002, 31, 342-356.
    [8]. Knof, U.; von Zelewsky, A., Predetermined chirality at metal centers. Angew. Chem. Int. Ed. 1999, 38, 302-322.
    [9]. Green, M. M.; Cheon, K. S.; Yang, S. Y.; Park, J. W.; Swansburg, S.; Liu, W. H., Chiral studies across the spectrum of polymer science. Acc. Chem. Res. 2001, 34, 672-680.
    [10]. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M., Chiral architectures from macromolecular building blocks. Chem. Rev. 2001, 101, 4039-4070.
    [11]. Mateos-Timoneda, M. A.; Crego-Calama, M.; Reinhoudt, D. N., Supramolecular chirality of self-assembled systems in solution. Chem. Soc. Rev. 2004, 33, 363-372.
    [12]. Yashima, E.; Maeda, K.; Nishimura, T., Detection and amplification of chirality by helical polymers. Chem.-Eur. J. 2004, 10, 42-51.
    [13]. Amabilino, D. B.; Veciana, J., Encyclopedia of Supramolecular Chemistry. Marcel Dekker Inc.: New York, 2004.
    [14]. Keizer, H. M.; Sijbesma, R. P., Hierarchical self-assembly of columnar aggregates. Chem. Soc. Rev. 2005, 34, 226-234.
    [15]. Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C.; Barron, L. D., Absolute asymmetric synthesis under physical fields: Facts and fictions. Chem. Rev. 1998, 98, 2391-2404.
    [16]. Kirstein, S.; von Berlepsch, H.; Bottcher, C.; Burger, C.; Ouart, A.; Reck, G.; Dahne, S., Chiral J-aggregates formed by achiral cyanine dyes. Chemphyschem 2000, 1, 146-150.
    [17]. Spitz, C.; Dahne, S.; Ouart, A.; Abraham, H. W., Proof of chirality of J-aggregates spontaneously and enantioselectively generated from achiral dyes. J. Phys. Chem. B 2000, 104, 8664-8669.
    [18]. Viswanathan, R.; Zasadzinski, J. A.; Schwartz, D. K., Spontaneous Chiral-Symmetry Breaking by Achiral Molecules in a Langmuir-Blodgett-Film. Nature 1994, 368, 440-443.
    [19]. Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage, B. A., Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. J. Am. Chem. Soc. 1999, 121, 2987-2995.
    [20]. Renikuntla, B. R.; Armitage, B. A., Role reversal in a supramolecular assembly: a chiral cyanine dye controls the helicity of a peptide-nucleic acid duplex. Langmuir 2005, 21, 5362-5366.
    [21]. Morikawa, M.; Yoshihara, M.; Endo, T.; Kimizuka, N., ATP as building blocks for the self-assembly of excitonic nanowires. J. Am. Chem. Soc. 2005, 127, 1358-1359.
    [22]. Owen, D. J.; VanDerveer, D.; Schuster, G. B., Cyanine borate penetrated ion pair structures in solution and the solid state: Induced circular dichroism. J. Am. Chem. Soc. 1998, 120, 1705-1717.
    [23]. Thalacker, C.; Wurthner, F., Chiral perylene bisimide-melamine assemblies: Hydrogen bond-directed growth of helically stacked dyes with chiropticalproperties. Adv. Funct. Mater. 2002, 12, 209-218.
    [24]. van Herrikhuyzen, J.; Syamakumari, A.; Schenning, A. P. H. J.; Meijer, E. W., Synthesis of n-type perylene bisimide derivatives and their orthogonal self-assembly with p-type oligo(p-phenylene vinylene)s. J. Am. Chem. Soc. 2004, 126, 10021-10027.
    [25]. Huang, X. F.; Nakanishi, K.; Berova, N., Porphyrins and metalloporphyrins: Versatile circular dichroic reporter groups for structural studies. Chirality 2000, 12, 237-255.
    [26]. Mizuno, Y.; Aida, T., Nonlinear amplification of circular dichroism activity upon cyclodimerization of a chiral saddle-shaped porphyrin. Chem. Commun. 2003, 20-21.
    [27]. Kubo, Y.; Ishii, Y.; Yoshizawa, T.; Tokita, S., Effective cation-assisted chirality induction using a dibenzo-diaza-30-crown-10 with bis(zinc(II) porphyrin) units. Chem. Commun. 2004, 1394-1395.
    [28]. Borovkov, V. V.; Hembury, G. A.; Inoue, Y., Origin, control, and application of supramolecular chirogenesis in bisporphyrin-based systems. Acc. Chem. Res. 2004, 37, 449-459.
    [29]. Monti, D.; Cantonetti, V.; Venanzi, M.; Ceccacci, F.; Bombelli, C.; Mancini, G., Interaction of a chirally functionalised porphyrin derivative with chiral micellar aggregates. Chem. Commun. 2004, 972-973.
    [30]. Mizuno, Y.; Aida, T.; Yamaguchi, K., Chirality-memory molecule: Crystallographic and spectroscopic studies on dynamic molecular recognition events by fully substituted chiral porphyrins. J. Am. Chem. Soc. 2000, 122, 5278-5285.
    [31]. Lauceri, R.; Purrello, R., Transfer, memory and amplification of chirality in porphyrin aggregates. Supramol. Chem. 2005, 17, 61-66.
    [32]. Lauceri, R.; Raudino, A.; Scolaro, L. M.; Micali, N.; Purrello, R., From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J. Am. Chem. Soc. 2002, 124, 894-895.
    [33]. De Napoli, M.; Nardis, S.; Paolesse, R.; Vicente, M. G. H.; Lauceri, R.;Purrello, R., Hierarchical porphyrin self-assembly in aqueous solution. J. Am. Chem. Soc. 2004, 126, 5934-5935.
    [34]. Ribo, J. M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R., Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063-2066.
    [35]. Rubires, R.; Farrera, J. A.; Ribo, J. M., Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem.-Eur. J. 2001, 7, 436-446.
    [36].袁菁博士论文,界面手性超分子组装体的研究——从非手性分子到手性组装体以及手性分子的组装.中国科学院化学研究所: 2004.
    [37].张莉博士论文,基于静电相互作用的界面有序复合超薄膜的构筑及超分子手性研究.中国科学院化学研究所: 2004.
    [38].黄昕博士论文,氢键或光聚合导向的界面对称性打破—从非手性分子到手性组装体.中国科学院化学研究所: 2005.
    [39].郭培志博士论文,非手性分子的界面有序组装—超分子手性和手性光学开关.中国科学院化学研究所: 2006.
    [40].郭宗侠博士论文,界面及胶束体系中若干芳香族化合物的组装-从非手性分子到手性微、纳米结构.中国科学院化学研究所: 2007.
    [41].刘丽博士论文,若干功能分子的超分子组装及其响应性的研究.中国科学院化学研究所: 2008.
    [42]. Shirakawa, H., The discovery of polyacetylene film: The dawning of an era of conducting polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2575-2580.
    [43]. MacDiarmid, A. G., "Synthetic metals": A novel role for organic polymers (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2581-2590.
    [44]. Heeger, A. J., Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel lecture). Angew. Chem. Int. Ed. 2001, 40, 2591-2611.
    [45]. Nalwa, H. S., Handbook of Advanced Electronic and Photonic Materials and Devices, vol .8 Conducting Polymers. Academic Press: London, 2001.
    [46]. Krstic, V.; Rikken, G. L. J. A., Magneto-chiral anisotropy of the free electron on a helix. Chemical Physics Letters 2002, 364, 51-56.
    [47]. Coronado, E.; Galan-Mascaros, J. R., Hybrid molecular conductors. J. Mater. Chem. 2005, 15, 66-74.
    [48]. Carroll, R. L.; Gorman, C. B., The genesis of molecular electronics. Angew. Chem. Int. Ed. 2002, 41, 4379-4400.
    [49]. Maruccio, G.; Cingolani, R.; Rinaldi, R., Projecting the nanoworld: Concepts, results and perspectives of molecular electronics. J. Mater. Chem. 2004, 14, 542-554.
    [50]. Griffiths, J. P.; Nie, H.; Brown, R. J.; Day, P.; Wallis, J. D., Synthetic strategies to chiral organosulfur donors related to bis(ethylenedithio) tetrathiafulvalene. Organic & Biomolecular Chemistry 2005, 3, 2155-2166.
    [51]. Wallis, J. D.; Griffiths, J. P., Substituted BEDT-TTF derivatives: synthesis, chirality, properties potential applications. J. Mater. Chem. 2005, 15, 347-365.
    [52]. Rethore, C.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Fourmigue, M., Chiral molecular metals: Syntheses, structures, and properties of the AsF6- salts of racemic (+/-)-, (R)-, and (S)-tetrathiafulvalene-oxazoline derivatives. J. Am. Chem. Soc. 2005, 127, 5748-5749.
    [53]. Coronado, E.; Galan-Mascaros, J. R.; Gomez-Garcia, C. J.; Murcia-Martinez, A.; Canadell, E., A chiral molecular conductor: Synthesis, structure, and physical properties of [ET](3)[Sb-2(L-tart)(2)]center dot CH3CN (ET = Bis(ethylendithio)tetrathiafulvalene; L-tart = (2R,3R)-(+)-tartrate). Inorg. Chem. 2004, 43, 8072-8077.
    [54]. Leznoff, C. C.; Lever, A. B. P., Phthalocyanines, Properties and Applications. VCH: New York, 1989-1993.
    [55]. Hanack, M.; Lang, M., Conducting Stacked Metallophthalocyanines and Related-Compounds. Adv. Mater. 1994, 6, 819-833.
    [56]. Cook, M. J.; Hersans, R.; McMurdo, J.; Russell, D. A., Self-assembled monolayers of phthalocyanine derivatives on glass and silicon. J. Mater. Chem. 1996, 6, 149-154.
    [57]. Bryce, M. R., Tetrathiafulvalenes as pi-electron donors for intramolecular charge-transfer materials. Adv. Mater. 1999, 11, 11-23.
    [58]. Segura, J. L.; Martin, N., New concepts in tetrathiafulvalene chemistry. Angew. Chem. Int. Ed. 2001, 40, 1372-1409.
    [59]. Vannostrum, C. F.; Picken, S. J.; Schouten, A. J.; Nolte, R. J. M., Synthesis and Supramolecular Chemistry of Novel Liquid-Crystalline Crown Ether-Substituted Phthalocyanines - toward Molecular Wires and Molecular Ionoelectronics. J. Am. Chem. Soc. 1995, 117, 9957-9965.
    [60]. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M., Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785-788.
    [61]. Samori, P.; Engelkamp, H.; de Witte, P.; Rowan, A. E.; Nolte, R. J. M.; Rabe, J. P., Self-assembly and manipulation of crown ether phthalocyanines at the gel-graphite interface. Angew. Chem. Int. Ed. 2001, 40, 2348- 2350.
    [62]. Sly, J.; Kasak, P.; Gomar-Nadal, E.; Rovira, C.; Gorriz, L.; Thordarson, P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M., Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. Chem. Commun. 2005, 1255-1257.
    [63]. LangeveldVoss, B. M. W.; Peeters, E.; Janssen, R. A. J.; Meijer, E. W., Chiroptical properties of highly ordered di[(S)-2-methylbutoxy] substituted polythiophene and poly(p-phenylene vinylene). Synth. Met. 1997, 84, 611-614.
