高速高精度电流舵数模转换器关键设计技术的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在有线或者无线通讯、视频信号处理、直接数字信号合成等应用领域,高速高精度数模转换器(DAC)的性能在很大程度上已经成为了整个系统性能的瓶颈。电流舵DAC由于其结构本征的高速特性和较好的驱动能力,被广泛应用在高速高精度领域。但是,由于影响电流舵DAC特性的因素很多,这给芯片的设计带来了一定的困难。本文主要针对电流舵DAC的设计难点,对设计关键技术进行了研究,并实现验证。
     本文系统地分析了影响DAC特性的误差源,并对其所造成的性能下降进行了定性或定量的分析。这些误差源产生了包括静态的和动态的误差,分别在输入信号为低频和高频时占据主导。DAC中的静态误差主要为幅值误差,包括了与工艺相关的失配误差和与电流源位置相关的梯度性误差。动态误差主要有时序误差、时钟抖动、有限输出阻抗、输出波动效应、开关瞬态非线性等。这些动态误差源有的直接使DAC的输出产生谐波失真,有的会通过二阶效应的影响给DAC造成非线性失真。DAC的失真是这些误差所造成的失真量之和,通常这些误差源对DAC的影响会在不同频率范围下起主导作用。本文通过研究分析可以将各误差源对DAC动态特性影响的图谱归纳为:在直流至低输入频率时,静态幅值误差与有限输出电阻占据主要作用;随着输入频率的增大,时序误差对DAC动态性能的影响渐渐增强;当信号频率继续上升时,DAC动态的性能受输出波动效应以及开关瞬态非线性造成的二阶误差影响很大,其随信号频率的上升以-20dB每十倍频的速度下降;当信号频率很高时,DAC的有限输出阻抗所造成的失真占据了主导,使DAC的动态性能以-40dB每十倍频的速度下降。
     本文基于对DAC中误差源的分析提出了相应的设计策略和方案:包括DAC的5+3+4分段策略;一种温度计译码快速求解方法和一种冗余行列译码方式;共中心梯度补偿的电流源阵列排布方案;提高DAC输出阻抗的有效方式;抑制输出波动效应的策略;适用于高速DAC的开关信号特征;一种适用于产生低摆幅开关信号的驱动电路的结构。
     此外,本文还针对时域误差提出了一种动态校正技术,该校正技术采用时间差放大器(TDA)对被校正通路和参考通路的延迟差进行检测和放大,然后利用时数转换器(TDC)将放大的延迟差量化为数字量,并驱动被校正信号通路中的数字控制延迟线(DDL)对延迟误差进行补偿,从而使其与参考通路达到相对同步。该校正方法结构简单,校正系统中模拟电路较少,容易在版图中进行匹配提高校正精度。同时,校正电路本身的误差作为公共的误差使得其不会在各信号通路间引入额外的失配延迟误差。本文通过前、后仿真的验证表明了所提出的校正方法对时域误差进行校正的有效性。
     根据所提出的设计方案,本文在TSMC0.18μm工艺下设计实现了一款12位400MS/s采样率的本征精度(Intrinsic Accuracy)电流舵DAC原型电路,该电路采用5+3+4的分段方式,核心电路面积为1.44mm2。经测试,该DAC的DNL和INL均优于±0.6LSB,表明在没有静态校正的情况下,DAC中电流源MOS管的尺寸选择合理,电流源阵列的布局方式有效。在DAC工作在400MS/s采样率时,其低输入频率下测得的SFDR为78.8dBc,98.5MHz输出频率下测得的SFDR为66dBc,奈奎斯特频率下测得的SFDR为50dBc,其70dBc的SFDR带宽约为70MHz。测试结果表明,作为一款本征精度的DAC原型电路,其具有良好的动态特性,能够在高速高精度条件下应用。
The performance of the high-speed and high resolution digital-to-analog converter (DAC) has become the bottleneck of the overall system in the applications such as wire or wireless communications, video signal processing, and direct digital signal synthesis. The current-steering DAC is widely used in high-speed and high-resolution fields because of its intrinsic high speed and driving capability. However, various factors influences the performance of the current-steering DAC, which makes the chip design difficult. This paper mainly focuses on the design difficulties and studies the key techniques which are implemented and validated.
