低频横向磁通感应加热系统在无缝线路锁定轨温控制技术中的应用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高速、重载铁路的大面积推广,无缝线路乃至超长无缝线路被人们接受并得到实际应用,是世界铁路轨道结构的发展方向。为了保证无缝线路轨道的使用寿命及确保行车安全,对于无缝线路技术的研究显得越发重要。
     自然环境条件下的温度变化会在钢轨内部产生拉伸应力,影响无缝线路轨道的稳定性。因此在铺设无缝线路时,钢轨温度需要保持在一定的范围内,以避免恶劣气候条件下钢轨内部产生的拉伸应力对其产生的损害。锁定轨温即在钢轨内部没有应力时,对钢轨进行锁定时的轨温,也叫零应力轨温。对于我国北部寒冷地区,一年内有较长时间环境温度低于锁定轨温(25~30℃),在此种情况下铺设无缝线路轨道时若不进行锁定轨温的控制,钢轨在日后会由于温度变化过大积蓄过量的温度应力,从而影响轨道寿命、危及行车安全,因此对于无缝线路轨道铺设作业过程中的锁定轨温控制技术是我国无缝线路轨道发展亟需解决的课题之一。
     目前,欧洲通常采用温度控制法进行无缝线路轨道锁定轨温的控制。该方法利用丙烷-丁烷混合气体火焰加热无缝线路轨道,该方法易于操作、工序简单,但由于其是通过热传导方法加热钢轨,因此对钢轨表面伤害较大,且热传导方式易导致钢轨内部应力不均的问题。
     在我国最为常用的方法是利用拉伸机拉伸钢轨以达到锁定轨温允许的长度范围。拉伸法具有轨温控制准确、受施工环境条件影响较小等特点;但存在操作工序相对复杂、施工时间较长、钢轨内部应力分布不均匀等缺点。
     本文采用低频横向磁通感应加热技术在钢轨内部通过涡流的热效应加热钢轨以达到控制钢轨锁定轨温的目的,该方法解决了长期以来锁定轨温控制技术中钢轨内部应力分布不均匀的问题。电磁感应加热技术具有非接触式加热、高效、环保、节能等一系列优点,且由于被加热工件成为热源对自身进行加热,其热量传递变得更加高速快捷。
     本文主要对低频横向磁通感应加热系统在无缝线路轨道控制锁定轨温技术上的实用性和可靠性进行了理论分析及实验验证,主要研究内容如下:
     1.研究了低频横向磁通感应加热系统的工作频域范围,利用集肤效应理论及透热深度计算公式,结合钢轨材料磁饱和特性分析,确定了系统工作频率范围(50~600Hz),使低频横向磁通感应加热系统的加热效率及工作质量得到保证。
     2.利用有限元软件建立了低频横向磁通感应加热系统模型,采用电磁-热间接耦合方法分析被加热工件(钢轨)的涡流场、温度场分布情况以及系统工作过程中的热流走势,并利用测温实验验证、校正了有限元分析模型。根据有限元计算结果优化了低频横向磁通感应加热系统结构设计、加载激励参数,提出了有效提高系统加热效率的可行性方案,为低频横向磁通感应加热系统性能的进一步提高提供了经验指导。
     3.利用内外力矩平衡理论建立了无缝线路轨道静态稳定性模型。结合压杆稳定性分析及温度力公式计算钢轨模型失稳临界边界条件,通过计算分析,给出了钢轨静态稳定性模型失稳临界温升,用以限定、优化低频横向磁通感应加热系统在控制锁定轨温作业时的工作模式。
     4.对低频电磁感应加热方法应用于无缝线路铺设作业锁定轨温控制技术的可行性进行了评估,为低频电磁感应加热方法在无缝线路轨道铺设作业锁定轨温控制技术中的应用提供了理论依据和数据支持。
High speed, Heavy load railway is a common trend for world railway and has become an important sign of railway modernization. In order to guarantee the safety and stability of high-speed train, the study of continuous welded rail (CWR) tracks has become more and more important.