    [64]. Lermo, E. R.; Langeveld-Voss, B. M. W.; Janssen, R. A. J.; Meijer, E. W., Odd-even effect in optically active poly(3,4-dialkoxythiophene). Chem. Commun. 1999, 791-792.
    [65]. Goto, H.; Okamoto, Y.; Yashima, E., Metal-induced supramolecular chirality in an optically active polythiophene aggregate. Chem.-Eur. J. 2002, 8, 4027-4036.
    [66]. Goto, H.; Jeong, Y. S.; Akagi, K., Electrochemical synthesis and optical properties of a chiral poly[ 1-4-bis(3 ',4 '-ethylenedioxythienyl)phenylene] derivative. Macromol. Rapid Commun. 2005, 26, 164-167.
    [67]. Lemaire, M.; Delabouglise, D.; Garreau, R.; Guy, A.; Roncali, J.,Enantioselective Chiral Poly(Thiophenes). J. Chem .Soc., Chem. Comm. 1988, 658-661.
    [68]. Havinga, E. E.; Bouman, M. M.; Meijer, E. W.; Pomp, A.; Simenon, M. M. J., Large Induced Optical-Activity in the Conduction-Band of Polyaniline Doped with (1s)-(+)-10-Camphorsulfonic Acid. Synth. Met. 1994, 66, 93-97.
    [69]. Egan, V.; Bernstein, R.; Hohmann, L.; Tran, T.; Kaner, R. B., Influence of water on the chirality of camphorsulfonic acid-doped polyaniline. Chem. Commun. 2001, 801-802.
    [70]. Majidi, M. R.; Kanemaguire, L. A. P.; Wallace, G. G., Enantioselective Electropolymerization of Aniline in the Presence of (+)-Camphorsulfonate or (-)-Camphorsulfonate Ion - a Facile Route to Conducting Polymers with Preferred One-Screw-Sense Helicity. Polymer 1994, 35, 3113-3115.
    [71]. Barisci, J. N.; Innis, P. C.; KaneMaguire, L. A. P.; Norris, I. D.; Wallace, G. G., Preparation of chiral conducting polymer colloids. Synth. Met. 1997, 84, 181-182.
    [72]. Cao, Y.; Andreatta, A.; Heeger, A. J.; Smith, P., Influence of Chemical Polymerization Conditions on the Properties of Polyaniline. Polymer 1989, 30, 2305-2311.
    [73]. Cao, Y.; Smith, P.; Heeger, A. J., Counterion Induced Processibility of Conducting Polyaniline and of Conducting Polyblends of Polyaniline in Bulk Polymers. Synth. Met. 1992, 48, 91-97.
    [74]. Guo, H. L.; Knobler, C. M.; Kaner, R. B., A chiral recognition polymer based on polyaniline. Synth. Met. 1999, 101, 44-47.
    [75]. Huang, J. X.; Egan, V. M.; Guo, H. L.; Yoon, J. Y.; Briseno, A. L.; Rauda, I. E.; Garrell, R. L.; Knobler, C. M.; Zhou, F. M.; Kaner, R. B., Enantioselective discrimination of D- and L-phenylalanine by chiral polyaniline thin films. Adv. Mater. 2003, 15, 1158-1161.
    [76]. Sheridan, E. M.; Breslin, C. B., Enantioselective detection of D- and L-phenylalanine using optically active polyaniline. Electroanalysis 2005, 17, 532-537.
    [77]. Zhang, L. J.; Wan, M. X., Chiral polyaniline nanotubes synthesized via a self-assembly process. Thin Solid Films 2005, 477, 24-31.
    [78]. Yang, Y. S.; Wan, M. X., Chiral nanotubes of polyaniline synthesized by a template-free method. J. Mater. Chem. 2002, 12, 897-901.
    [79]. Lu, X. F.; Yu, Y. H.; Chen, L.; Mao, H. P.; Wang, L. F.; Zhang, W. J.; Wei, Y., Poly(acrylic acid)-guided synthesis of helical polyaniline microwires. Polymer 2005, 46, 5329-5333.
    [80]. Hatano, T.; Bae, A. H.; Takeuchi, M.; Fujita, N.; Kaneko, K.; Ihara, H.; Takafuji, M.; Shinkai, S., Helical structures of conjugate polymers created by oxidative polymerization using synthetic lipid assemblies as templates. Chem.-Eur. J. 2004, 10, 5067-5075.
    [81]. Hatano, T.; Bae, A. H.; Takeuchi, M.; Fujita, N.; Kaneko, K.; Ihara, H.; Takafuji, M.; Shinkai, S., Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template. Angew. Chem. Int. Ed. 2004, 43, 465-469.
    [82]. Rikken, G. L. J. A.; Raupach, E., Enantioselective magnetochiral photochemistry. Nature 2000, 405, 932-935.
    [83]. Rikken, G. L. J. A.; Raupach, E., Observation of magneto-chiral dichroism. Nature 1997, 390, 493-494.
    [84]. Scheffler, K.; Hofler, U.; Schuler, P.; Stegmann, H. B., Chiral Recognition by Formation of Paramagnetic Diastereomeric Complexes. Mol. Phys. 1988, 65, 439-446.
    [85]. Maurer, M.; Scheffler, K.; Stegmann, H. B.; Mannschreck, A., Helical Semiquinones - Proof of Chirality by Endor Spectroscopy. Angewandte Chemie-International Edition in English 1991, 30, 602-604.
    [86]. Jorss, E.; Schuler, P.; MaichleMossmer, C.; Abram, S.; Stegmann, H. B., Chiral recognition by EPR and ENDOR spectroscopy via diastereomers. Enantiomer 1997, 2, 5-16.
    [87]. Schuler, P.; Schaber, F. M.; Stegmann, H. B.; Janzen, E., Recognition of chirality in nitroxides using EPR and ENDOR spectroscopy. Magn. Reson.Chem. 1999, 37, 805-813.
    [88]. Tamura, R.; Susuki, S.; Azuma, N.; Matsumoto, A.; Toda, F.; Kamimura, A.; Hori, K., Preparation of Chiral Nitroxide Radicals and Spontaneous Optical Resolution by Recrystallization. Angewandte Chemie-International Edition in English 1994, 33, 878-879.
    [89]. Sedo, J.; Ventosa, N.; Ruiz-Molina, D.; Mas, M.; Molins, E.; Rovira, C.; Veciana, J., Crystal structures of chiral diastereoisomers of a carbon-based high-spin molecule. Angew. Chem. Int. Ed. 1998, 37, 330-333.
    [90]. Amabilino, D. B.; Veciana, J., Magnetism-Molecules to Materials, vol II: Molecule Based Materials. . Wiley: Weinheim, 2001.
    [91]. Minguet, M.; Amabilino, D. B.; Cirujeda, J.; Wurst, K.; Mata, I.; Molins, E.; Novoa, J. J.; Veciana, J., Stereochemistry of phenyl alpha-nitronyl nitroxide radicals. Chem.-Eur. J. 2000, 6, 2350-2361.
    [92]. Minguet, M.; Amabilino, D. B.; Wurst, K.; Veciana, J., Chirality of alpha-nitronyl nitroxide radicals in the solid state. J. Solid State Chem. 2001, 159, 440-450.
    [93]. Minguet, M.; Amabilino, D. B.; Vidal-Gancedo, J.; Wurst, K.; Veciana, J., Racemic and enantiomerically pure phenyl alpha-nitronyl nitroxide radicals: influence of chirality on solution and solid state properties. J. Mater. Chem. 2002, 12, 570-578.
    [94]. Minguet, M.; Amabilino, D. B.; Wurst, K.; Veciana, J., Circular dichroism studies of crystalline chiral and achiral alpha-nitronyl nitroxide radicals in a KBr matrix. J. Chem. Soc., Perkin Trans. 2 2001, 670-676.
    [95]. Ikuma, N.; Tamura, R.; Shimono, S.; Kawame, N.; Tamada, O.; Sakai, N.; Yamauchi, J.; Yamamoto, Y., Magnetic properties of all-organic liquid crystals containing a chiral five-membered cyclic nitroxide unit within the rigid core. Angew. Chem. Int. Ed. 2004, 43, 3677-3682.
    [96]. Minguet, M.; Luneau, D.; Paulsen, C.; Lhotel, E.; Gorski, A.; Waluk, J.; Amabilino, D. B.; Veciana, J., From purely organic to metallo-organic chiral magnetic materials. Polyhedron 2003, 22, 2349-2354.
    [97]. Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P., Toward Molecular Magnets - the Metal-Radical Approach. Acc. Chem. Res. 1989, 22, 392-398.
    [98]. Caneschi, A.; Gatteschi, D.; Rey, P.; Sessoli, R., Structure and Magnetic-Ordering of a Ferrimagnetic Helix Formed by Manganese(Ii) and a Nitronyl Nitroxide Radical. Inorg. Chem. 1991, 30, 3936-3941.
    [99]. Minguet, M.; Luneau, D.; Lhotel, E.; Villar, V.; Paulsen, C.; Amabilino, D. B.; Veciana, J., An enantiopure molecular ferromagnet. Angew. Chem. Int. Ed. 2002, 41, 586-589.
    [100]. Nakayama, K.; Ishida, T.; Takayama, R.; Hashizume, D.; Yasui, M.; Iwasaki, F.; Nogami, T., Pyrimidine-bridged cobalt(II) complexes with a chiral 3-D network showing weak ferromagnetism. Chem. Lett. 1998, 497-498.
    [101]. Gao, E. Q.; Yue, Y. F.; Bai, S. Q.; He, Z.; Yan, C. H., From achiral ligands to chiral coordination polymers: Spontaneous resolution, weak ferromagnetism, and topological ferrimagnetism. J. Am. Chem. Soc. 2004, 126, 1419-1429.
    [102]. Gao, E. Q.; Bai, S. Q.; Wang, Z. M.; Yan, C. H., Two-dimensional homochiral manganese(II)-azido frameworks incorporating an achiral ligand: Partial spontaneous resolution and weak ferromagnetism. J. Am. Chem. Soc. 2003, 125, 4984-4985.
    [103]. Sato, O., Optically switchable molecular solids: Photoinduced spin-crossover, photochromism, and photoinduced magnetization. Acc. Chem. Res. 2003, 36, 692-700.
    [104]. Sunatsuki, Y.; Ikuta, Y.; Matsumoto, N.; Ohta, H.; Kojima, M.; Iijima, S.; Hayami, S.; Maeda, Y.; Kaizaki, S.; Dahan, F.; Tuchagues, J. P., An unprecedented homochiral mixed-valence spin-crossover compound. Angew. Chem. Int. Ed. 2003, 42, 1614-1618.
    [105]. Barron, L. D., Magnetic molecules - Chirality and magnetism shake hands. Nature Mater. 2008, 7, 691-692.
    [106]. Train, C.; Gheorghe, R.; Krstic, V.; Chamoreau, L. M.; Ovanesyan, N. S.; Rikken, G. L. J. A.; Gruselle, M.; Verdaguer, M., Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater. 2008, 7, 729-734.
    [107]. Prasad, P. N.; Williams, D. J., Introduction to Non-linear Optical Effects in Molecules and Polymers. Wiley: New York, 1991.
    [108]. Nuckolls, C.; Katz, T. J.; Katz, G.; Collings, P. J.; Castellanos, L., Synthesis and aggregation of a conjugated helical molecule. J. Am. Chem. Soc. 1999, 121, 79-88.
    [109]. Lovinger, A. J.; Nuckolls, C.; Katz, T. J., Structure and morphology of helicene fibers. J. Am. Chem. Soc. 1998, 120, 264-268.