     This paper systematically analyzes the error sources which impact the DAC's performance, and further gives qualitative or quantitative analysis on the performance degradation caused by them. These error sources produce both static and dynamic errors which are dominant at low and high signal frequency, respectively. The mainly static error in the DAC is amplitude error, including mismatch error which is related to the technology process and gradient error which is related to the position of the current source. The dynamic errors are mainly timing error, clock jitter, finite output impedance, output variation effect and nonlinear switching transient. Some of them directly generate harmonic distortions on the DAC's output, and some can cause nonlinear distortion to the DAC through the second-order effects. The total distortion of the DAC is superposition of the distortion caused by these errors, and they are dominant in different frequency ranges. According to the analysis in this paper, the influences on the DAC caused by various error sources can be summarized as follows. The static amplitude error and finite output resistance play the major roles when the input varies from DC to low frequency. With the input frequency increasing, the timing error gradually affects the dynamic performance of the DAC. When the input frequency continues to increase, the errors from the output variation and its second-order effect caused by switching transient will influence more and more on the DAC's performance. It causes the dynamic performance degradation at a speed of-20dB per decade with the input frequency increasing. When the frequency goes up to very high, the finite output impedance of the DAC is dominant and will cause the performance decline at-40dB per decade.
     Based on the studies on the DAC's error sources, this paper gives the corresponding design strategies and schemes including a5+3+4DAC segmentation strategy, a fast solution of the binary to thermometer decoding, a low-column redundant decoding method, a centroid arrangement with gradient compensation of the current sources in the layout array, a way of increasing the output impedance, a design strategy of the switching signal, and a switch driver which is suitable to generate the switching signal with low voltage swing.
     In addition, a dynamic calibration technique for reducing the timing error is also presented in this paper. The proposed calibration technique employs a time difference amplifier (TDA) to detect and amplify the timing differences between the signal path to be correct and the reference signal path. Then, the timing error is digitalized by time-to-digital converter (TDC) and is further used to control the digital delay line (DDL) to compensate the timing error by adjusting the delay generated by the DDL The calibration technique has a simple structure with less analog circuits which are easy to match in the layout and good for increasing the calibration accuracy. Meanwhile, as the error caused by the calibration circuit is a common value, it will introduce less mismatches between different signal paths. The effectiveness of the proposed calibration technique is validated by the fore and post simulations in this paper.
     According to the proposed design strategy, a12-bit400MS/s current-steering DAC with intrinsic accuracy is implemented in TSMC0.18μm technology. The DAC uses a5+3+4segmentation strategy. The chip core area is1.44mm2. The measured DNL and INL are both better than±0.6LSB, which validate the proper size selection of the current sources and the effectiveness of the arrangement strategy without any static calibration. When the DAC is operating at400MS/s, the measured SFDR is78.8 dBc at a low signal frequency and66dBc at a high input frequency of98.5MHz. The measured SFDR at Nyquist frequency drops down to50dBc, and the70dBc SFDR bandwidth is about70MHz. The measurement results show that the designed DAC is suitable for high-speed and high-resolution appications.
引文
[1]Lin W T, Kuo T H. A 12b 1.6 GS/s 40mW DAC in 40nm CMOS with> 70dB SFDR over entire Nyquist bandwidth[C]//Solid-State Circuits Conference Digest of Technical Papers (ISSCC),2013 IEEE International. IEEE,2013:474-475.
    [2]Tseng W H, Fan C W, Wu J T.A 12b 1.25 GS/s DAC in 90nm CMOS with> 70dB SFDR up to 500MHz[C]//Solid-State Circuits Conference Digest of Technical Papers (ISSCC),2011 IEEE International. IEEE,2011:192-194.
    [3]Lin C H, van der Goes F, Westra J, et al. A 12b 2.9 GS/s DAC with IM3<<-60dBc beyond 1GHz in 65nm CMOS[C]//Solid-State Circuits Conference-Digest of Technical Papers,2009. ISSCC 2009. IEEE International. IEEE,2009:74-75, 75a.
    [4]Clara M, Klatzer W, Seger B, et al. A 1.5 V 200MS/s 13b 25mW DAC with Randomized Nested Background Calibration in 0.13μm CMOS[C]//Solid-State Circuits Conference,2007. ISSCC 2007. Digest of Technical Papers. IEEE International. IEEE,2007:250-600.