     The variability of weather and climate is a cause of considerable stress to CWR track which has influence on the stability of rail. Therefore, rigid jointless track laying must be carried out under specific thermal conditions to avoid dangerous tensile and compressive stress in the rails during extreme weather. The specific thermal condition so called neutral temperature is the temperature where no thermal forces are acting upon the CWR track. In north of China, it is common that the daily mean temperature is lower than the required neutral one (25~30℃). Thus, in order to guarantee the service life and safety of rail track, it is necessary to heat the rigid CWR track during track-laying to control stress-free temperature of rail. The control technology of stress-free temperature (CSFT), as one of the key technologies on CWR track laying, needs to be considered and researched seriously.
     In Europe, CSFT is very frequently done with propane-butane gas heaters which use heat transfer method to heat the rail. This technology is easy to operate and do not have any complex process. The main disadvantage of this method is the high thermal stress gradient generated in the rail cross-section and overheating of the surface.
     In China, stretching method is the most popular CSFT which uses stretching machine to draw the rail and make the length of it reach the standard one. This method can control the stress-free temperature of rail accurately and do not have too much influence of environment condition. But it will also cause the uneven distribution of thermal stress and the process of it is much more intricate.
     These problems may be eliminated by using low frequency transverse flux induction heating in which the heat (eddy current losses) is generated inside a selected volume of the rail. In comparison with other methods the induction heating (by eddy current losses) is an alternative that has numerous attractive features. Lack of any butt joints, isolation of the heating inductor from the rail and a simple way of transporting the energy to the rail are the most important advantages. This method imposes qualitatively different heat conditions than normally, (because the rail itself becomes the heat source) which influences directly the thermal processes (heating and cooling). Thus, it is possible to achieve both heat transfer and improved temperature distribution in the rail body.
     The main objective of the dissertation is to analyze theoretically and confirm experimentally possibility of employment of a low frequency transverse flux induction heating for CWR under track laying. The main results achieved are as follows:
     1. Theoretical analysis of frequency character of induction heating, using skin effect theory and magnetic saturation principle to interpret the necessity of low frequency application in the induction heating of CSFT and calculate the effective frequency domain of low frequency transverse flux induction heating (50~600Hz) to guarantee the heating efficiency and heating quality of the system.
     2. Theoretical three dimensional FEM analysis of magnetic field and temperature field distribution inside volume of a railway rail under low frequency heating for different structure of the heater applied. Experimental investigations for physical model of the low frequency induction heater of the railway rail to verify the theoretical approach. Analysis of heating efficiency related to heating frequency, structure of the heater and variable environmental conditions.
     3. Established stability model of CWR track, using inner and external moments' equilibrium theory and Hook's law calculate the critical temperature rise value of CWR track to limit and optimize the heating mode.
     4. Formulation of conclusions and recommendations for use of the low frequency transverse flux induction heating for CWR under track laying in practice.
引文
[1]钱立新,世界铁路重载运输的最新进展,铁道建筑,8(2),2007,24-29页。
    [2]范振平,魏玉光,林柏梁,重载运输扩能的效益分析,物流技术,8(4),2007,56-60页。
    [3]刘杰伦,埘我国铁路重载运输发展的探讨,铁道运输与经济,12(3),2006,14-19页。
    [4]Ren.Min,Research on the theory and method of evaluating economic benefits of railway construction project,Tiedao Xuebao/Journal of the China Railway Society,Vol.31,No.1,2008,pp.8-14.
    [5]Kish,Andrew;Samavedam,Improved destressing of continuous welded rail for better management of rail neutral temperature Gopal,Transportation Research Record,Vol.24,No.2,2005,pp.56-65.
    [6]Miura,Shigeru,Yanagawa,Hideaki,Extended applicability of continuous welded rail, Its application to turnout and sharp curve,Japanese Railway Engineering,Vol.12,No.120,2005,pp.21-24.
