浮力摆式波浪能装置的水动力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前海洋波浪能开发备受关注,在众多的波浪能利用技术中,浮力摆技术的频率响应范围宽、转换效率较高、抗浪能力强、可扩展性好,因而极具开发前景。在国外,某些浮力摆式波浪能装置已接近商业化,而在国内,浮力摆装置的研发却相对滞后。由于海况条件的巨大差异,为将浮力摆式波浪能利用技术成功应用于我国,结合我国的实际情况进行系统地自主研发是必不可少的,而水动力性能研究是其中的基础性工作。考虑到我国日常波浪较小、极端天气较频繁的海况条件,波浪能装置的水动力性能研究就显得尤其重要。
     本文针对我国海况条件,采用理论分析、数值模拟和模型实验相结合的方法,系统地研究了浮力摆式波浪能装置的水动力性能,着重分析了PTO阻尼特性和参数变化对装置水动力性能的影响。
     基于线性波理论推导了波浪对浮力摆作用的二维解析解,采用解析解研究了浮力摆装置的基本动力特性,分析了水深、板宽、板厚、板密度等参数对装置水动力性能的影响。研究表明:二维情况下,浮力摆装置的最大俘获宽度比为50%,水深对装置水动力性能的影响较大,板厚和密度的影响较小。当PTO阻尼采用低频辐射阻尼时,装置的俘获宽度比与满足阻尼匹配条件的情况下基本相同,当采用的PTO阻尼与低频辐射阻尼值差别较大时俘获宽度比显著降低。
     采用频域势流模型,分析了水深、板宽、板厚和板密度4个参数对装置水动力性能的影响,着重讨论了波周期5.0s左右的情况,针对两种典型阻尼条件进行了对比分析。通过解析方法讨论了摆板密度对装置水动力性能的影响,提出了最佳密度的概念,给出了存在最佳密度的频率区间,并针对我国的典型海况进行了装置水动力性能的简要优化分析。研究表明:对于日常周期5.0s左右短波海况,应尽可能提高装置在小于固有周期的波周期范围的水动力性能;对于日常周期6.0s以下的短波海况,为了使装置具有良好的水动力性能,PTO阻尼采用周期5s对应的最佳线性阻尼是一个比较理想的选择;在各工况全部采用周期5.0s的最佳阻尼的情况下,水深越大,转换功率和俘获宽度比的峰值越小,板宽对装置水动力性能影响较小,板厚增加装置水动力性能提高。对于水深5.0m、波周期5.0s的海况条件,在采用最佳线性PTO阻尼的情况下,装置的优化宽度可取8.0m,优化厚度可取1.6m,并应尽量减小摆板密度。
     采用时域势流模型分析了恒定PTO阻力矩(一种典型的非线性阻尼)条件下浮力摆装置的水动力性能,并简要分析了浮力摆的受力情况。研究表明,采用线性阻尼时浮力摆的动力响应更加规则、平稳,而采用较大的恒定阻力矩时浮力摆的动力响应呈现出明显的不规则现象;线性PTO阻尼和恒定PTO阻力矩两种情况下,装置水动力性能受摆板参数的影响情况类似,波浪和摆板参数相同时装置的最高俘获宽度比基本相同。水深5m、入射波周期为4.0s-11.5s的情况下,采用宽8m、厚1.6m、密度300kg/m3浮力摆,TPTO=0.4~0.6Tex时,装置的转换功率在25kW-60kW之间,俘获宽度比在0.6-1.0之间。
     研制了浮力摆装置的物理模型,首次采用磁粉制动器模拟波浪能装置的PTO阻尼。通过大比尺水槽试验分析了浮力摆的固有周期、波能功率的非线性影响、PTO阻尼特性等,研究了规则波条件下浮力摆摆幅、转换功率和俘获宽度比随波况、激磁电流的变化情况,讨论了波幅、水位变化和摆板密度对装置水动力性能的影响,并简要分析了不规则波条件下装置的水动力性能以及摆板表面波压力的情况。研究表明:试验波面的非线性对波能功率的影响不大;PTO阻力矩的模拟结果与恒定阻力矩存在较明显差别,波周期对装置的PTO阻尼特性和浮力摆摆幅有着显著影响;根据试验结果,在周期5.0s、波幅0.34m的原型海况条件下,激磁电流为0.6A时,装置的转换功率约为14kW,俘获宽度比约为60%。波周期和激磁电流相同时,波幅增加装置的水动力性能降低,水深减小水动力性能小幅提高。摆板密度对水动力性能影响的试验验结果与频域数模结果一致。
Ocean wave energy is attracting much public attention at present. Among various wave energy technologies, the bottom-hinged flap technology is very prospective because of its broad bandwidth response, high conversation efficiency, strong wave-resistance ability, and good expandability. Some bottom-hinged flap wave energy converters (WECs) are to be commercialized overseas, while the research and development of bottom-hinged flap device is comparatively lagging domestically. Due to the large difference of sea states, to successfully apply the technology of wave energy utilization domestically, it is necessary to develop independently on the basis of China's practical situation. Hydrodynamic performance research is only a basic work for the whole technology. Take the sea states—comparatively smaller daily wave and frequent extreme weather condition—f China into consideration, hydrodynamic performance research of WEC appears especially important.