    [110]. Verbiest, T.; Van Elshocht, S.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A., Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 1998, 282, 913-915.
    [111]. Dirix, Y.; Tervoort, T. A.; Bastiaansen, C., Optical-Properties of Oriented Polymer Dye Polarizers. Macromolecules 1995, 28, 486-491.
    [112]. Schadt, M.; Funfschilling, J., New Liquid-Crystal Polarized Color Projection Principle. Jpn. J. Appl. Phys. 1 1990, 29, 1974-1984.
    [113]. Montali, A.; Bastiaansen, G.; Smith, P.; Weder, C., Polarizing energy transfer in photoluminescent materials for display applications. Nature 1998, 392, 261-264.
    [114]. Cimrova, V.; Remmers, M.; Neher, D.; Wegner, G., Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique. Adv. Mater. 1996, 8, 146-149.
    [115]. Chen, S. H.; Katsis, D.; Schmid, A. W.; Mastrangelo, J. C.; Tsutsui, T.; Blanton, T. N., Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films. Nature 1999, 397, 506-508.
    [116]. Woon, K. L.; O'Neill, M.; Richards, G. J.; Aldred, M. P.; Kelly, S. M.; Fox, A. M., Highly circularly polarized photoluminescence over a broad spectral range from a calamitic, hole-transporting, chiral nematic glass and from an indirectly excited dye. Adv. Mater. 2003, 15, 1555-1558.
    [117]. Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W., Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylenevinylene)s. J. Am. Chem. Soc. 2001, 123, 409-416.
    [118]. Jonkheijm, P.; Hoeben, F. J. M.; Kleppinger, R.; van Herrikhuyzen, J.; Schenning, A. P. H. J.; Meijer, E. W., Transfer of pi-conjugated columnar stacks from solution to surfaces. J. Am. Chem. Soc. 2003, 125, 15941-15949.
    [119]. Hoeben, F. J. M.; Herz, L. M.; Daniel, C.; Jonkheijm, P.; Schenning, A. P. H. J.; Silva, C.; Meskers, S. C. J.; Beljonne, D.; Phillips, R. T.; Friend, R. H.; Meijer, E. W., Efficient energy transfer in mixed columnar stacks of hydrogen-bonded oligo(p-phenylene vinylene)s in solution. Angew. Chem. Int. Ed. 2004, 43, 1976-1979.
    [120]. Beljonne, D.; Hennebicq, E.; Daniel, C.; Herz, L. M.; Silva, C.; Scholes, G. D.; Hoeben, F. J. M.; Jonkheijm, P.; Schenning, A. P. H. J.; Meskers, S. C. J.; Phillips, R. T.; Friend, R. H.; Meijer, E. W., Excitation migration along oligophenylenevinylene-based chiral stacks: Delocalization effects on transport dynamics. J. Phys. Chem. B 2005, 109, 10594-10604.
    [121]. Jeukens, C. R. L. P. N.; Jonkheijm, P.; Wijnen, F. J. P.; Gielen, J. C.; Christianen, P. C. M.; Schenning, A. P. H. J.; Meijer, E. W.; Maan, J. C., Polarized emission of individual self-assembled oligo(p-phenylenevinylene)-based nanofibers on a solid support. J. Am. Chem. Soc. 2005, 127, 8280-8281.
    [122]. Yu, S. Y.; Zhang, Z. X.; Cheng, E. C. C.; Li, Y. Z.; Yam, V. W. W.; Huang, H. P.; Zhang, R. B., A chiral luminescent AU(16) ring self-assembled from achiral components. J. Am. Chem. Soc. 2005, 127, 17994-17995.
    [123]. Yu, S. Y.; Li, S. H.; Huang, H. P.; Zhang, Z. X.; Jiao, Q.; Shen, H.; Hu, X. X.; Huang, H., Molecular self-assembly with modularization and directionality: Vector-manipulation at metal centers. Curr. Org. Chem. 2005, 9, 555-563.
    [124]. Yu, S. Y.; Sun, Q. F.; Lee, T. K. M.; Cheng, E. C. C.; Li, Y. Z.; Yam, V. W. W., Au-36 crown: A macrocyclization directed by metal-metal bonding interactions. Angew. Chem. Int. Ed. 2008, 47, 4551-4554.
    [125]. Parker, D.; Dickins, R. S.; Puschmann, H.; Crossland, C.; Howard, J. A. K., Being excited by lanthanide coordination complexes: Aqua species, chirality,excited-state chemistry, and exchange dynamics. Chem. Rev. 2002, 102, 1977-2010.
    [126]. Aspinall, H. C., Chiral lanthanide complexes: Coordination chemistry and applications. Chem. Rev. 2002, 102, 1807-1850.
    [127]. Tsukube, H.; Shinoda, S., Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. Chem. Rev. 2002, 102, 2389-2403.
    [128]. Dickins, R. S.; Howard, J. A. K.; Maupin, C. L.; Moloney, J. M.; Parker, D.; Riehl, J. P.; Siligardi, G.; Williams, J. A. G., Synthesis, time-resolved luminescence, NMR spectroscopy, circular dichroism and circularly polarised luminescence studies of enantiopure macrocyclic lanthanide tetraamide complexes. Chem.-Eur. J. 1999, 5, 1095-1105.
    [129]. Bruce, J. I.; Parker, D.; Lopinski, S.; Peacock, R. D., Survey of factors determining the circularly polarised luminescence of macrocyclic lanthanide complexes in solution. Chirality 2002, 14, 562-567.
    [130]. Bunzli, J. C. G., Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53-61.
    [131]. Parker, D., Excitement in f block : structure, dynamics and function of nine-coordinate chiral lanthanide complexes in aqueous media. Chem. Soc. Rev. 2004, 33, 156-165.
    [132]. Riehl, J. P.; Richardson, F. S., Circularly Polarized Luminescence Spectroscopy. Chem. Rev. 1986, 86, 1-16.
    [133]. Riehl, J. P.; Richardson, F. S., Circularly-Polarized Luminescence. Metallobiochemistry, Part C 1993, 226, 539-553.
    [134]. Mamula, O.; Lama, M.; Telfer, S. G.; Nakamura, A.; Kuroda, R.; Stoeckli-Evans, H.; Scopelitti, R., A trinuclear Eu-III array within a diastereoselectively self-assembled helix formed by chiral bipyridine-carboxylate ligands. Angew. Chem. Int. Ed. 2005, 44, 2527-2531.
    [135]. Mamula, O.; Lama, M.; Stoeckli-Evans, H.; Shova, S., Switchable chiral architectures containing Pr-III ions: An example of solvent-induced adaptive behavior. Angew. Chem. Int. Ed. 2006, 45, 4940-4944.
    [136]. Seitz, M.; Moore, E. G.; Ingrarn, A. J.; Muller, G.; Raymond, K. N., Enantiopure, octadentate ligands as sensitizers for europium and terbium circularly polarized luminescence in aqueous solution. J. Am. Chem. Soc. 2007, 129, 15468-15470.
    [137]. Petoud, S.; Muller, G.; Moore, E. G.; Xu, J. D.; Sokolnicki, J.; Riehl, J. P.; Le, U. N.; Cohen, S. M.; Raymond, K. N., Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J. Am. Chem. Soc. 2007, 129, 77-83.
    [138]. Di Bari, L.; Pintacuda, G.; Salvadori, P., Stereochemistry and near-infrared circular dichroism of a chiral Yb complex. J. Am. Chem. Soc. 2000, 122, 5557-5562.
    [139]. Di Bari, L.; Pintacuda, G.; Salvadori, P.; Dickins, R. S.; Parker, D., Effect of axial ligation on the magnetic and electronic properties of lanthanide complexes of octadentate ligands. J. Am. Chem. Soc. 2000, 122, 9257-9264.
    [140]. Leonard, J. P.; Jensen, P.; McCabe, T.; O'Brien, J. E.; Peacock, R. D.; Kruger, P. E.; Gunnlaugsson, T., Self-assembly of chiral luminescent lanthanide coordination bundles. J. Am. Chem. Soc. 2007, 129, 10986-10987.
    [141]. Jeong, K. S.; Kim, Y. S.; Kim, Y. J.; Lee, E.; Yoon, J. H.; Park, W. H.; Park, Y. W.; Jeon, S. J.; Kim, Z. H.; Kim, J.; Jeong, N., Lanthanitin: A chiral nanoball encapsulating 18 lanthanum ions by ferritin-like assembly. Angew. Chem. Int. Ed. 2006, 45, 8134-8138.
    [142]. Gregolinski, J.; Starynowicz, P.; Hua, K. T.; Lunkley, J. L.; Muller, G.; Lisowski, J., Helical Lanthanide(III) Complexes with Chiral Nonaaza Macrocycle. J. Am. Chem. Soc. 2008, 130, 17761-17773.
    [143].刘文杰;曹德榕,手性分子光开关研究进展.有机化学2008, 28, 1336-1347.
    [144]. Carreo, M. C.; Garca, I.; Nez, I.; Merino, E.; Ribagorda, M.; Pieraccini, S.; Spada, G. P.; Photoinduced Conformational Switch of Enantiopure Azobenzenes Controlled by a Sulfoxide J. Am. Chem. Soc. 2007, 129, 7089-7100.
    [145]. Jiang, S. G.; Liu, M. H., A chiral switch based on dye-intercalated layer-by-layer assembled DNA film. Chem. Mater. 2004, 16, 3985-3987.
    [146]. Guo, P. Z.; Zhang, L.; Liu, M. H., A supramolecular chiroptical switch exclusively from an achiral amphiphile. Adv. Mater. 2006, 18, 177-180.
    [147]. Qiu, Y. F.; Chen, P. L.; Guo, P. Z.; Li, Y. G.; Liu, M. H., Supramolecular chiroptical switches based on achiral molecules. Adv. Mater. 2008, 20, 2908-2913.
    [148]. Li, Y. G.; Wang, T. Y.; Liu, M. H., Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies. Soft Matter 2007, 3, 1312-1317.
    [149]. Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y., Supramolecular chirogenesis in bis(zinc porphyrin): An absolute configuration probe highly sensitive to guest structure. Org. Lett. 2000, 2, 1565-1568.
    [150]. Borovkov, V. V.; Yamamoto, N.; Lintuluoto, J. M.; Tanaka, T.; Inoue, Y., Supramolecular chirality induction in bis(zinc porphyrin) by amino acid derivatives: Rationalization and applications of the ligand bulkiness effect. Chirality 2001, 13, 329-335.
    [151]. Borovkov, V. V.; Lintuluoto, J. M.; Inone, Y., Elucidation of the mechanism of supramolecular chirality inversion in bis(zinc porphyrin) by dynamic approach using CD and H-1 NMR spectroscopy. J. Phys. Chem. A 2000, 104, 9213-9219.
    [152]. Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Mechanism, role of guest structure, and application for the absolute configuration determination. J. Am. Chem. Soc. 2001, 123, 2979-2989.
    [153]. Borovkov, V. V.; Hembury, G. A.; Yamamoto, N.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Investigation of zinc-freebase bis-porphyrin, new mechanistic insights, extension of sensing abilities, and solvent effect. J. Phys. Chem. A 2003, 107, 8677-8686.
    [154]. Borovkov, V. V.; Hembury, G. A.; Inoue, Y., The origin of solvent-controlledsupramolecular chirality switching in a Bis(Zinc porphyrin) system. Angew. Chem. Int. Ed. 2003, 42, 5310-5314.