    [5]Chan K L, Galton I. A 14b 100MS/s DAC with fully segmented dynamic element matching[C]//Solid-State Circuits Conference,2006. ISSCC 2006. Digest of Technical Papers. IEEE International. IEEE,2006:2390-2399.
    [6]Doris K, Briaire J, Leenaerts D, et al. A 12b 500MS/s DAC with> 70dB SFDR up to 120MHz in 0.18μm CMOS[C]//Solid-State Circuits Conference,2005. Digest of Technical Papers. ISSCC.2005 IEEE International. IEEE,2005:116-588.
    [7]Schafferer B, Adams R. A 3V CMOS 400mW 14b 1.4 GS/s DAC for multi-carrier applications[C]//Solid-State Circuits Conference,2004. Digest of Technical Papers. ISSCC.2004 IEEE International. IEEE,2004:360-532.
    [8]Huang Q, Francese P A, Martelli C, et al. A 200MS/s 14b 97mW DAC in 0.18μm CMOS[C]//Solid-State Circuits Conference,2004. Digest of Technical Papers. ISSCC.2004 IEEE International. IEEE,2004:364-532.
    [9]Cong Y, Geiger R L. A 1.5 V 14 b 100 MS/s self-calibrated DAC[C]//Solid-State Circuits Conference,2003. Digest of Technical Papers. ISSCC.2003 IEEE International. IEEE,2003:128-482.
    [10]Schofield W, Mercer D, Onge L S. A 16b 400MS/s DAC with<-80dBc IMD to 300MHz and<-160dBm/Hz noise power spectral density[C]//Solid-State Circuits Conference,2003. Digest of Technical Papers. ISSCC.2003 IEEE International. IEEE,2003:126-482.
    [11]Van Den Bosch A, Borremans M, Steyaert M, et al. A 12 b 500 MSample/s current-steering CMOS D/A converter[C]//Solid-State Circuits Conference,2001. Digest of Technical Papers. ISSCC.2001 IEEE International. IEEE,2001: 366-367,466.
    [12]Bugeja A R, Song B S. A self-trimming 14-b 100-MS/s CMOS DAC[J]. Solid-State Circuits, IEEE Journal of,2000,35(12):1841-1852.
    [13]Vandenbussche J, Van der Plas G, Van den Bosch A, et al. A 14 b 150 Msample/s update rate Q2 random walk CMOS DAC[C]//Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC.1999 IEEE International. IEEE,1999: 146-147.
    [14]Marques A, Bastos J, Van den Bosch A, et al. A 12 b accuracy 300 Msample/s update rate CMOS DAC[C]//Solid-State Circuits Conference,1998. Digest of Technical Papers.1998 IEEE International. IEEE,1998:216-217,440.
    [15]Chan K L, Zhu J, Galton I. A 150MS/s 14-bit Segmented DEM DAC with Greater than 83dB of SFDR Across the Nyquilst band[C]//VLSI Circuits,2007 IEEE Symposium on. IEEE,2007:200-201.
    [16]Tang Y, Briaire J, Doris K, et al. A 14b 200MS/s DAC with SFDR> 78dBc, IM3<-83dBc and NSD<-163dBm/Hz across the whole Nyquist band enabled by dynamic-mismatch mapping[C]//VLSI Circuits (VLSIC),2010 IEEE Symposium on. IEEE,2010:151-152.
    [17]Seo D, McAllister G H. A low-spurious low-power 12-bit 160-MS/s DAC in 90-nm CMOS for baseband wireless transmitter[J]. Solid-State Circuits, IEEE Journal of,2007,42(3):486-495.
    [18]Mercer D A. Low power approaches to high speed CMOS current steering DACs[C]//Custom Integrated Circuits Conference,2006. CICC'06. IEEE. IEEE, 2006:153-160.
    [19]Chen T, Gielen G G E. A 14-bit 200-MHz current-steering DAC with switching-sequence post-adjustment calibration[J]. Solid-State Circuits, IEEE Journal of,2007,42(11):2386-2394.
    [20]Gulati K, Peng M S, Pulincherry A, et al. A highly integrated CMOS analog baseband transceiver with 180 MSPS 13-bit pipelined CMOS ADC and dual 12-bit DACs[J]. Solid-State Circuits, IEEE Journal of,2006,41(8):1856-1866.