     In allusion to China's sea states, a combination of theoretical analysis, numerical modeling and model experiment is adopted to study the hydrodynamic performance of wave energy converters (WECs) of the bottom-hinged flap style systematically and analyze the PTO damping characteristic and parameter influence on the device's hydrodynamic performance.
     Based on the linear wave theory, the two-dimensional analytical solution for wave's action on bottom-hinged flap was deduced, the analytical solution was employed to study the basic dynamic characteristics of the bottom-hinged flap device, and the influences of parameters such as water depth, flap width, flap thickness, flap density, etc. on the device's hydrodynamic performance were analyzed. The research result shows that on the two-dimensional condition, the bottom-hinged flap device's maximum capture factor is50%; the influence of water depth on the device's hydrodynamic performance is comparatively larger while the influence of flap thickness and flap density on it is comparatively smaller. When the PTO dumping adopts a low-frequency radiation damping, the capture factor of the device is almost the same as when the matched damping condition is satisfied. When the difference between the PTO dumping adopted and the low-frequency radiation damping is comparatively larger, the capture factor will be significantly reduced.
     The frequency-domain potential model was used to analyze the influence of four parameters---water depth, flap width, flap thickness and flap density---on the device's hydrodynamic performance, the condition when the period of wave is around5.0s was discussed, and a comparative analysis was made in allusion to the two typical damping conditions. The analytic method was applied to discuss the influence of flap density on the device's hydrodynamic performance, propose the concept of'optimum density', figure out the frequency interval of the optimum density, and thus make a briefly optimization analysis of the device's hydrodynamic performance in allusion to China's typical sea states. The research result shows that for the short wave whose usual period is around5.0, the device's hydrodynamic performance should be improved on the realm of a wave period that is smaller than the natural period as far as possible, and for the short wave whose usual period is less than6.0s, to achieve a good hydrodynamic performance for the device, the PTO damping adopting the optimum linear damping of period5.0s is an ideal choice; on the condition of adopting an optimum damping with a period of5.0s, the deeper the water is, the smaller the peak value of the power capture and the capture factor is, the smaller the influence of the flap width on the device's hydrodynamic performance is, and the better the device's hydrodynamic performance is when the flap thickness increases. On the sea states that the water depth is5.0m and the wave period is5.0s, adopting the optimum linear PTO damping, the device's optimization width may be8.0m, the optimization thickness may be1.6m and the flap density should better be thinner.
     The time-domain potential model was adopted to analyze the bottom-hinged flap device's hydrodynamic performance under the condition of constant PTO moment (a typical non-linear damping), and the stress situation of the bottom-hinged flap was briefly analyzed. The research result shows that when adopting linear damping, the dynamic response of the bottom-hinged flap is more regular and stable, while adopting a larger constant moment, the dynamic response of the bottom-hinged flap is obviously irregular; under the two conditions of linear PTO damping and constant PTO moment, the influence of the flap parameter on the device's hydrodynamic performance is similar, and when the parameter of the wave is same to that of the flap, the device's maximum capture factor is almost equal. Under the condition that the water depth is5m, the period of the incident wave is4.0s-11.5s, adopting a bottom-hinged flap of8m's width,1.6m's thickness and a density of300kg/m3, when TPTO=0.4~0.6Tex, the power capture of the device is25kW-60kW and the capture factor is0.6~1.0.