    [155]. Borovkov, V. V.; Lintuluoto, J. M.; Fujiki, M.; Inoue, Y., Temperature effect on supramolecular chirality induction in bis(zinc porphyrin). J. Am. Chem. Soc. 2000, 122, 4403-4407.
    [156]. Borovkov, V. V.; Lintuluoto, J. M.; Sugeta, H.; Fujiki, M.; Arakawa, R.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Equilibria, binding properties, and thermodynamics. J. Am. Chem. Soc. 2002, 124, 2993-3006.
    [157]. Lintuluoto, J. M.; Borovkov, V. V.; Inoue, Y., Direct determination of absolute configuration of monoalcohols by bis(magnesium porphyrin). J. Am. Chem. Soc. 2002, 124, 13676-13677.
    [158]. Borovkov, V. V.; Harada, B.; Inoue, Y.; Kuroda, R., Phase-sensitive supramolecular chirogenesis in bisporphyrin systems. Angew. Chem. Int. Ed. 2002, 41, 1378-1381.
    [159]. Borovkov, V. V.; Harada, T.; Hembury, G. A.; Inoue, Y.; Kuroda, R., Solid-state supramolecular chirogenesis: High optical activity and gradual development of zinc octaethylporphyrin aggregates. Angew. Chem. Int. Ed. 2003, 42, 1746-1749.
    [160]. Yashima, E.; Matsushima, T.; Okamoto, Y., Poly((4-Carboxyphenyl)Acetylene) as a Probe for Chirality Assignment of Amines by Circular-Dichroism. J. Am. Chem. Soc. 1995, 117, 11596-11597.
    [161]. Yashima, E.; Matsushima, T.; Okamoto, Y., Chirality assignment of amines and amino alcohols based on circular dichroism induced by helix formation of a stereoregular poly((4-carboxyphenyl)acetylene) through acid-base complexation. J. Am. Chem. Soc. 1997, 119, 6345-6359.
    [162]. Yashima, E.; Maeda, K.; Okamoto, Y., Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 1999, 399, 449-451.
    [163]. Inouye, M.; Waki, M.; Abe, H., Saccharide-dependent induction of chiral helicity in achiral synthetic hydrogen-bonding oligomers. J. Am. Chem. Soc.2004, 126, 2022-2027.
    [164]. Meudtner, R. M.; Hecht, S., Helicity inversion in responsive foldamers induced by achiral halide ion guests. Angew. Chem. Int. Ed. 2008, 47, 4926-4930.
    [165].黄春辉;李富友;黄岩谊,光电功能超薄膜.北京大学出版社: 2001.
    [166]. Gao, P.; Liu, M. H., Compression induced helical nanotubes in a spreading film of a bolaamphiphile at the air/water interface. Langmuir 2006, 22, 6727-6729.
    [167]. Guo, L.; Wu, Z. K.; Liang, Y. Q., Nanotubes of poly(phenylene vinylene) derivative at the air/water interface. Chem. Commun. 2004, 1664-1665.
    [168]. Chen, P. L.; Gao, P.; Zhan, C. L.; Liu, M. H., Interfacial Langmuir-Blodgett assembly of straight and parallel aligned nanoribbons. Chemphyschem 2005, 6, 1108-1113.
    [169]. Tao, A. R.; Huang, J.; Yang, P., Langmuir-Blodgettry of Nanocrystals and Nanowires. Acc. Chem. Res. 2008, 41, 1662-1673.
    [170]. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Fardy, M.; Yan, R. X.; Zhang, X. F.; Li, Y. D.; Yang, P. D., Self-Organized Ultrathin Oxide Nanocrystals. Nano. Lett. 2009, 9, 1260-1264.
    [171]. Li, X. L.; Zhang, L.; Wang, X. R.; Shimoyama, I.; Sun, X. M.; Seo, W. S.; Dai, H. J., Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890-4891.
    [1]. Berova, N.; Nakanishi, K.; Woody, R. W., Circular Dichroism Principles and Applications. 2nd ed. ed.; Wiley-VCH: New York, 2000.
    [2]. Branden, C.; Tooze, J., Introduction to Protein Structure. 2nd ed. ed.; Garland Publishing: New York, 1999.
    [3]. Voet, D.; Voet, J. G.; Pratt, C. W., Fundamentals of Biochemistry. Wiley: New York, 1999.
    [4]. Clines, D., The Physical Origin of Homochirality in Life. AIP Press, Woodbury: New York, 1996.
    [5]. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M., Chiral architectures from macromolecular building blocks. Chem. Rev. 2001, 101, 4039-4070.
    [6]. Cheng, R. P.; Gellman, S. H.; DeGrado, W. F., beta-peptides: From structure to function. Chem. Rev. 2001, 101, 3219-3232.
    [7]. Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S., A field guide to foldamers. Chem. Rev. 2001, 101, 3893-4011.
    [8]. Amabilino, D. B.; Stoddart, J. F., Interlocked and intertwined structures and superstructures. Chem. Rev. 1995, 95, 2725-2828.
    [9]. Okamoto, Y.; Nakano, T., Asymmetric Polymerization. Chem. Rev. 1994, 94, 349-372.
    [10]. Nakano, T.; Okamoto, Y., Synthetic helical polymers: Conformation and function. Chem. Rev. 2001, 101, 4013-4038.
    [11]. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P., Supramolecular polymers. Chem. Rev. 2001, 101, 4071-4097.
    [12]. van Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L., Unidirectional molecular motor on a gold surface. Nature 2005, 437, 1337-1340.
    [13]. Fletcher, S. P.; Dumur, F.; Pollard, M. M.; Feringa, B. L., A reversible,unidirectional molecular rotary motor driven by chemical energy. Science 2005, 310, 80-82.
    [14]. Pescitelli, G.; Gabriel, S.; Wang, Y. K.; Fleischhauer, J.; Woody, R. W.; Berova, N., Theoretical analysis of the porphyrin-porphyrin exciton interaction in circular dichroism spectra of dimeric tetraarylporphyrins. J. Am. Chem. Soc. 2003, 125, 7613-7628.
    [15]. Borovkov, V. V.; Hembury, G. A.; Yamamoto, N.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Investigation of zinc-freebase bis-porphyrin, new mechanistic insights, extension of sensing abilities, and solvent effect. J. Phys. Chem. A 2003, 107, 8677-8686.
    [16]. Proni, G.; Pescitelli, G.; Huang, X. F.; Nakanishi, K.; Berova, N., Magnesium tetraarylporphyrin tweezer: A CD-sensitive host for absolute configurational assignments of alpha-chiral carboxylic acids. J. Am. Chem. Soc. 2003, 125, 12914-12927.
    [17]. Borovkov, V. V.; Lintuluoto, J. M.; Sugeta, H.; Fujiki, M.; Arakawa, R.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Equilibria, binding properties, and thermodynamics. J. Am. Chem. Soc. 2002, 124, 2993-3006.
    [18]. Lintuluoto, J. M.; Borovkov, V. V.; Inoue, Y., Direct determination of absolute configuration of monoalcohols by bis(magnesium porphyrin). J. Am. Chem. Soc. 2002, 124, 13676-13677.
    [19]. Borovkov, V. V.; Lintuluoto, J. M.; Sugiura, M.; Inoue, Y.; Kuroda, R., Remarkable stability and enhanced optical activity of a chiral supramolecular bis-porphyrin tweezer in both solution and solid state. J. Am. Chem. Soc. 2002, 124, 11282-11283.
    [20]. Borovkov, V. V.; Hembury, G. A.; Inoue, Y., The origin of solvent-controlled supramolecular chirality switching in a Bis(Zinc porphyrin) system. Angew. Chem. Int. Ed. 2003, 42, 5310-5314.
    [21]. Kurtan, T.; Nesnas, N.; Li, Y. Q.; Huang, X. F.; Nakanishi, K.; Berova, N., Chiralrecognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. J. Am. Chem. Soc. 2001, 123, 5962-5973.
    [22]. Borovkov, V. V.; Hembury, G. A.; Inoue, Y., Supramolecular chirogenesis with bis-chlorin versus bis-porphyrin hosts: Peculiarities of chirality induction and modulation of optical activity. J. Org. Chem. 2005, 70, 8743-8754.
    [23]. Solladie, N.; Aubert, N.; Gisselbrecht, J. P.; Gross, M.; Sooambar, C.; Troiani, V., Molecular engineering of extended chiral and enantiopure multiporphyrinic architectures: Towards the control of their physico-chemical properties. Chirality 2003, 15, S50-S56.
    [24]. de Witte, P. A. J.; Castriciano, M.; Cornelissen, J. J. L. M.; Scolaro, L. M.; Nolte, R. J. M.; Rowan, A. E., Helical polymer-anchored porphyrin nanorods. Chem.-Eur. J 2003, 9, 1775-1781.
    [25]. Balaz, M.; Steinkruger, J. D.; Ellestad, G. A.; Berova, N., 5 '-Porphyrin-oligonucleotide conjugates: Neutral porphyrin-DNA interactions. Org. Lett. 2005, 7, 5613-5616.
    [26]. Monti, D.; Venanzi, M.; Mancini, G.; Di Natale, C.; Paolesse, R., Supramolecular chirality control by solvent changes. Solvodichroic effect on chiral porphyrin aggregation. Chem. Commun. 2005, 2471-2473.
    [27]. Prodi, A.; Indelli, M. T.; Kleverlaan, C. J.; Alessio, E.; Scandola, F., Energy transfer pathways in pyridylporphyrin metal adducts and side-to-face arrays. Coord. Chem. Rev. 2002, 229, 51-58.
    [28]. Sessler, J. L.; Tomat, E., Transition-metal complexes of expanded porphyrins. Acc. Chem. Res. 2007, 40, 371-379.
    [29]. Sanchez-Garcia, D.; Sessler, J. L., Porphycenes: synthesis and derivatives. Chem. Soc. Rev. 2008, 37, 215-232.
    [30]. Imamura, T.; Fukushima, K., Self-assembly of metallopyridylporphyrin oligomers. Coord. Chem. Rev. 2000, 198, 133-156.
    [31]. Wojaczynski, J.; Latos-Grazynski, L., Poly- and oligometalloporphyrins associated through coordination. Coord. Chem. Rev. 2000, 204, 113-171.
    [32]. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J., About supramolecular assemblies of pi-conjugated systems. Chem. Rev. 2005, 105, 1491-1546.
    [33]. Borovkov, V. V.; Lintuluoto, J. M.; Inoue, Y., Supramolecular chirogenesis in zinc porphyrins: Mechanism, role of guest structure, and application for the absolute configuration determination. J. Am. Chem. Soc. 2001, 123, 2979-2989.
    [34]. Mammana, A.; De Napoli, M.; Lauceri, R.; Purrello, R., Induction and memory of chirality in porphyrin hetero-aggregates: The role of the central metal ion. Bioorgan. Med. Chem. 2005, 13, 5159-5163.
    [35]. Borovkov, V. V.; Lintuluoto, J. M.; Fujiki, M.; Inoue, Y., Temperature effect on supramolecular chirality induction in bis(zinc porphyrin). J. Am. Chem. Soc. 2000, 122, 4403-4407.
    [36]. Scolaro, L. M.; Romeo, A.; Pasternack, R. F., Tuning porphyrin/DNA supramolecular assemblies by competitive binding. J. Am. Chem. Soc. 2004, 126, 7178-7179.