    [21]O'Sullivan K, Gorman C, Hennessy M, et al. A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm2[J]. Solid-State Circuits, IEEE Journal of,2004,39(7):1064-1072.
    [22]Hyde J, Humes T, Diorio C, et al. A 300-MS/s 14-bit digital-to-analog converter in logic CMOS[J]. Solid-State Circuits, IEEE Journal of,2003,38(5):734-740.
    [23]Van den Bosch A, Borremans M A F, Steyaert M S J, et al. A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter[J]. Solid-State Circuits, IEEE Journal of,2001,36(3):315-324.
    [24]Lin C H, Bult K. A 10-b,500-MSample/s CMOS DAC in 0.6 mm2[J]. Solid-State Circuits, IEEE Journal of,1998,33(12):1948-1958.
    [25]Van den Bosch A, Steyaert M, Sansen W. SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters[C]//Electronics, Circuits and Systems,1999. Proceedings of ICECS'99. The 6th IEEE International Conference on. IEEE,1999,3:1193-1196.
    [26]Chen T, Gielen G G E. The analysis and improvement of a current-steering D ACs dynamic SFDR-Ⅰ:the cell-dependent delay differences [J]. Circuits and Systems I: Regular Papers, IEEE Transactions on,2006,53(1):3-15.
    [27]Chen T, Gielen G. The analysis and improvement of a current-steering DAC's dynamic SFDR—Ⅱ:the output-dependent delay differences [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2007,54(2):268-279.
    [28]Nyquist H. Certain factors affecting telegraph speed[J]. American Institute of Electrical Engineers, Transactions of the,1924,43:412-422.
    [29]Nyquist H. Certain topics in telegraph transmission theory [J]. American Institute of Electrical Engineers, Transactions of the,1928,47(2):617-644.
    [30]AD9734/AD9735/AD9736-10-/12-/14-bit,1200 MSPS DACs-Analog Devices, Inc.2006. http://www.analog.com/static/imported-files/data_sheets/AD9734_9735_9736.pdf
    [31]Shyu J B, Temes G C, Krummenacher F. Random error effects in matched MOS capacitors and current sources[J]. Solid-State Circuits, IEEE Journal of,1984, 19(6):948-956.
    [32]Lakshmikumar K R, Hadaway R A, Copeland M A. Characterisation and modeling of mismatch in MOS transistors for precision analog design[J]. Solid-State Circuits, IEEE Journal of,1986,21(6):1057-1066.
    [33]Pelgrom M J M, Duinmaijer A C J, Welbers A P G. Matching properties of MOS transistors [J]. Solid-State Circuits, IEEE Journal of,1989,24(5):1433-1439.
    [34]Van den Bosch A, Steyaert M, Sansen W. An accurate statistical yield model for CMOS current-steering D/A converters [J]. Analog Integrated Circuits and Signal Processing,2001,29(3):173-180.
    [35]Van der Plas G A M, Vandenbussche J, Sansen W, et al. A 14-bit intrinsic accuracy Q2 random walk CMOS DAC[J]. Solid-State Circuits, IEEE Journal of, 1999,34(12):1708-1718.
    [36]Nakamura Y, Miki T, Maeda A, et al. A 10-b 70-ms/s cmos d/a converter[J]. Solid-State Circuits, IEEE Journal of,1991,26(4):637-642.
    [37]Bastos J, Marques A M, Steyaert M S J, et al. A 12-bit intrinsic accuracy high-speed CMOS DAC[J]. Solid-State Circuits, IEEE Journal of,1998,33(12): 1959-1969.
    [38]Radulov G I, Heydenreich M, van der Hofstad R W, et al. Brownian-bridge-based statistical analysis of the DAC INL caused by current mismatch[J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2007,54(2):146-150.
    [39]Tang Y, Hegt H, van Roermund A, et al. Statistical analysis of mapping technique for timing error correction in current-steering DACs[C]//Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on. IEEE,2007:1225-1228.
    [40]Andersson K O, Vesterbacka M. Modeling of glitches due to rise/fall asymmetry in current-steering digital-to-analog converters[J]. Circuits and Systems 1:Regular Papers, IEEE Transactions on,2005,52(11):2265-2275.