     A physical model of the bottom-hinged flap device was developed, and a magnetic powder brake was used for the first time to simulate the wave energy device's PTO damping. Through large-scale flume experiment, the natural period of the bottom-hinged flap, the wave power's nonlinear influence, the PTO damping characteristics, etc. were analyzed; the variation of pitch amplitude, power capture and capture factor along with the wave and the excitation current under the condition of irregular wave were investigated; the influences of wave amplitude, variation of water level and flap density on the device's hydrodynamic performance were discussed; and the device's hydrodynamic performance and the wave pressure on the flap surface under the condition of irregular wave were briefly analyzed. The research result shows that the nonlinearity of the test wave has little influence on the wave power; the PTO moment's simulated result has a significant difference with the constant moment, and the wave period has an obvious influence on the device's PTO damping characteristic and the amplitude of the bottom-hinged flap. According to the experimental result, under the prototype sea states (with the period of5.0s and the amplitude of0.34m), when the excitation current is0.6A, the power capture of the device is about14kw, and the capture factor is about60%. When the wave period is equal to the excitation current, the device's hydrodynamic performance lessens as the amplitude increases, increases slightly as the water depth decreases. The experimental result of the flap density's influence on the hydrodynamic performance is identical to that of the frequency domain digital analog.
引文
[1]赖向军,戴林.石油与天然气-机遇与挑战[M].北京:化学工业出版社,2005.6-10.
    [2]BP. Statistical Review of World Energy[M]. London:Beyond petroleum,2006.2-4.
    [3]王革华.能源与可持续发展——21世纪可持续能源丛书[M].北京:化学工业出版社,2005.12-13.
    [4]中华人民共和国国务院新闻办公室.《中国的能源状况与政策》白皮书.2007.
    [5]中华人民共和国国家发展和改革委员会.《可再生能源中长期发展规划》白皮书.2007.
    [6]王传崑,芦苇.海洋能资源分析方法及储量评估[M].北京:海洋出版社,2009.
    [7]王传崑,陆德超等.中国沿海农村海洋能资源区划[R].国家海洋局科技司,水电部科技司,1989.
    [8]王传崑,施伟勇.中国海洋能资源的储量及其评价[A].中国可再生能源学会海洋能专业委员会第一届学术讨论会文集,杭州,2008,169-179.
    [9]孙洪,李永祺.中国海洋高技术及其产业化发展战略研究[J].青岛:中国海洋大学出版社,2003,3-15.
    [10]游亚戈,李伟,刘伟民,李晓英,吴峰.海洋能发电技术的发展现状与前景[J].电力系统自动化,2010,34(14):1-12.
    [11]Clement A, McCullen P, Falcao A, etc. Wave energy in Europe:current status and perspectives[J]. Renewable and Sustainable Energy Reviews,2002,6:405-431.
    [12]LIMPT, http://www.wavegen.co.uk/what_we_offer_limpethtm.
    [13]Heath T, Whittaker T, Boake C B. The design, construction and operation of the LIMPET wave energy converter (Islay Scotland) [A]. The fourth European Wind Energy Conference, Aalborg, Denmark,2000,78-83.
    [14]Falcao A F, Sabino M, Whittaker T J T, et al. Design of a shoreline wave power pilot plant for the island of Pico, Azores[A]. The second European Wave Power Conference, Lisbon, Portugal,1995, 87-93.
    [15]Falca o A. F. Design and construction of the OWC wave power plant at the Azores[A]. Wave power: moving towards commercial viability, Institution of Mechanical Engineers Seminar, London, UK, 1999,35-42.
    [16]Falca o A. F. The shoreline OWC wave power plant at the Azores[A]. The fourth European Wind Energy Conference. Aalborg, Denmark.2000,123-129.
    [17]Nagata Y, Yamashita S, Washio Y, Osawa H. The offshore floating type wave power type device "Mighty Whale" open sea tests-environmental conditions[A]. The twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan,2002,601-606.
    [18]Osawa H, Washio Y, Ogata T, Tsuritani Y. The offshore floating type wave power dDevice "Mighty Whale" open sea tests-performance of tThe prototype[A]. The Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan,2002,595-600.