    [7]Kristan,Advances in rail welding,Railway Track and Structures,Vol.10,No.2,2004,pp.15-17.
    [8]Lim Nam-Hyoung,Park Nam-Hoi,Kang Young-Jong,Stability of continuous welded rail track,Computers and Structures,Vol.81,No.22-23,2003,pp.2219-2236.
    [9]Li Qiuyi,Sun Li,Additional longitudinal force of CWR track on bridge caused by temperature difference between one side and another side of pier,Zhongguo Tiedao Kexue/China Railway Science,Vol.28,No.4,2007,pp.50-54.
    [10]Li Qiang,Lovell Michael,On the critical interfacial friction of a two-roll CWR process,Journal of Materials Processing Technology,Vol.160,No.2,2005,pp.245-256.
    [11]Luo Yanyun,Li Zhenting,Effect of parametric variation on CWR track stability,Zhongguo Tiedao Kexue/China Railway Science,Vol.29,No.2,2008,pp.33-37.
    [12]Zeng Zhi-Ping,Chen Xiu-Fang,Zhao Guo-Fan,Analysis of the influence of some parameters on the temperature force and displacement of seamless turnout on simple-supported beam bridge,Zhongguo Tiedao Kexue/China Railway Science,Vol.27,No.1,2006,pp.53-58.
    [13]Excell Jon,Strain spotter,Vol.293,No.38,2007,pp.24-25.
    [14]Ventry D,Railtrack company specification:continuous welded rail(CWR) track,Railway Track and Structures,Vol.4,No.1,2002,pp.55-60.
    [15]卢宝旗,刘剑,用液压拉伸器进行无缝线路的应力放散,铁道建筑,2(4),2002,3-8页。
    [16]王子儒,适用于无缝线路钢轨应力放散的液压长轨拉伸机的研究,铁道技术监督,9(1),2004,23-29页。
    [17]杜俊民,液压钢轨拉伸器的技术研究,铁道建筑,9(2),2005,12-19页。
    [18]Szelazek J,Monitoring of thermal stresses in continuously welded rails with ultrasonic technique,In:ECNDT,May 1998,Copenhagen.
    [19]钱立新,世界高速铁路技术,中国铁道出版社,2002,1-38页。
    [20]M.Petrangeli,C.Tamagno,P.Tortolini,Numerical analysis of track:Structure interaction and time domain resonance,Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,Vol.222,No.4,2008,pp..345-353.
    [21]Lanza Di Scalea,Francesco,Bartoli Ivan et.al,High-speed defect detection in rails by noncontact guided ultrasonic testing,Transportation Research Record,Vol.19,No.16, 2005,pp.66-77.
    [22]Corvino Lorenzo,Intrieri Tonino,Electrical flash-butt welding of rails in situ,Rail Engineering International,Vol.18,No.1,1989,pp.17-20.
    [23]三浦重,李惠春,国外无缝线路的发展与现状,哈尔滨铁道科技,3(1),1990,34-41页。
    [24]三浦重,柳川秀明,王贵棠,最近日本无缝线路的技术开发,铁道建筑,3(10),1993,11-15页。
    [25]Vangi Dario,Virga Antonio,A practical application of ultrasonic thermal stress monitoring in continuous welded rails,Experimental Mechanics,Vol.47,No.5,2007,pp.617-623.
    [26]Fukada Yasuto,Yamamoto Ryu-Ichi,Harasawa Hkteaki,et al,Experience in maintaining railtrack in Japan,Welding in the World,Vol.47,No.1,2003,pp.123-137.