    [41]Luschas S, Lee H S. Output impedance requirements for DACs[C]//Circuits and Systems,2003. ISCAS'03. Proceedings of the 2003 International Symposium on. IEEE,2003,1:1-861-1-864 vol.1.
    [42]Palmers P, Steyaert M S J. A 10-Bit 1.6-GS/s 27-mW current-steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS[J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2010,57(11):2870-2879.
    [43]Deveugele J, Steyaert M. RF DAC's:output impedance and distortion[M]//Analog Circuit Design. Springer Netherlands,2006:47-51.
    [44]Angrisani L, D'Arco M. Modeling timing jitter effects in digital-to-analog converters [J]. Instrumentation and Measurement, IEEE Transactions on,2009, 58(2):330-336.
    [45]Sansen W M C.模拟集成电路设计精粹[J].2008.
    [46]Xue X B, Si H W, Shi Q F, et al. A 12-bit 1GS/s Current-Steering DAC with Matching Capacitor in Switched Current Cell[J]. Advanced Materials Research, 2012,588:944-947.
    [47]Schofield W, Mercer D, Onge L S. A 16b 400MS/s DAC with<-80dBc IMD to 300MHz and<-160dBm/Hz noise power spectral density[C]//Solid-State Circuits Conference,2003. Digest of Technical Papers. ISSCC.2003 IEEE International. IEEE,2003:126-482.
    [48]Galton I. Why dynamic-element-matching DACs work[J]. Circuits and Systems II: Express Briefs, IEEE Transactions on,2010,57(2):69-74.
    [49]Tseng W H, Wu J T, Chu Y C. A CMOS 8-bit 1.6-GS/s DAC with digital random return-to-zero [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on, 2011,58(1):1-5.
    [50]Tseng W H, Fan C W, Wu J T. A 12-Bit 1.25-GS/s DAC in 90 nm CMOS With> 70 dB SFDR up to 500 MHz[J]. IEEE journal of solid-state circuits,2011,46(12): 2845-2856.
    [51]施琦锋,薛晓博,何乐年.新型数模转换器时域误差校正方法[J].浙江大学学报(工学版),2013,47(11):2025-2030.
    [52]Luh L, Choma Jr J, Draper J. A high-speed fully differential current switch[J]. Circuits and Systems Ⅱ:Analog and Digital Signal Processing, IEEE Transactions on,2000,47(4):358-363.
    [53]Ieong K H A, Seng-Pan U, Martins R P. A 1-V 2.5-mW transient-improved current-steering DAC using charge-removal-replacement technique[C]//Circuits and Systems,2006. APCCAS 2006. IEEE Asia Pacific Conference on. IEEE,2006: 183-186.
    [54]Xue X, Zhu X, Shi Q, et al. A 12-bit 400-MS/s Current-steering DAC with Deglitching technique[J]. Journal of Circuits, Systems, and Computers,2014, 23(1):In Press.
    [55]Liu G, He L, Xue X, et al. A new current switch driver with improved dynamic performance used for 500MS/s,12-bit Nyquist current-steering DAC[C]//ASIC (ASICON),2011 IEEE 9th International Conference on. IEEE,2011:496-499.
    [56]Abas M A, Russell G, Kinniment D J. Design of sub-10-picoseconds on-chip time measurement circuit[C]//Proceedings of the conference on Design, automation and test in Europe-Volume 2. IEEE Computer Society,2004:20804.
    [57]Abas A M, Bystrov A, Kinniment D J, et al. Time difference amplifier[J]. Electronics Letters,2002,38(23):1437-1438.
    [58]Jansson J P, Mantyniemi A, Kostamovaara J. A CMOS time-to-digital converter with better than 10 ps single-shot precision[J]. Solid-State Circuits, IEEE Journal of,2006,41(6):1286-1296.
    [59]Dudek P, Szczepanski S, Hatfield J V. A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line[J]. Solid-State Circuits, IEEE Journal of, 2000,35(2):240-247.
    [60]Shen M H, Huang P C. A low cost calibrated DAC for high-resolution video display system[J]. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,2012,20(9):1743-1747.
    [61]Chi J H, Chu S H, Tsai T H. A 1.8-V 12-bit 250-MS/s 25-mW self-calibrated DAC[C]//ESSCIRC,2010 Proceedings of the. IEEE,2010:222-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700