    [19]Thorpe T W. An overview of wave energy technologies:status, performance and costs[A]. Wave Power:Moving towards Commercial Viability. Broadway House, Westminster, London,1999,11-16.
    [20]Alcorn R, Hunter S, Signorelli C. Results of the Testing of the Energetech Wave Energy Plant at Port Kembla[R]. Energetech Australia Pty Limited,2005,2-7.
    [21]Zhang D, W Li, Y. Lin. Wave energy in China:current status and perspectives[J]. Renewable Energy, 2009,34(10):2089-2092.
    [22]余志,蒋念东,游亚戈.大万山岸式振荡水柱波力电站的输出功率[J].海洋工程,1996,14(2):77-92.
    [23]高祥帆,余志.大万山波力实验电站的研究和发展[J].新能源,1995,17(11):23-28.
    [24]Yu Z, Jiang N, You Y. Power Output of an Onshore OWC Wave Power Station at Dawanshan Island[A].The 3rd European Wave Power Conference, Edinburgh, UK,1993,271-276.
    [25]You Y, Zheng Y, Shen Y, Wu B, Liu R. Wave energy study in China:advancements and perspectives[J]. China Ocean Engineering,2003,17(1):101-109.
    [26]Masuda Y, Xianguang L, Xiangfan G. High performance of cylinder float backward bent duct buoy (BBDB) and its use in European seas[A]. European Wave Energy Symposium, Edingburgh, UK,1993, 323-337.
    [27]Masuda Y, Kimura H, Liang X, Gao X, Mogensen RM, Andersen T. Regarding BBDB wave power generation plant[A]. The second European Wave Power Conference, Lisbon, Portugal,1995,69-76.
    [28]高祥帆,梁贤光,蒋念东等.中水道1号灯船波力发电系统模拟试验和设计[J].海洋工程,1992,10(2):79-87.
    [29]梁贤光,王伟,蒋念东等.5kW后弯管波力发电浮标模型性能的试验研究[J].新能源,1995,17(6):5-10.
    [30]X Liang, N Jiang, W Wang, P Sun. Research of 5kW Backward-Bent-Duct Buoy Wave Power Device[J]. The Ocean Engineering,1997,17(4):55-63.
    [31]Y You, Z Yu. The Simulation of a Backward Bend Duct Wave Power Device[A]. The Second European Wave Power Conference, Lisbon, Portugal,1995,389-395.
    [32]梁贤光,孙培亚,王伟等.多点系泊下后弯管波力发电浮体模型试验研究[J].海洋工程,2001,19(1):70-78.
    [33]梁贤光,孙培亚.并联式后弯管波力发电浮体模型性能试验研究[J].海洋工程,2003,21(3):83-88.
    [34]Kraemer DRB, Ohl COG, McCormick ME. Comparison of experimental and theoretical results of the motions of a McCabe wave pump[A]. The fourth European Wind Energy Conference, Aalborg, Denmark,2000,34-38.
    [35]Nielsen K, Plum C. Comparison of experimental and theoretical results of the motions of a McCabe wave pump[A]. The fourth European Wind Energy Conference, Aalborg, Denmark,2000,56-62.
    [36]Pizer DJ, Retzler C, Henderson RM, etc. Pelamis WEC—recent advances in the numerical and experimental modeling programme[A]. The sixth European Wave Tidal Energy Conference, Glasgow, UK,2005,373-378.
    [37]Henderson R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter[J]. Renewable energy,2006,31(1):271-283.
    [38]http://www.oceanpowertechnologies.com/tech.htm.
    [39]Mehlum E, Tapchan. Hydrodynamics of ocean wave energy utilization[M]. Berlin:Springer,1986, 51-55.
    [40]Wave Dragon, http://www.wavedragon.net.
    [41]Kofoed J P, Frigaard P, Serenson H C, Madsen E F. Development of the Wave Energy Converter-Wave Dragon[A]. The tenth International Offshore and Polar Engineering Conference, Seattle, USA,2000,405-412.
    [42]Frigaard P, Kofoed J P, Rasmussen M R. Overtopping Measurements on the Wave Dragon NIssum Bredning Prototype[A]. The Fourteenth International Offshore and Polar Engineering Conference, Toulon, France,2004,210-216.