    [37]. Ferrand, Y.; Le Maux, P.; Simonneaux, G., Highly enantioselective synthesis of cyclopropylphosphonates catalyzed by chiral ruthenium porphyrins. Org. Lett. 2004, 6, 3211-3214.
    [38]. Che, C. M.; Huang, J. S.; Lee, F. W.; Li, Y.; Lai, T. S.; Kwong, H. L.; Teng, P. F.; Lee, W. S.; Lo, W. C.; Peng, S. M.; Zhou, Z. Y., Asymmetric inter- and intramolecular cyclopropanation of alkenes catalyzed by chiral ruthenium porphyrins. Synthesis and crystal structure of a chiral metalloporphyrin carbene complex. J. Am. Chem. Soc. 2001, 123, 4119-4129.
    [39]. Liu, H. Y.; Huang, J. W.; Tian, X.; Jiao, X. D.; Luo, G. T.; Ji, L. N., Chiral linear assembly of amino acid bridged dimeric porphyrin hosts. Chem. Commun. 1997, 1575-1576.
    [40]. Liu, H. Y.; Tian, J. C.; Ying, X.; Xu, Z. G.; Liao, S. J.; Chang, C. K., Theoretical investigation on the second-order nonlinear optical properties of chiral amino acid zinc(II) porphyrins. Chin. J. Struc. Chem. 2005, 24, 263-268.
    [41]. Borovkov, V. V.; Inoue, Y., Supramolecular Chirogenesis in Host - Guest Systems Containing Porphyrinoids. Top. Curr. Chem. 2006, 265, 89-146.
    [42]. Hembury, G. A.; Borovkov, V. V.; Inoue, Y., Chirality-sensing supramolecular systems. Chem. Rev. 2008, 108, 1-73.
    [43]. Rosaria, L.; D'Urso, A.; Mammana, A.; Purrello, R., Chiral memory: Induction, amplification, and switching in porphyrin assemblies. Chirality 2008, 20, 411-419.
    [44]. Berova, N.; Di Bari, L.; Pescitelli, G., Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 2007, 36, 914-931.
    [45]. Borovkov, V. V.; Harada, T.; Hembury, G. A.; Inoue, Y.; Kuroda, R., Solid-state supramolecular chirogenesis: High optical activity and gradual development of zinc octaethylporphyrin aggregates. Angew Chem Int Edit 2003, 42, 1746-1749.
    [46]. Lauceri, R.; Raudino, A.; Scolaro, L. M.; Micali, N.; Purrello, R., From achiral porphyrins to template-imprinted chiral aggregates and further. Self-replication of chiral memory from scratch. J. Am. Chem. Soc. 2002, 124, 894-895.
    [47]. Purrello, R.; Raudino, A.; Scolaro, L. M.; Loisi, A.; Bellacchio, E.; Lauceri, R., Ternary porphyrin aggregates and their chiral memory. J. Phys. Chem. B 2000, 104, 10900-10908.
    [48]. Zhang, L.; Yuan, J.; Liu, M. H., Supramolecular chirality of achiral TPPS complexed with chiral molecular films. J. Phys. Chem. B 2003, 107, 12768-12773.
    [49]. Jiang, S. G.; Liu, M. H., Aggregation and induced chirality of an anionic meso-tetraphenylsulfonato porphyrin (TPPS) on a layer-by-layer assembled DNA/PAH matrix. J. Phys. Chem. B 2004, 108, 2880-2884.
    [50]. Lang, J.; Lin, M. H., Layer-by-layer assembly of DNA films and their interactions with dyes. J. Phys. Chem. B 1999, 103, 11393-11397.
    [51]. Chen, X. D.; Liu, M. H., Induced chirality of binary aggregates of oppositely charged water-soluble porphyrins on DNA matrix. J. Inorg .Biochem. 2003, 94, 106-113.
    [52]. Onouchi, H.; Miyagawa, T.; Morino, K.; Yashima, E., Assisted formation of chiral porphyrin homoaggregates by an induced helical poly(phenylacetylene) template and their chiral memory. Angew. Chem. Int. Ed. 2006, 45, 2381-2384.
    [53]. Hou, J. L.; Yi, H. P.; Shao, X. B.; Li, C.; Wu, Z. Q.; Jiang, X. K.; Wu, L. Z.; Tung, C. H.; Li, Z. T., Helicity induction in hydrogen-bonding-driven zinc porphyrin foldamers by chiral C-60-incorporating histidines. Angew. Chem. Int. Ed. 2006, 45, 796-800.
    [54]. Ribo, J. M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R., Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063-2066.
    [55]. Rubires, R.; Farrera, J. A.; Ribo, J. M., Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem.-Eur. J 2001, 7, 436-446.
    [56]. Escudero, C.; Crusats, J.; Diez-Perez, I.; El-Hachemi, Z.; Ribo, J. M., Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulfophenyl)porphyrin. Angew. Chem. Int. Ed. 2006, 45, 8032-8035.
    [57]. Yamaguchi, T.; Kimura, T.; Matsuda, H.; Aida, T., Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew. Chem. Int. Ed. 2004, 43, 6350-6355.
    [58]. Yuan, J.; Liu, M. H., Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125, 5051-5056.
    [59]. Huang, X.; Li, C.; Jiang, S. G.; Wang, X. S.; Zhang, B. W.; Liu, M. H., Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322-1323.
    [60]. Chen, P. L.; Ma, X. G.; Duan, P. F.; Liu, M. H., Chirality amplification of porphyrin assemblies exclusively constructed from achiral porphyrin derivatives. Chemphyschem 2006, 7, 2419-2423.
    [61]. Zhai, X. D.; Zhang, L.; Liu, M. H., Supramolecular assemblies between a new series of gemini-type amphiphiles and TPPS at the air/water interface: Aggregation, chirality, and spacer effect. J. Phys. Chem. B 2004, 108, 7180-7185.
    [62]. McPhie, P., CD studies on films of amyloid proteins and polypeptides: quantitative g-factor analysis indicates a common folding motif. Biopolymers 2004, 75, 140-147.
    [63]. McPhie, P., Circular dichroism studies on proteins in films and in solution: Estimation of secondary structure by g-factor analysis. Anal. Biochem. 2001, 293, 109-119.
    [64]. Spitz, C.; Dahne, S.; Ouart, A.; Abraham, H. W., Proof of chirality of J-aggregates spontaneously and enantioselectively generated from achiral dyes. J. Phys. Chem. B 2000, 104, 8664-8669.
    [65]. Chirvony, V. S.; van Hoek, A.; Galievsky, V. A.; Sazanovich, I. V.; Schaafsma, T. J.; Holten, D., Comparative study of the photophysical properties of nonplanar tetraphenylporphyrin and octaethylporphyrin diacids. J. Phys. Chem. B 2000, 104, 9909-9917.
    [66]. Rosa, A.; Ricciardi, G.; Baerends, E. J.; Romeo, A.; Scolaro, L. M., Effects of porphyrin core saddling, meso-phenyl twisting and counterions on the optical properties of meso-tetraphenylporphyrin diacids: The [H4TPP](X)(2) (X = F, Cl, B, I) series as a case study. J. Phys. Chem. A 2003, 107, 11468-11482.
    [67]. Cheng, B. S.; Munro, O. Q.; Marques, H. M.; Scheidt, W. R., An analysis of porphyrin molecular flexibility - Use of porphyrin diacids. J. Am. Chem. Soc. 1997, 119, 10732-10742.
    [68]. Wasbotten, I. H.; Conradie, J.; Ghosh, A., Electronic absorption and resonance Raman signatures of hyperporphyrins and nonplanar porphyrins. J. Phys. Chem. B 2003, 107, 3613-3623.
    [69]. Weinkauf, J. R.; Cooper, S. W.; Schweiger, A.; Wamser, C. C., Substituent and solvent effects on the hyperporphyrin spectra of diprotonated tetraphenylporphyrins. J. Phys. Chem. A 2003, 107, 3486-3496.
    [70]. Ojadi, E. C. A.; Linschitz, H.; Gouterman, M.; Walter, R. I.; Lindsey, J. S.; Wagner, R. W.; Droupadi, P. R.; Wang, W. D., Sequential Protonation of Meso-(P-(Dimethylamino)Phenyl)Porphyrins - Charge-Transfer Excited-States Producing Hyperporphyrins. J. Phys. Chem. 1993, 97, 13192-13197.
    [71]. De Luca, G.; Pollicino, G.; Romeo, A.; Patane, S.; Scolaro, L. M., Control over the optical and morphological properties of UV-deposited porphyrin structures. Chem. Mater. 2006, 18, 5429-5436.
    [72]. De Luca, G.; Romeo, A.; Scolaro, L. M., Aggregation properties of hyperporphyrins with hydroxyphenyl substituents. J. Phys. Chem. B 2006, 110, 14135-14141.
    [73]. Okada, S.; Segawa, H., Substituent-control exciton in J-aggregates of protonated water-insoluble porphyrins. J. Am. Chem. Soc. 2003, 125, 2792-2796.
    [74]. Akins, D. L.; Zhu, H. R.; Guo, C., Aggregation of tetraaryl-substituted porphyrins in homogeneous solution. J. Phys. Chem. 1996, 100, 5420-5425.[
    [75]. Mcrae, E. G.; Kasha, M., Enhancement of Phosphorescence Ability Upon Aggregation of Dye Molecules. J. Chem. Phys. 1958, 28, 721-722.
    [76]. Kasha, M.; Rawls, H. R.; Ashraf El-Bayoumi, M., The Exciton Model In Molecular Spectroscopy. Pure Appl. Chem. 1965, 11, 371-392.
    [77].参考文献92中报道的2.4 M盐酸亚相上30 mN/m表面压时制备的LS膜的Soret带位置应改为438 nm.
    [78]. Viswanathan, R.; Zasadzinski, J. A.; Schwartz, D. K., Spontaneous Chiral-Symmetry Breaking by Achiral Molecules in a Langmuir-Blodgett-Film. Nature 1994, 368, 440-443.
    [79]. Yashima, E.; Maeda, K.; Okamoto, Y., Memory of macromolecular helicity assisted by interaction with achiral small molecules. Nature 1999, 399, 449-451.
    [80].袁菁博士论文.界面手性超分子组装体的研究——从非手性分子到手性组装体以及手性分子的组装.中国科学院化学研究所, 2004.
    [81]. Kuroda, R.; Harada, T.; Shindo, Y., A solid-state dedicated circular dichroism spectrophotometer: Development and application. Rev. Sci. Instrum. 2001, 72, 3802-3810.
    [82]. Shannon, R. D.; Prewitt, C. T., Effective Ionic Radii in Oxides and Fluorides. Acta Crystall. B-Stru. 1969, B 25, 925-946.
    [83]. Shannon, R. D., Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32, 751-767.
    [84]. Kuball, H. G.; Hofer, T., Chirality and circular dichroism of oriented molecules and anisotropic phases. Chirality 2000, 12, 278-286.
    [85]. Frelek, J.; Szczepek, W. J.; Neubrech, S.; Schultheis, B.; Brechtel, J.; Kuball, H. G., Chiroptical properties of cisoid enones from circular dichroism (CD) and anisotropic circular dichroism (ACD) spectroscopy. Chem.-Eur. J 2002, 8, 1899-1907.
    [86]. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M., Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785-788.