    [27]卢耀荣,无缝线路的应用与发展,铁道建筑,3(12),1989,22-26页。
    [28]余泽西,刘凤恩,王善元,钢轨胶接绝缘接头的研制与应用,铁道建筑,4(2),2004,45-50页。
    [29]卢耀荣,超长无缝线路中胶接绝缘接头使用的建议,铁道建筑,2(4),2006,31-36页。
    [30]冯长春,赵文明,张忠和,60kg/m钢轨无缝线路零应力综合放散法,铁道建筑,4(6),1994,45-49页。
    [31]李光伟,一种新的长轨应力放散方法,铁道建筑,12(2),1994,11-17页。
    [32]盘善勇,无缝线路采用撞轨法进行应力收缩放散,铁道建筑,5(2),1995,7-14页。
    [33]崔学峰,陈玲玲,无缝线路应力放散作业标准化研究,铁道标准设计,2(1),2003,45-50页。
    [34]卢耀荣,放散轨节温度应力的新方法,科研信息,4(5),1990,4-11页。
    [35]周小林,陈秀方,向延念,长度控制放散法无缝线路长钢轨不均匀性分析,铁道科学与工程学报,2(1),2004,34-40页。
    [36]韩岐东,跨区间无缝线路应力放散,铁道建筑,5(1),2003,21-26页。
    [37]曾大庆;北京城铁无缝线路应力放散均匀的质量控制,铁道建筑,1(10),2003,45-50页。
    [38]刘彬;周东伟;无缝线路不均匀拉伸引起的危害浅析,铁道建筑,2(9),2003,23-29页。
    [39]张朝如,无缝线路应力放散的温度力不均匀性分析,铁道建筑,12(7),2003,11-16页。
    [40] Wimmer William E., Rail welding on Union Pacific, Eisenbahningenieur, Vol. 54, No. 6, 2003, pp.38-39.
    [41] Deshimahu, Tadashi, Kataoka et. al, Estimation of service life of aged continuous welded rail, Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), Vol. 47, No. 4, 2006, pp.211-215.
    [42] Kataoka Hiroo, Oikawa Yuya, Wakatsuki Osamu Abe, Noritsugi Dynamic analysis of stresses and evaluation of service life of jointed rails, Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), Vol. 46, No. 4, 2005, pp. 250-255.
    [43] Kataoka Hiroo, Abe Noritsugi, Wakatsuki Osamu, Evaluation of service life of jointed rails, Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), Vol. 43, No. 3,2002,pp.101-106.
    [44] Harold D., Canney Mc. , Thomas O. et. al, Wayside system for measuring rail longitudinal force due to thermal expansion of continuous welded rail, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 24, No. 58, 1995, pp.225-231.
    [45] Robert H., Harold D., James C.et. al, Experimental evaluation of concrete cross tie and fastener loads, United States Federal Railroad Administration, Vol. 12, No. 2, 2003, pp. 104-115.
    [46] Xu Qing-Yuan, Chen Xiu-Fang, Li Shu-De, Study on the additional longitudinal forces transmission between continuously welded rails and high-speed railway bridges, Zhongguo Tiedao Kexue/China Railway Science, Vol. 27, No. 3, 2006, pp.8-12.
    [47] Kish Andrew, Samavedam Gopal, Improved destressing of continuous welded rail for better management of rail neutral temperature, Transportation Research Record, Vol. 16, No. 19,2005,pp.56-65.
    [48] Nguyen K., Bendada A., Inverse Approach for the prediction of the temperature Evolution During Induction Heating of a Semi-Solid Castling Billet. Modeling and Simulation In Materials Science and Engineering, Vol. 8, No. 6, 2000, pp.857-870.
    [49] Jung H.K., Kang C.G., Induction Heating proeess of an Al-Si Aluminum Alloy for Semi-solid Die Casting and its Resulting Microstructure, Journal of Matenals Proeessing Technology, Vol. 120, No. 1, 2002, pp.355-364.
    [50] Zhang C. Y. , Deoxidization of CuCr25 Alloys Prepared by Vacuum Induction Melting, Transactions of Nonferrous Metals Society of China, Vol. 11, No. 3, 2001, pp.337-339.
    
    [51] Drobenko B., Hachkevych, O., Kournytskyi T., Thermomechanical behavior of polarizable and magnetizable electroconductive solids subjected to induction heating, Journal of Engineering Mathematics, Vol. 61, No. 2-4, 2008, pp.249-269.