    [43]Leijon M, Danielsson O, Eriksson M, et al. An Electrical Approach to Wave Energy Conversion[J]. Renewable Energy,2006,31(9):1309-1319.
    [44]Falnes J. Wave-energy conversion through relative motion between two single-mode oscillating bodies[J]. Offshore Mechanics and Arctic Engineering,1999,121:32-38.
    [45]Weinstein A, Fredrikson G, Parks MJ, Nielsen K. AquaBuOY-the offshore wave energy converter numerical modelling and optimization[A]. Proceedings of MTTS/IEEE Techno-Ocean'04 Conference, Kobe, Japan,2004,1854-1859.
    [46]Abigail Wacher, Kim Nielsen. Mathematical and numerical modeling of the AquaBuOY wave energy converter[J]. Mathematics-in-Industry Case Studies Journal,2010,2,16-33.
    [47]Gerber J S, Taylor G W. Installation of a scaleable wave energy conversion system in Oahu, Hawaii[A]. The thirteenth International Offshore and Polar Engineering Conference, Hawaii, USA, 2003,361-367.
    [48]Yu Y, Li Y. Preliminary results of a RANS simulation for a floating point absorber wave energy system under extreme wave conditions. [A] Proceedings of the ASME 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, Netherlands,2011,1-8.
    [49]Gardner FE. Learning experience of AWS pilot plant test offshore Portugal[A]. The sixth European Wave Energy Conference, Glasgow, UK,2005,149-154.
    [50]Rademakersvan L, Schie R.G, Schuttema R, Vriesema B, Gardner F. Physical model testing for characterizing[A]. The third European Wind Energy Conference, Patras, Greece,1998,121-126.
    [51]Weber J, Mouwen F, Parrish A, Robertson D. Wavebob—esearch& development network and tools in the context of systems engineering[A]. The 8th European Wave Tidal Energy Conference,2009, 416-20.
    [52]Muliawan M J, Gao Z, Moan T, Babarit A. Analysis of a Two-Body Floating Wave Energy Converter With Particular Focus on the Effects of Power Take Off and Mooring Systems on Energy Capture[A]. The 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, Netherlands,2011,317-328.
    [53]Su Y, You Y, Zheng Y. Investigation on the oscillating buoy wave power device[J]. China Ocean Engineering,2002,16(1):141-149.
    [54]WuBijun, LinHongjun, YouYage, Feng Bo, Sheng Songwei. Study on two optimizing methods of the oscillating type wave energy conversion devices[J]. Acta Energiae Solaris Sinica,2010,31(6): 769-774.
    [55]苏永玲,谢晶,葛茂泉.振荡浮子式波浪能转换装置研究[J].上海水产大学学报,2003,12(4):338-342.
    [56]吴必军,郑永红,游亚戈,孙晓燕,陈勇.柱对称双浮子波能装置散射问题的解析方法[J].海洋学报,2004,26(3):115-125.
    [57]郑永红,游亚戈,沈永明,吴必军,刘荣.状态空间模型在海洋波能转换系统中的应用Ⅱ[J].单个矩形振荡浮子装置运动受力分析的解析方法.海洋学报,2004,26(1):113-124.
    [58]勾艳芬,叶家玮,李峰,王冬姣.振荡浮子式波浪能转换装置模型试验[J].太阳能学报,2008,29(4):498-501.
    [59]S H Salter. Wave Power[J]. Nature,1974,249,720-724.
    [60]游亚戈,盛松伟,吴必军.海洋波浪能发电技术现状与前景[J].第十五届中国海洋(岸)工程学术讨论会论文集,太原,2011,9-16.
    [61]李允武.海洋能源开发[M].北京:海洋出版社,2008.
    [62]Madsen PA, Sorensen OR, Schaffer HA. Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves[J]. Coastal Engineering,1997, 32(4):255-287.
    [63]http://www.aquamarinepower.com/.
    [64]Whittaker T, Collier D, Folley M, Osterreid M, etc. The Development of Oyster-A Shallow Water Surging Wave Energy Converter[A]. The 7th European Wave& Tidal Energy Conference, Porto, Portugal,2007.
    [65]Johnson Kate, Kerr Sandy, Side Jonathan. Accommodating wave and tidal energy-Control and decision in Scotland. Ocean& Coastal Management,2012,65,26-33.