    [87]. Scheidt, W. R.; Turowska-Tyrk, I., Crystal and Molecular Structure of (Octaethylporphinato)cobalt(II). Comparison of the Structures of Four-Coordinate M(TPP) and M(OEP) Derivatives (M = Fe-Cu). Use of AreaDetector Data. Inorg. Chem. 1994, 33, 1314-1318.
    [88]. Barber, D. C.; Freitag-Beeston, R. A.; Whitten, D. G., Atropisomer-specific formation of premicellar porphyrin J-aggregates in aqueous surfactant solutions. J. Phys. Chem. 1991, 95, 4074-4086.
    [89]. Wu, J. J.; Li, N.; Li, K. A.; Liu, F., J-aggregates of diprotonated tetrakis(4-sulfonatophenyl)porphyrin induced by ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. J. Phys. Chem. B 2008, 112, 8134-8138.
    [90]. Zhang, Y.; Li, M. X.; Lu, M. Y.; Yang, R. H.; Liu, F.; Li, K. A., Anion chelation-induced porphyrin protonation and its application for chloride anion sensing. J. Phys. Chem. A 2005, 109, 7442-7448.
    [91]. El-Hachemi, Z.; Arteaga, O.; Canillas, A.; Crusats, J.; Escudero, C.; Kuroda, R.; Harada, T.; Rosa, M.; Ribo, J. M., On the mechano-chiral effect of vortical flows on the dichroic spectra of 5-phenyl-10,15,20-tris(4-sulfonatophenyl)porphyrin J-aggregates. Chem.-Eur. J 2008, 14, 6438-6443.
    [92]. Zhang, Y. Q.; Chen, P. L.; Liu, M. H., A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins. Chem.-Eur. J 2008, 14, 1793-1803.
    [93]. Chen, P. L.; Ma, X. G.; Liu, M. H., Optically active phthalocyaninato-polysiloxane constructed from achiral monomers: From noncovalent assembly to covalent polymer. Macromolecules 2007, 40, 4780-4784.
    [94]. Qiu, Y. F.; Chen, P. L.; Liu, M. H., Interfacial assembly of an achiral zinc phthalocyanine at the air/water interface: A surface pressure dependent aggregation and supramolecular chirality. Langmuir 2008, 24, 7200-7207.
    [95]. Tsuda, A; Alam, M. A.; Harada, T.; Yamaguchi, T.; Ishii, N.; Aida, T. Spectroscopic Visualization of Vortex Flows Using a Dye-Containing Nanofiber. Angew. Chem. Int. Ed. 2007, 46, 8198-8202.
    [96]. Wang, T.; Liu, M., Langmuir-Schaefer films of a set of achiral amphiphilic porphyrins: aggregation and supramolecular chirality. Soft Matter 2008, 4, 775-783.
    [97]. Zhang, Y. Q.; Chen, P. L.; Liu, M. H., Supramolecular chirality from an achiral azobenzene derivative through the interfacial assembly: Effect of the configuration of azobenzene unit. Langmuir 2006, 22, 10246-10250.
    [98]. van Hameren, R.; Schon, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M., Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting. Science 2006, 314, 1433-1436.
    [99]. Lensen, M. C.; van Dingenen, S. J. T.; Elemans, J. A. A. W.; Dijkstra, H. P.; van Klink, G. P. M.; van Koten, G.; Gerritsen, J. W.; Speller, S.; Nolte, R. J. M.; Rowan, A. E., Synthesis and self-assembly of giant porphyrin discs. Chem. Commun. 2004, 762-763.
    [100]. Milic, T.; Garno, J. C.; Batteas, J. D.; Smeureanu, G.; Drain, C. M., Self-organization of self-assembled tetrameric porphyrin arrays on surfaces. Langmuir 2004, 20, 3974-3983.
    [101]. Lensen, M. C.; Takazawa, K.; Elemans, J. A. A. W.; Jeukens, C. R. L. P. N.; Christianen, P. C. M.; Maan, J. C.; Rowan, A. E.; Nolte, R. I. M., Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures. Chem.-Eur. J 2004, 10, 831-839.
    [102]. Jeukens, C. R. L. P. N.; Lensen, M. C.; Wijnen, F. J. P.; Elemans, J. A. A. W.; Christianen, P. C. M.; Rowan, A. E.; Gerritsen, J. W.; Nolte, R. J. M.; Maan, J. C., Polarized absorption and emission of ordered self-assembled porphyrin rings. Nano Lett. 2004, 4, 1401-1406.
    [103]. De Luca, G.; Romeo, A.; Scolaro, L. M., Counteranion dependent protonation and aggregation of tetrakis(4-sulfonatophenyl)porphyrin in organic solvents. J.Phys. Chem. B 2006, 110, 7309-7315.
    [104]. Hunter, C. A.; Lawson, K. R.; Perkins, J.; Urch, C. J., Aromatic interactions. J. Chem. Soc., Perkin Trans. 2 2001, 651-669.
    [105]. Zaitoun, M. A., Spectroscopic study of protoporphyrin IX zinc(II) encapsulated in sol-gel glass. Spectrochim. Acta A 2005, 61, 1715-1719.
    [106]. Monnereau, C.; Gomez, J.; Blart, E.; Odobel, F., Photoinduced electron transfer in platinum(II) terpyridinyl acetylide complexes connected to a porphyrin unit. Inorg. Chem. 2005, 44, 4806-4817.
    [107]. Berlin, K.; Jain, R. K.; Simon, M. D.; Richert, C., A porphyrin embedded in DNA. J. Org. Chem. 1998, 63, 1527-1535.
    [108]. Deng, H. H.; Lu, Z. H.; Mao, H. F.; Shen, Y. C., Cosensitization and photoelectric conversion of a nanostructured TiO2 electrode with tetrasulfonated porphyrins. J. Chem. Soc., Faraday Trans. 1998, 94, 659-663.
    [109]. Li, Y. J.; Flood, A. H., Pure C-H hydrogen bonding to chloride ions: A preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 2008, 47, 2649-2652.
    [110]. Schazmann, B.; Alhashimy, N.; Diamond, D., Chloride selective calix[4]arene optical sensor combining urea functionality with pyrene excimer transduction. J. Am. Chem. Soc. 2006, 128, 8607-8614.
    [111]. Bianchi, A.; Bowman-James, K.; García-Espa?a, E., Supramolecular Chemistry of Anions. Wiley-VCH: New York, 1997.
    [112]. Gale, P. A., Special issue on 35 Years of Synthetic Anion Receptor Chemistry 1968-2003. Coord. Chem. Rev. 2003, 240.
    [113]. Stryer, L., Biochemistry. W. H. Freeman: New York, 1988.
    [114]. Jagessar, R. C.; Shang, M. Y.; Scheidt, W. R.; Burns, D. H., Neutral ligands for selective chloride anion complexation: (alpha,alpha,alpha,alpha)-5,10,15,20-tetrakis(2-(arylurea)phenyl)porphyrins. J. Am. Chem. Soc. 1998, 120, 11684-11692.
    [115]. Sessler, J. L.; Gross, D. E.; Cho, W. S.; Lynch, V. M.; Schmidtchen, F. P.; Bates, G. W.; Light, M. E.; Gale, P. A., Calix[4]pyrrole as a chloride anion receptor: Solvent and countercation effects. J. Am. Chem. Soc. 2006, 128, 12281-12288.
    [116]. Meudtner, R. M.; Hecht, S., Helicity inversion in responsive foldamers induced by achiral halide ion guests. Angew. Chem. Int. Ed. 2008, 47, 4926-4930.
    [117]. Kral, V.; Furuta, H.; Shreder, K.; Lynch, V.; Sessler, J. L., Protonated sapphyrins. Highly effective phosphate receptors. J. Am. Chem. Soc. 1996, 118, 1595-1607.
    [118]. Miksik, I.; Holan, V.; Deyl, Z., Quantification and Variability of Eggshell Pigment Content. Comp. Biochem. Phys. A 1994, 109, 769-772.
    [119]. Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q., Photodynamic therapy. J. Natl. Cancer. Inst. 1998, 90, 889-905.
    [120]. Kennedy, J. C.; Pottier, R. H.; Pross, D. C., Photodynamic Therapy with Endogenous Protoporphyrin .9. Basic Principles and Present Clinical-Experience. J. Photochem. Photobiol. B 1990, 6, 143-148.
    [121]. Kennedy, J. C.; Pottier, R. H., Endogenous Protoporphyrin-Ix, a Clinically Useful Photosensitizer for Photodynamic Therapy. J. Photochem. Photobiol. B 1992, 14, 275-292.
    [122]. Bergeron, J. A.; Gaines, G. L.; Bellamy, W. D., Monolayers of porphyrin esters: Spectral disturbances and molecular interactions. Journal of Colloid and Interface Science 1967, 25, 97-106.
    [123]. Li, C.; Imae, T., Protoporphyrin IX zinc(II) organization at the air/water interface and its Langmuir-Blodgett films. Langmuir 2003, 19, 779-784.
    [1]. Crego-Calama, M.; Reinhoudt, D. N.; ten Cate, M. G. J., Templation in noncovalent synthesis of hydrogen-bonded rosettes. Top. Curr. Chem. 2005, 249, 285-316.
    [2]. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M., Chiral architectures from macromolecular building blocks. Chem. Rev. 2001, 101, 4039-4070.
    [3]. Cheng, R. P.; Gellman, S. H.; DeGrado, W. F., beta-peptides: From structure to function. Chem. Rev. 2001, 101, 3219-3232.
    [4]. Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S., A field guide to foldamers. Chem. Rev. 2001, 101, 3893-4011.
    [5]. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P., Supramolecular polymers. Chem. Rev. 2001, 101, 4071-4097.
    [6]. Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M., Chiroptical molecular switches. Chem. Rev. 2000, 100, 1789-1816.
    [7]. Nakano, T.; Okamoto, Y., Synthetic helical polymers: Conformation and function. Chem. Rev. 2001, 101, 4013-4038.
    [8]. Okamoto, Y.; Nakano, T., Asymmetric Polymerization. Chem. Rev. 1994, 94, 349-372.
    [9]. van Gestel, J., Amplification of chirality of the majority-rules type in helical supramolecular polymers: The impact of the presence of achiral monomers. J. Phys. Chem. B 2006, 110, 4365-4370.
    [10]. Renikuntla, B. R.; Armitage, B. A., Role reversal in a supramolecular assembly: a chiral cyanine dye controls the helicity of a peptide-nucleic acid duplex. Langmuir 2005, 21, 5362-5366.
    [11]. Parschau, M.; Romer, S.; Ernst, K. H., Induction of homochirality in achiral enantiomorphous monolayers. J. Am. Chem. Soc. 2004, 126, 15398-15399.
    [12]. Li, B.; Cheuk, K. K. L.; Salhi, F.; Lam, J. W. Y.; Cha, J. A. K.; Xiao, X.; Bai, C.;Tang, B., Tuning the chain helicity and organizational morphology of an L-valine-containing polyacetylene by pH change. Nano Lett. 2001, 1, 323-328.
    [13]. Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E. W., Hierarchical order in supramolecular assemblies of hydrogen-bonded oligo(p-phenylene vinylene)s. J. Am. Chem. Soc. 2001, 123, 409-416.
    [14]. Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W., Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167-170.
    [15]. Prins, L. J.; Huskens, J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N., Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly. Nature 1999, 398, 498-502.
    [16]. Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C., Tuning bilayer twist using chiral counterions. Nature 1999, 399, 566-569.