    [52] Rudnev D., Valery I., Systematic analysis of induction coil failures: Part 12: Inductors for heating internal surfaces Heat Treating Progress, Vol. 8, No. 4, 2008, pp.21-22.
    [53] Bae Kang-Yul, Yang Young-Soo, Hyun Chung-Min et. al, Derivation of simplified formulas to predict deformations of plate in steel forming process with induction heating, International Journal of Machine Tools and Manufacture, Vol. 48, No. 15, 2008, pp. 1646-1652.
    [54] Acero J., Alonso R., Barragan L.A. et. al, Efficiency model of planar loaded twisted-wire windings in a magnetic substrate for domestic induction heating appliances, PESC Record - IEEE Annual Power Electronics Specialists Conference, PESC '08 - 39th IEEE Annual Power, Electronics Specialists Conference - Proceedings 2008, pp.3482-3488.
    [55] Rudnev D., Valery I., Metallurgical insights for induction heat treaters: Part 5: Super-hardening phenomenon, Heat Treating Progress, Vol. 8, No. 5, 2008, pp.35-37.
    [56] Barbosa Joaquim, Zr bearing γ -TiAl Induction Melted, Key Engineenng Materials, Vol. 18, No. 8, 2000, pp. 45-54.
    [57] Nakajima Tadahito, Morimoto Yukitoshi, Tkaki Seiiehi, et al. Purification of Ti-Al alloys by Induction-Heating Floating-Zone Melting and Cold-crucible Melting in Ultra-high Vacuum, Materials Transactions, Vol. 41, No. 1, 2000, pp.22-27.
    [58] Kawarada Ch., Harima N., Takaki S. et. al, Purification of TiAl alloy by Cold-Crucible Induction Melting in Ultrahigh Vacuum. Physica Status Solidi (A) APPlied Research, Vol. 189, No. 1,2002, pp. 139-148.
    [59] Schiff V. K., Mathematical Modeling of the Complex Heat Exchange of a Glass Melt in a Cylindrical Induction Furnace, Journal of optical Technology, Vol. 67, No. 9, 2000, pp.787-791.
    [60] Dolezel I., Barglik J., Sajdak C., et al. Modelling of Induction Heating and Consequent Hardening of Long Prismatic Bodies, COMPEL-The Intemational Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 22, No. 1, 2006, pp.79-87.
    [61] Kawasc Yoshihiro, MiyatakeTsutomu, Hirata Katsuhiro, Thermal Analysis of Steel Blade Quenching by Induction Heating, IEEE Transactions on Magnetics, Vol. 36, No. 4, 2005, pp. 1788-1791.
    [62] Razavi S. H., Szpunar J., Arabi H. et. al, Improvement of Age-Hardening Proeess of a Nickel-Base Superalloy, IN738LC, by Induction Aging, Journal of Materials Science, Vol. 37, No. 7, 2004, pp. 1461-1471.
    [63] Grum Janez, Measuring and Analysis of Residual Stresses after Induction Hardening and Grinding, Materials Science Forum, Vol. 34, No. 7, 2005, pp.453-458.
    [64] Zgraja Jerzy, Computer Simulation of Induction Hardening of Moving Flat Charge, IEEE Transactions on Magnetics, Vol. 39, No. 3, 2004, pp.1523-1526.
    [65] Andree W., Zanming Wang, 3D Eddy Current Computation In The Transverse Flux Induction Heating Equipment, IEEE Transactionson Magnetics, Vol. 30, No. 5, 2004, pp.3072-3075.
    [66] Miura Shigeru, Yanagawa Hideaki, Characteristics of axial force in rail at turnout integrated with continuous welded rail, Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), Vol. 30, No. 4, 2005, pp. 202-206.
    [67] Fukushima, Shunji, High-Performance Edge Heater for the Hot Strip Mill, IEEE Transactions on Industry Applications, Vol. 29, No. 5,2003, pp.854-858.