    [66]http://www.aw-energy.com/index.html.
    [67]Prasad RD. Research and development in ocean energy technologies[A]. International Journal of Renewable Energy Technology,2011,2(1):1-22.
    [68]http://www.biopowersystems.com/index.html.
    [69]Leary D, Esteban M. Recent developments in offshore renewable energy in the Asia-Pacific region[J]. Ocean development& international law,2011,42(1-2):94-119.
    [70]McCabe AP, Bradshaw A, Widden M B, etc. PS Frog Mk5:an offshore point-absorber wave energy converter[A]. The 5th European Wave Energy Conference, Cork, Ireland,2003,31-37.
    [71]McCabe AP, Bradshaw A, Meadowcroft JAC, Aggidis G Developments in the design of the PS Frog Mk 5 wave energy converter[J]. Renewable Energy,2006,31,141-151.
    [72]Babarit A, Clement A, Gilloteaux JC. Optimization and time-domain simulation of the SEAREV wave energy converter[A]. The 24th International Conference Offshore Mechanics Arctic Engineering, Halkidiki, Greece,2005,703-712.
    [73]Ruellan M, BenAhmed H, Multon B, etc. Design Methodology for a SEAREV Wave Energy Converter[J]. Energy Conversion,2010,25(3):760-767.
    [74]张大海.浮力摆式波浪能发电装置关键技术研究[D].杭州:浙江大学机械电子工程,2010.
    [75]张大海,李伟,林勇刚等.双行程做功波浪能液压传动系统设计及仿真研究[A].中国可再生能 源学会2011年学术年会,北京.
    [76]林润生.基于摆式波能转换装置直接进行海水淡化的研究[D].广州:华南理工大学船舶与海洋结构物设计制造系,2010.
    [77]张文喜,叶家玮.摆式波浪能发电技术研究[J].广东造船,2011,1,20-22.
    [78]Henry A, Doherty K, Cameron L, Whittaker T, etc. Advances in the design of the Oyster wave energy converter[A]. Royal Institution of Naval Architect's (RINA) Marine and Offshore Renewable Energy Conference, London, UK,2010.
    [79]Caska A J, Finnigan T D. Hydrodynamic characteristics of a cylindrical bottom-pivoted wave energy absorber[J]. Ocean Engineering,2008,35(1):6-16.
    [80]李继刚,李殿森,杨庆保.从正反两个角度探讨摆式波力电站的吸能机制[J].海洋技术,1999,18(1):55-59.
    [81]Bhinder M, Mingham C, Causon D, etc. Numerical Modelling of a Surging Point Absorber Wave Energy Converter[A]. The 8th European Wave and Tidal Energy Conference, Uppsala, Sweden,2009, 973-978.
    [82]田育丰,黄焱,史庆增.对摆式波能发电装置与波浪耦合作用数值模拟[A].第十五届中国海洋(岸)工程学术讨论会论文集,太原,2011,782-787.
    [83]Alves M, Brito-Melo A, Sarmento A. Numerical Modeling of the Pendulum Ocean Wave Power Converter using a Panel Method[A]. The 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan,2002,655-661.
    [84]Folley M, Whittaker T, Hoff J. The design of small seabed-mounted bottom-hinged wave energy converters[A]. The 5th European Wave and Tidal Energy Conference, Porto, Portugal,2007,1-12.
    [85]Folley M, Whittaker T, Osterried M. The Oscillating Wave Surge Converter[A]. The 14th International Offshore and Polar Engineering Conference, Toulon, France,2004.
    [86]Flocard F, Finnigan T D. Laboratory experiments on the power capture of pitching vertical cylinders in waves[J]. Ocean Engineering,2010,37(11):989-997.
    [87]Flocard F, Finnigan T. Increasing power capture of a wave energy device by inertia adjustment J]. Applied Ocean Research,2012,34,126-134.
    [88]Chaplin R, Aggidis G An investigation into power from pitch-surge point-absorber wave energy converters[A]. International Conference on Clean Electrical Power, Capril, Italy,2007.
    [89]Ogai S, Umeda S, Ishida H. An experimental study of compressed air generation using a pendulum wave energy converter[A]. The 9th International Conference on Hydrodynamics, Shanghai, China, 2010,290-295.