    [17]. Verbiest, T.; Van Elshocht, S.; Kauranen, M.; Hellemans, L.; Snauwaert, J.; Nuckolls, C.; Katz, T. J.; Persoons, A., Strong enhancement of nonlinear optical properties through supramolecular chirality. Science 1998, 282, 913-915.
    [18]. Yamaguchi, T.; Kimura, T.; Matsuda, H.; Aida, T., Macroscopic spinning chirality memorized in spin-coated films of spatially designed dendritic zinc porphyrin J-aggregates. Angew. Chem. Int. Ed. 2004, 43, 6350-6355.
    [19]. Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Clark, N. A.; Korblova, E.; Walba, D. M., Spontaneous formation of macroscopic chiral domains in a fluid smectic phase of achiral molecules. Science 1997, 278, 1924-1927.
    [20]. Pawlik, A.; Kirstein, S.; DeRossi, U.; Daehne, S., Structural conditions for spontaneous generation of optical activity in J-aggregates. J. Phys. Chem. B 1997, 101, 5646-5651.
    [21]. DeRossi, U.; Dahne, S.; Meskers, S. C. J.; Dekkers, H. P. J. M., Spontaneous formation of chirality in J-aggregates showing davydov splitting. Angew. Chem.Int. Ed. 1996, 35, 760-763.
    [22]. Viswanathan, R.; Zasadzinski, J. A.; Schwartz, D. K., Spontaneous Chiral-Symmetry Breaking by Achiral Molecules in a Langmuir-Blodgett-Film.Nature 1994, 368, 440-443.
    [23]. Ribo, J. M.; Crusats, J.; Sagues, F.; Claret, J.; Rubires, R., Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 2001, 292, 2063-2066.
    [24]. Rubires, R.; Farrera, J. A.; Ribo, J. M., Stirring effects on the spontaneous formation of chirality in the homoassociation of diprotonated meso-tetraphenylsulfonato porphyrins. Chem.-Eur. J. 2001, 7, 436-446.
    [25]. Saito, Y.; Hyuga, H., Chirality selection in crystallization. J. Phys. Soc. Jpn. 2005, 74, 535-537.
    [26]. Viedma, C., Chiral symmetry breaking during crystallization: Complete chiral purity induced by nonlinear autocatalysis and recycling. Phys. Rev. Lett. 2005, 94, 065504.
    [27]. Kondepudi, D. K.; Asakura, K., Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 2001, 34, 946-954.
    [28]. Kondepudi, D. K.; Bullock, K. L.; Digits, J. A.; Hall, J. K.; Miller, J. M., Kinetics of Chiral-Symmetry Breaking in Crystallization. J. Am. Chem. Soc. 1993, 115, 10211-10216.
    [29]. Mcbride, J. M.; Carter, R. L., Spontaneous Resolution by Stirred Crystallization. Angew. Chem. Int. Ed. 1991, 30, 293-295.
    [30]. Yuan, J.; Liu, M., Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125, 5051-5056.
    [31]. Zhang, L.; Yuan, J.; Liu, M., Supramolecular chirality of achiral TPPS complexed with chiral molecular films. J. Phys. Chem. B 2003, 107, 12768-12773.
    [32]. Huang, X.; Liu, M., Chirality of photopolymerized organized supramolecular polydiacetylene films. Chem. Commun. 2003, 66-67.
    [33]. Huang, X.; Li, C.; Jiang, S..; Wang, X.; Zhang, B.; Liu, M., Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126,1322-1323.
    [34]. Guo, P.; Liu, M., Fabrication of chiral Langmuir-Schaefer films of achiral amphiphilic Schiff base derivatives through an interfacial organization. Langmuir 2005, 21, 3410-3412.
    [35]. Matsumoto, M.; Miyazaki, D.; Tanaka, M.; Azumi, R.; Manda, E.; Kondo, Y.; Yoshino, N.; Tachibana, H., Reversible light-induced morphological change in Langmuir-Blodgett films. J. Am. Chem. Soc. 1998, 120, 1479-1484.
    [36]. Matsumoto, M.; Terrettaz, S.; Tachibana, H., Photo-induced structural changes of azobenzene Langmuir-Blodgett films. Adv. Colloid Interface Sci. 2000, 87, 147-164.
    [37]. Yamamura, M.; Kano, N.; Kawashima, T., Systematic study on the structures and reactivity of hydrazobenzenes and azobenzenes bearing a chalcogenophosphoryl group. Inorg. Chem. 2006, 45, 6497-6507.
    [38]. Dugave, C.; Demange, L., Cis-trans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 2003, 103, 2475-2532.
    [39]. Bossi, M. L.; Murgida, D. H.; Aramendia, P. F., Photoisomerization of azobenzenes and spirocompounds in nematic and in twisted nematic liquid crystals. J. Phys. Chem. B 2006, 110, 13804-13811.
    [40]. Yuan, W.; Jiang, G.; Wang, J.; Wang, G.; Song, Y.; Jiang, L., Temperature/light dual-responsive surface with tunable wettability created by modification with an azobenzene-containing copolymer. Macromolecules 2006, 39, 1300-1303.
    [41]. Muraoka, T.; Kinbara, K.; Aida, T., Mechanical twisting of a guest by a photoresponsive host. Nature 2006, 440, 512-515.
    [42]. Crecca, C. R.; Roitberg, A. E., Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives. J. Phys. Chem. A 2006, 110, 8188-8203.
    [43]. Li, Y.; Deng, Y.; Tong, X.; Wang, X., Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer. Macromolecules 2006, 39, 1108-1115.
    [44]. Chanishvili, A.; Chilaya, G.; Petriashvili, G.; Collings, P. J., Trans-cisisomerization and the blue phases. Phys. Rev. E 2005, 71, 051705.
    [45]. Kumar, S. K.; Hong, J. -D.; Lim, C. -K.; Park, S. -Y., Synthesis and photoisomerization characteristics of a 2,4,4 '-substituted azobenzene tethered to the side chains of polymethacrylamide. Macromolecules 2006, 39, 3217-3223.
    [46]. Liu, M..; Asanuma, H.; Komiyama, M., Azobenzene-tethered T7 promoter for efficient photoregulation of transcription. J. Am. Chem. Soc. 2006, 128, 1009-1015.
    [47]. Muraoka, T.; Kinbara, K.; Kobayashi, Y.; Aida, T., Light-driven open-close motion of chiral molecular scissors. J. Am. Chem. Soc. 2003, 125, 5612-5613.
    [48]. Kurihara, S.; Nomiyama, S.; Nonaka, T., Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules. Chem. Mater. 2001, 13, 1992-1997.
    [49]. Bobrovsky, A. Y.; Boiko, N. I.; Shibaev, V. P., Chiral nematic copolymers with photoreversible and irreversible changing of helical supramolecular structure pitch. Chem. Mater. 2001, 13, 1998-2001.
    [50]. Li, Q.; Li, L. F.; Kim, J.; Park, H. S.; Williams, J., Reversible photoresponsive chiral liquid crystals containing a cholesteryl moiety and azobenzene linker. Chem. Mater. 2005, 17, 6018-6021.
    [51]. Carreno, M. C.; Garcia, I.; Ribagorda, M.; Merino, E.; Pieraccini, S.; Spada, G. P., Enantiopure sulfinyl azobenzenes as chiroptical switches. Org. Lett. 2005, 7, 2869-2872.
    [52]. Jung, J. H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S., Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription. J. Am. Chem. Soc. 2001, 123, 8785-8789.
    [53]. Tie, C.; Gallucci, J. C.; Parquette, J. R., Helical conformational dynamics and photoisomerism of alternating pyridinedicarboxamide/m-(phenylazo) azobenzene oligomers. J. Am. Chem. Soc. 2006, 128, 1162-1171.
    [54]. Iftime, G.; Natansohn, A.; Rochon, P., Synthesis and characterization of two chiral azobenzene-containing copolymers. Macromolecules 2002, 35, 365-369.
    [55]. Mruk, R.; Zentel, R., Chiral polyisocyanates from an azomonomer with a very high chiral induction. Macromolecules 2002, 35, 185-192.
    [56]. Kurihara, S.; Nomiyama, S.; Nonaka, T., Photochemical switching between a compensated nematic phase and a twisted nematic phase by photoisomerization of chiral azobenzene molecules. Chem. Mater. 2000, 12, 9-12.
    [57]. Khan, A.; Hecht, S., Towards photocontrol over the helix-coil transition in foldamers: Synthesis and photoresponsive Behavior of azobenzene-core Amphiphilic oligo(meta-phenylene ethynylene)s. Chem. -Eur. J. 2006, 12, 4764-4774.
    [58]. Khan, A.; Kaiser, C.; Hecht, S., Prototype of a photoswitchable foldamer. Angew. Chem. Int. Ed. 2006, 45, 1878-1881.
    [59]. Mitsuoka, T.; Sato, H.; Yoshida, J.; Yamagishi, A.; Einaga, Y., Photomodulation of a chiral nematic liquid crystal by the use of a photoresponsive ruthenium(III) complex. Chem. Mater. 2006, 18, 3442-3447.
    [60]. Angiolini, L.; Benelli, T.; Giorgini, L.; Salatelli, E., Optically active photochromic polymers with three-arm star structure by atom transfer radical polymerization. Macromolecules 2006, 39, 3731-3737.
    [61]. Tamaoki, N.; Wada, M., Dynamic control of racemization rate through E-Z photoisomerization of azobenzene and subsequent partial photoresolution under circular polarized light. J. Am. Chem. Soc. 2006, 128, 6284-6285.
    [62]. Angiolini, L.; Benelli, T.; Giorgini, L.; Salatelli, E., Synthesis of optically active methacrylic oligomeric models and polymers bearing the side-chain azo-aromatic moiety and dependence of their chiroptical properties on the polymerization degree. Polymer 2006, 47, 1875-1885.
    [63]. Wu, Y.; Natansohn, A.; Rochon, P., Photoinduced chirality in thin films of achiral polymer liquid crystals containing azobenzene chromophores. Macromolecules 2004, 37, 6801-6805.
    [64]. Nikolova, L.; Nedelchev, L.; Todorov, T.; Petrova, T.; Tomova, N.; Dragostinova, V.; Ramanujam, P. S.; Hvilsted, S., Self-induced light polarization rotation in azobenzene-containing polymers. Appl. Phys. Lett. 2000,77, 657-659.
    [65]. Nikolova, L.; Todorov, T.; Ivanov, M.; Andruzzi, F.; Hvilsted, S.; Ramanujam, P. S., Photoinduced circular anisotropy in side-chain azobenzene polyesters. Opt. Mater. 1997, 8, 255-258.
    [66]. Ivanov, M.; Naydenova, I.; Todorov, T.; Nikolova, L.; Petrova, T.; Tomova, N.; Dragostinova, V., Light-induced optical activity in optically ordered amorphous side-chain azobenzene containing polymer. J. Mod. Optic. 2000, 47, 861-867.
    [67]. Naydenova, I.; Nikolova, L.; Ramanujam, P. S.; Hvilsted, S., Light-induced circular birefringence in cyanoazobenzene side-chain liquid-crystalline polyester films. J. Opt. a-Pure Appl. Op. 1999, 1, 438-441.
    [68]. Fukuda, T.; Kim, J. Y.; Sumimura, H.; Itoh, M.; Yatagai, T., Photoinduced molecular re-orientation and supramolecular helical structure formation in azobenzene materials. Mol. Cryst. Liq. Cryst. 2006, 446, 61-70.