    [68] Bobart M., George F., Mode of Transverse Flux Induction Heat Treating of Strip Advantageously, Industrial Heating, Vol. 55, No. 1, 2008, pp.28-29.
    [69] Anon, Transverse Flux Induction Heating: A New Proeess of Advantageously, Industnal Heating, Vol. 5, No. 10, 2003, pp. 18-19.
    [70] R. M. Baker, Transverse Flux Induction Heating, AIEE Transactions, Vol. 69, No. 10, 1950,pp.922-925.
    [71] Lupi S., Forzan M., Dughiero F. et al, Comparison of Edge-Effects of Transverse Flux and Travelling Wave Induction Heating Inductors, IEEE Transactions on Magnetics, Vol. 35, No. 5, 2005, pp.3556-3558.
    [72] C. W. Trowbridge, Coil Putting Electromagnetic Fields for Research and Industry: Major Achievements and Future Trends, IEEE Transactions on Magnetics, Vol. 2, No. 3, 1996,pp.627-630.
    [73] Czyczula, W., Use of continuous welded rail track in sharp curves, high gradients and turnouts, Proceedings of the International Conference on Urban Transport and the Environment for the 21st Century, 1998, pp.531-540.
    [74] Yang Xiao guang, Wang You hua, Yan Wei li, The Use of Neural Networks Combined with FEM to Optimize the Coil Geometry and Structure of Transverse Flux Induction Equipments, IEEE Transactions on Applied Super conductivity, Vol. 23, No. 4, pp.45-48.
    [75] Bukanin V., Dughiero F., Lupi S. et al, 3D-FEM Simulation of Transverse-Flux Induction Heaters, IEEE Transactions on Magnetics, Vol. 31, No. 3, 2005, pp.2174-2177.
    [76] Wang Z., W. Huang, W. Jia, et al, 3D Multifields FEM Computation of Transverse Flux Induction Heating for Moving-Strips, IEEE Transactionson Magnetics, Vol. 35, No. 3, 2003, pp. 1642-1645.
    [77] Cardoso Mesquita Renato, Assumpcao Bastos Joao Pedro, 3D finite element solution of induction heating Problems with efficient time-stepping, IEEE Transactions on Magnetics, Vol. 27, No. 5,1991, pp.4065-4068.
    [78] Wang Z, W. Huang, Wang Y. et al. Eddy Current and Temperature Field Computation in Transverse Flux Induction Heating Equipment for Galvanizing Line, IEEE Transactions on Magnetics, Vol. 37, No. 5, 2005, pp. 3437-3439.
    [79] Monzel C., Heinneberger G., Optimizing Heat Source Distribution for Transverse Flux Inductive Heating Devices fort Thin Strips with Genetic Algorithms, IEE Conference Publication: Eighth International Conference on Power Electronics and Variable Speed Drives, Vol. 47, No. 5, 2004, pp.426-430.
    [80] Fireteanu V., Tudorache T., Electromagnetic Forces in Transverse Flux Induction Heating, IEEE Transactions on Magnetics, Vol. 36, No. 4, 2006, pp. 1792-1795.
    [81] F. Dughiero, M. Forzan, S. Lupi, et al, Numerical and Experimental Analysis of An Electro-Thermal Couple Problem for Transverse Flux Induction Heating Equipment, IEEE Transactions on Magnetics, Vol. 34, No. 5, 1998, pp.3106-3109.
    [82] C. W. Trowbridge, Computing Electromagnetic Fields for Research and Industry: Major Achievements and Future Trends, IEEE Transactions on Magnetics, Vol. 32, No. 3, 1996,pp.627-630.
    [83] Chaboudez C., Clain S., Glardon R. et al, Numerical Modeling in Induction Heating for Axisymmetric Geometries, IEEE Transactions on Magnetics, Vol. 33, No. 1, 1997, pp.739-745.
    [1]钟顺时,电磁场基础,清华大学出版社,2006,211-213页。
    [2]盛剑霓,电磁场数值分析,科学出版社,1984,56-60页。
    [3]Biro,K.Preis.On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents,IEEE Transaetionson Magnetics,Vol.25,No.4,1989,pp.3145-3159.