    [90]夏增艳,张中华,王兵振等.摆式波浪能转换装置固有圆频率理论计算研究[J].海洋技术,2011,30(1):91-94.
    [91]张亮,戴遗山.近水面航行物体绕射问题的时域解[J].中国造船,1992,33(04):1-14.
    [92]贺五洲.二维辐射波二阶解的传播特性[J].海洋工程,1993,11(04):30-38.
    [93]滕斌,宁德志,韩凌.直墙前直立圆柱纵荡问题的研究[J].水动力学研究与进展(A辑),2004,19(3):331-338.
    [94]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社,2002.
    [95]Dean R G, Dalrymple R. Water Wave Mechanics for Engineers and Scientists[M]. Singapore:World Scientific,1984.
    [96]Evans D V. Power from Water Waves[J]. Annual Review of Fluid Mechanics.1981,13:157-187.
    [97]Falcao AFO. Phase control through load control of oscillating-body wave energy converters with hydraulic PTO system[J]. Ocean Engineering,2008,35(3-4):358-366.
    [98]刘应中,缪国平.海洋工程水动力学基础[M].北京:海洋出版社,1991.
    [99]Teng B, Eatock T R. New high-order boundary element methods for wave diffraction/radiation[J]. Applied Ocean Research,1995,17(2):71-77.
    [100]John F. On the motion of floating bodies, II[J]. Comm Pure Appl Maths,1950,3:45-101.
    [101]滕斌,勾莹,刘昌凤.WAFDUT1.5程序使用说明[R].大连:大连理工大学海岸和近海工程国家重点试验室,2009.
    [102]滕斌,郑苗子,姜胜超,勾莹,吕林.Spar平台垂向减振板水动力系数粘性影响[A].第十四届中国海洋(岸)工程学术讨论会,呼和浩特,2009,37-43.
    [103]唐友刚,沈国光,刘利琴.海洋工程结构动力学[M].天津:天津大学出版社,2008.
    [104]M Terasa, Ponets, et al. An Atlas of the Wave Energy Resource in Europe[A]. OMAE'95, Copenhagen, Denmark,1995,155-161.
    [105]Pontes M T, Athanassoulis G A, Barstow S, et al. European Atlas of the Wave Energy Resource[A], The 2nd European Wave Power Conference, Lisbon, Portugal,1995,28-35.
    [106]Hammons T J. Energy potential of the oceans in Europe and North America:tidal, wave, currents, OTEC and offshore wind[J]. International journal of power& energy systems,2008,28(4):416-428.
    [107]Folley M, Whittaker T, Henry A. The effect of water depth on the performance of a small surging wave energy converter[J]. Ocean Engineering,2007,34(8):1265-1274.
    [108]Price A A E, Dent C J, Wallace A R. On the capture width of wave energy converters [J]. Applied Ocean Research,2009(31):251-259.
    [109]Whittaker T, Folley M. Optimization of wave power devices towards economic wave power systems[A]. Proceedings of the World Renewable Energy Congress, Aberdeen, UK,2005.
    [110]Cummins W E. The impulse response function and ship motions[R]. DTMB Report 1661.1962.
    [111]杨建民,肖龙飞,盛振邦.海洋工程水动力学试验研究[M].上海:上海交通大学出版社,2008.
    [112]孟祥玮,高学平,孙精石.波浪模型试验中水密度对相似性的影响[J].水道港口,2007,28(06):391-396.
    [113]http://www.zldq.com/cp.asp?ArticleID=341
    [114]Henriques J, Lopes M, Gato L, etc. Design and testing of a non-linear power take-off simulator for a bottom-hinged plate wave energy converter[J]. Ocean Engineering,2011,38(7):331-1337.
    [115]http://www.imperx.com/
    [116]http://www.bjkrck.com/Simplified/Main.html
    [117]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2000.
    [118]Chen F, Lu S, Tseng K, etc. Assessment of renewable energy reserves in Taiwan[J]. Renewable and Sustainable Energy Reviews,2010,14,2511-2528.
    [119]Falnes J. A review of wave-energy extraction[J]. Marine Structures 2007,20(4):185-201.
    [120]邹志利.水波理论及其工程应用[M].北京:科学出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700