    [69]. Tejedor, R. M.; Millaruelo, M.; Oriol, L.; Serrano, J. L.; Alcala, R.; Rodriguez, F. J.; Villacampa, B., Photoinduced supramolecular chirality in side-chain liquid crystalline azopolymers. J. Mate.r Chem. 2006, 16, 1674-1680.
    [70]. Choi, S. W.; Ha, N. Y.; Shiromo, K.; Rao, N. V. S.; Paul, M. K.; Toyooka, T.; Nishimura, S.; Wu, J. W.; Park, B.; Takanishi, Y.; Ishikawa, K.; Takezoe, H., Photoinduced circular anisotropy in a photochromic W-shaped-molecule-doped polymeric liquid crystal film. Phys. Rev. E 2006, 73, 021702.
    [71]. Yim, K. S.; Fuller, G. G., Influence of phase transition and photoisomerization on interfacial rheology. Phys. Rev. E 2003, 67,041601.
    [72]. Kawai, T.; Umemura, J.; Takenaka, T., Uv Absorption-Spectra of Azobenzene-Containing Long-Chain Fatty-Acids and Their Barium Salts in Spread Monolayers and Langmuir-Blodgett Films. Langmuir 1989, 5, 1378-1383.
    [73]. Crusats, J.; Albalat, R.; Claret, J.; Ignes-Mullol, J.; Sagues, F., Influence of temperature and composition on the mesoscopic textures of azobenzene Langmuir monolayers. Langmuir 2004, 20, 8668-8674.
    [74]. Sato, T.; Ozaki, Y.; Iriyama, K., Molecular Aggregation and Photoisomerizationof Langmuir-Blodgett-Films of Azobenzene-Containing Long-Chain Fatty-Acids and Their Salts Studied by Ultraviolet-Visible and Infrared Spectroscopies. Langmuir 1994, 10, 2363-2369.
    [75]. Kurita, N.; Tanaka, S.; Itoh, S., Ab initio molecular orbital and density functional studies on the stable structures and vibrational properties of trans- and cis-azobenzenes. J. Phys. Chem. A 2000, 104, 8114-8120.
    [76]. Seki, T.; Fukuchi, T.; Ichimura, K., Role of hydrogen bonding in azobenzene-urea assemblies. The packing state and photoresponse behavior in Langmuir monolayers. Langmuir 2002, 18, 5462-5467.
    [77]. Manna, A.; Chen, P. -L.; Akiyama, H.; Wei, T. -X; Tamada, K.; Knoll, W., Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem. Mater. 2003, 15, 20-28.
    [78]. Seki, T.; Fukuchi, T.; Ichimura, K., Langmuir monolayers of azobenzene derivative with a urea head group. B. Chem. Soc. Jpn. 1998, 71, 2807-2816.
    [79]. Kawai, T.; Umemura, J.; Takenaka, T., Molecular-Orientation in Lb Films of Azobenzene-Containing Long-Chain Fatty-Acids and Their Barium Salts Studied by Ft-Ir Transmission and Reflection Absorption-Spectroscopy. Langmuir 1990, 6, 672-676.
    [80]. Enomoto, T.; Hagiwara, H.; Tryk, D. A.; Liu, Z. F.; Hashimoto, K.; Fujishima, A., Electrostatically induced isomerization of azobenzene derivatives in Langmuir-Blodgett films. J. Phys. Chem. B 1997, 101, 7422-7427.
    [81]. Kawai, T., Photoregulation of molecular orientation of stearic acid in a polyion complex LB film containing azobenzene derivative. J. Phys. Chem. B 1999, 103, 5517-5521.
    [82]. Pedrosa, J. M.; Romero, M. T. M.; Camacho, L., Organization of an amphiphilic azobenzene derivative in monolayers at the air-water interface. J. Phys. Chem. B 2002, 106, 2583-2591.
    [1]. El-Sayed, M. A., Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257-264.
    [2]. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes - the route toward applications. Science 2002, 297, 787-792.
    [3]. Larsson, E. M.; Alegret, J.; Kall, M.; Sutherland, D. S., Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007, 7, 1256-1263.
    [4]. Bell, D. J.; Bauert, T. E.; Zhang, L.; Dong, L.; Sun, Y.; Grutzmacher, D.; Nelson, B. J., Directed batch assembly of three-dimensional helical nanobelts through angular winding and electroplating. Nanotechnology 2007, 18, 055304.
    [5]. Li, X.; Zhang, L.; Wang, X.; Shimoyama, I.; Sun, X..; Seo, W. S.; Dai, H., Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 2007, 129, 4890-4891.
    [6]. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, Y., One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.
    [7]. Patzke, G. R.; Krumeich, F.; Nesper, R., Oxidic nanotubes and nanorods - Anisotropic modules for a future nanotechnology. Angew. Chem. In.t Ed. 2002, 41, 2446-2461.
    [8]. Hurst, S. J.; Payne, E. K.; Qin, L.; Mirkin, C. A., Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 2006, 45, 2672-2692.
    [9]. Reitzel, N.; Hassenkam, T.; Balashev, K.; Jensen, T. R.; Howes, P. B.; Kjaer, K.; Fechtenkotter, A.; Tchebotareva, N.; Ito, S.; Mullen, K.; Bjornholm, T., Langmuir and Langmuir-Blodgett films of amphiphilic hexa-peri-hexabenzocoronene: New phase transitions and electronic properties controlled by pressure. Chem.-Eur. J. 2001, 7, 4894-4901.
    [10]. Jiang, L.; Fu, Y.; Li, H.; Hu, W., Single-crystalline, size, and orientationcontrollable nanowires and ultralong microwires of organic semiconductor with strong photoswitching property. J. Am. Chem. Soc. 2008, 130, 3937-3941.
    [11]. Che, Y. K.; Datar, A.; Balakrishnan, K.; Zang, L., Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. J. Am. Chem. Soc. 2007, 129, 7234-7235.
    [12]. Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L., Effect of side-chain substituents on self-assembly of perylene diimide molecules: Morphology control. J. Am. Chem. Soc. 2006, 128, 7390-7398.
    [13]. Tang, M. L.; Reichardt, A. D.; Miyaki, N.; Stoltenberg, R. M.; Bao, Z., Ambipolar, high performance, acene-based organic thin film transistors. J. Am. Chem. Soc. 2008, 130, 6064-6065.
    [14]. Roberson, L. B.; Kowalik, J.; Tolbert, L. M.; Kloc, C.; Zeis, R.; Chi, X. L.; Fleming, R.; Wilkins, C., Pentacene disproportionation during sublimation for field-effect transistors. J. Am. Chem. Soc. 2005, 127, 3069-3075.
    [15]. Zeis, R.; Besnard, C.; Siegrist, T.; Schlockermann, C.; Chi, X. L.; Kloc, C., Field effect studies on rubrene and impurities of rubrene. Chem. Mater. 2006, 18, 244-248.
    [16]. Yuan, J.; Liu, M., Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. J. Am. Chem. Soc. 2003, 125, 5051-5056.
    [17]. Huang, X.; Li, C.; Jiang, S.; Wang, X.; Zhang, B.; Liu, M., Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 2004, 126, 1322-1323.
    [18]. Zhang, Y.; Chen, P.; Liu, M., A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins. Chem.-Eur. J. 2008, 14, 1793-1803.
    [19]. Chen, P.; Ma, X.; Zhang, Y.; Hu, K.; Liu, M., Nanofibers and nanospirals fabricated through the interfacial organization of a partially fluorinatedcompound. Langmuir 2007, 23, 11100-11106.
    [20]. Li, L.; Tang, Q.; Li, H.; Yang, X.; Hu, W.; Song, Y.; Shuai, Z.; Xu,; Liu, Y.; Zhu, D., An ultra closely pi-stacked organic semiconductor for high performance field-effect transistors. Adv. Mater. 2007, 19, 2613-2617.
    [21]. Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M., Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785-788.
    [22]. Lang, A.; Huang, C.; Gan, L.; Zhou, D.; Ashwell, G. J., Photoelectrochemical properties of Langmuir-Blodgett films of two squaraine derivatives. Phys. Chem. Chem. Phys. 1999, 1, 2487-2490.
    [23]. Lu, Y.; Spitler, M. T.; Parkinson, B. A., Regenerator dependent photoinduced desorption of a dicarboxylated cyanine dye from the surface of single-crystal rutile. Langmuir 2007, 23, 11637-11642.
    [24]. Meng, H.; Sun, F. P.; Goldfinger, M. B.; Gao, F.; Londono, D. J.; Marshal, W. J.; Blackman, G. S.; Dobbs, K. D.; Keys, D. E., 2,6-bis[2-(4-pentylphenyl)vinyl] anthracene: A stable and high charge mobility organic semiconductor with densely packed crystal structure. J. Am. Chem. Soc. 2006, 128, 9304-9305.
    [25]. Zareie, M. H.; Ma, H.; Reed, B. W.; Jen, A. K. Y.; Sarikaya, M., Controlled assembly of conducting monomers for molecular electronics. Nano Lett. 2003, 3, 139-142.
    [26]. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S., High-performance, stable organic thin-film field-effect transistors based on bis-5 '-alkylthiophen-2 '-yl-2,6-anthracene semiconductors. J. Am. Chem. Soc. 2005, 127, 2406-2407.
    [27]. Harada, N.; Nakanishi, K., Cicular Dichroic Spectroscopy-Exciton Coupling in Organic Stereochemistry. University Science Books: Mill Valley, CA, 1983.
    [28]. Durfee, W. S.; Storck, W.; Willig, F.; von frieling, M., Davydov Splitting in 7-(2-Anthryl)-1-Heptanoic Acid Langmuir-Blodgett-Films. J. Am. Chem. Soc. 1987, 109, 1297-1301.
    [29]. Dutta, A. K., Characterization of aggregates of nonamphiphilic anthraceneassembled in ultrathin supramolecular Langmuir-Blodgett films. Langmuir 1997, 13, 5678-5684.
    [30]. Qiu, Y.; Chen, P.; Liu, M., Interfacial assembly of an achiral zinc phthalocyanine at the air/water interface: A surface pressure dependent aggregation and supramolecular chirality. Langmuir 2008, 24, 7200-7207.
    [31]. Zhao, B.; Li, H.; Zhang, X.; Shen, J.; Ozaki, Y., Infrared study on molecular orientation and phase transition in Langmuir-Blodgett films of an amphiphilic microgel copolymer with the branching of octadecyl groups. J. Phys. Chem. B 1998, 102, 6515-6520.
    [32]. Colthup, N. B.; Daly, L. H.; Wiberley, S. E., Introduction to Infrared and Raman Spectroscopy. 3rd ed.; Academic Press: San Diego, 1990.
    [33]. Coropceanu, V.; Cornil, J.; da Silva, D. A.; Olivier, Y.; Silbey, R.; Bredas, J. L., Charge transport in organic semiconductors. Chem. Rev. 2007, 107, 926-952.
    [34]. Mas-Torrent, M.; Hadley, P.; Bromley, S. T.; Ribas, X.; Tarres, J.; Mas, M.; Molins, E.; Veciana, J.; Rovira, C., Correlation between crystal structure and mobility in organic field-effect transistors based on single crystals of tetrathiafulvalene derivatives. J. Am. Chem. Soc. 2004, 126, 8546-8553.
    [35]. Curtis, M. D.; Cao, J.; Kampf, J. W., Solid-state packing of conjugated oligomers: from pi-stacks to the herringbone structure. J. Am. Chem. Soc. 2004, 126, 4318-4328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700