    [4]谢德馨,姚缨英,白保东等,三维涡流场的有限元分析,机械工业出版社,2001,23-27页。
    [5]Masafumi Fujita,Tadashi Tokumasu,Hiroyuki Yoda,et al.Magnetic field analysis of stator core end region of large tuthogenerators,IEEE Trans on Magnetics,Vol.36,No.4,2000,pp.1850-1853.
    [6]J.L.Pabot.Study on the electromagnetic field of winding soft urbogenerator.IEEE Trans on PAS,Vol.94,No.4,1975,pp.23-29.
    [7]Suzuki Hiroshi,Kanaoka Mamoru,Theoretical investigation on skin effect factor of conductor in power cables,Electrical Engineering in Japan(English translation of Denki Gakkai Ronbunshi),October 2008,Vol.165,No.1,pp.18-34.
    [8]Johnson Howard,Mixtures of skin-effect and dielectric loss,Vol.47,No.20,2002,pp.24-27.
    [9]Wall D.P.,Allen J.E.,Molokov S.,Influence of the skin effect and current risetime on the fragmentation of wires by pulsed currents,Journal of Applied Physics,Vol.98,No.2,2005,pp.1-18.
    [10]Engel Thomas G.,Neri Jesse M.,Veracka Michael J.,Characterization of the velocity skin effect in the surface layer of a railgun sliding contact,IEEE Transactions on Magnetics,Vol.44,No.7,2008,pp.1837-1844.
    [1]钱壬章,传热分析与计算,高等教育出版社,1987,17-24页。
    [2]陶文锉,数值传热学,第二版,西安交通大学出版社,2002,16-18页。
    [3]Verma Nishith,Mewes Dieter,Simulation of temperature fields in a narrow tubular adsorber by thermal lattice Boltzmann methods,Chemical Engineering Science,2008,Vol.63,No.17,pp.4269-4279.
    [4]Li Kul,Su Xiuping,Li Zhigang,Lu Jianguo,Zhang Guansheng,The finite-element model and analysis of static contact resistance and thermal process for contact with film,Proc.44th IEEE Holm Conf,1998,Vol.4,No.1,pp.226-229.
    [5]Chen Wen-Yu,Huang Xiao-Qing,Tang Li-Qun,Thermal field of rigid frame box girder,Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni,2008,Vol.7,No.2,pp.114-116.
    [6]Rontescu Corneliu,Voiculescu onelia,Iacobescu Gabriel et.al,Analysis of the thermal field for TIG welding by using infrared thermography,UPB Scientific Bulletin Series D:Mechanical Engineering,2008,Vol.70,No.3,pp.55-60.
    [7]Renhart W.,Magele C.,Schweighofer B.,FEM-based thermal analysis of NiMH batteries for hybrid vehicles,IEEE Transactions on Magnetics,2008,Vol.44,No.6,pp.802-805.
    [8]Kurose H.,Ohtake M.,Miyagi D.et.al,3-D FEM analysis of thermal degradation in writing and reading characteristics of a perpendicular magnetic head,Journal of Magnetism and Magnetic Materials,2008,Vol.320,No.22,pp.2917-2920.
    [9]Feng Yijian,Du Shuangsong,Cheng Jigui et.al,FEM simulation and thermal analysis of functional gradient materials as thermal barrier coating of piston top,No.ongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery,Vol.39,No.11,2008,pp.30-34.
    [10]W.H.Tang,Q.H.Wu and Z.J.Richardson,Equivalent heat circuit based Power transformer thermal model,IEE proc.-Electric Power,Vol.149,No.2,2002,pp.57-61.
    [11]霍尔曼.J.P.,传热学,人民教育出版社,1979,98-104页。
    [12]李景湧,有限元法,北京邮电大学出版社,1999,296-309页。
    [1]Cheol K.D.,Finite Element Analysis for the Semi-Solid State Forming of Aluminum Alloy Considering Induction Heating,Journal of Materials Processing Technology,Vol.100,No.1-3,2000,pp.95-104.
    [2]Dughiero F.,Forzan M.,Lupi S.,3D Solution of Electromagnetic and Thermal Coupled Field Problems in the Continuous Transverse Flux Heating of Metal Strips,IEEE Transactions on Magnetics,Vol.3,No.2,1997,pp.2147-2150.
    [3]Janssen H.,Simulation of Coupled Electromagnetic and Heat Dissipation Problems,IEEE Transactions on Magnetics,Vol.30,No1.5,1994,pp.3331-3334.
    [4] Zgraja J., Skorek. A., Rajagopalan V., et al. Induction Heating of Metal Disks by the Plane, Spiral Inductors, International IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies, 1995, pp. 8-13.
    [1]赵志军,陈秀方,轨道不平顺在无缝线路安全控制中的作用,铁道工程学报,5(4),2001,89-95页。
    [2]赵志军,陈秀方,无缝线路稳定性计算模型的研究,长沙铁道学院学报,19(3),2001,147-157页。
    [3]陈秀方,娄平等,无缝线路原始弯曲极限的概率分析,中国铁道科学,120(1),1999,34-56页。
    [4]李秋义,陈秀方,基于模糊横移限制的无缝线路稳定性可靠度,中国铁道科学,22(3),2001,78-84页。
    [5]李秋义,陈秀方,结构可靠度理论在无缝线路稳定性研究中的应用,铁道学报,23(5),2001,89-95页。
    [6]Lou Ping,Chen Xiufang and Zeng Qingyuan,Probabilistic of laterial initial irregularities of continuously welded rail track,Journal of Structural Engineering,Vol.29,Nol.3,2002,pp.175-176.
    [7]Kish A.,Samavedam G.,Jeong D.,Analysis of thermal bucking tests on U.S.railroads,Technique Report,1982,pp.21-102.
    [8]Samavedam G.,Kish A.,Analysis and Safety Concepts of CWR Track Bucking-Final rept,1993,pp.145-152.
    [9]Kish A.,Samavedam G.,Risk Analysis Based CWR Track Buckling Safety Evaluations,2001,pp.78-98.
    [10]周毅,无缝线路温度臌曲失稳过程的有限元分析,中国铁道科学,4(4),1988,67-82页。
    [11]雷晓燕,轨道力学与工程新方法,中国铁道出版社,2002,90-102页。
    [12]V.L.Markine,C.Esveld,Determination of Ballast Parameters of a Railway Track Using an Optimization Technique,2002,pp.78-97.
    [13]Lim Nam-Hyoung,Park Nam Hoiroo,Kang Young-Jong,Stability of continuous welded rail track,Computers and Structures,Vol.81,No.22,2003,pp.2219-2236.
    [14]高亮,敞体道床流变力学特性的研究,铁道学报,23(1),2001,23-45页。
    [15]高亮,刘秀波,流变力学理论在铁路轨道结构力学研究中的应用,工程力学,18(6),2001,78-92页。
    [16]高亮,万复光,无缝线路动态稳定性理论研究方法的探讨,中国铁道,4(5),2001,154-182页。
    [17]Kish A.,Samavedam G.,Improved destressing of continuous welded rail for better management of rail neutral temperature Gopal,Transportation Research Record,2005,pp.56-65.
    [18]广钟岩,高慧安,铁路无缝线路,中国铁道出版社,2001,56-98页。
    [19]崔学峰,陈玲玲,无缝线路应力放散作业标准化研究,铁道标准设计。3(1),2003,5-7页。
    [20]中华人民共和国铁道部,TB(T/2098-2007),无缝线路铺设及养护维修方法,北京:北京中国铁道出版社,2007,34-78页。
    [21]卢耀荣,中国铁道科学研究院研究报告:秦沈客运专线跨区间无缝线路关键技术的实验研究,铁道科学研究院,2003,56-82页。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700