滑模变结构控制及其在电液位置伺服系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍了电液伺服控制系统的组成及发展历程,并且分析了电液伺服控制系统的非线性和不确定性的特点及产生的原因,而后介绍了滑动模态变结构控制的发展与研究现状。作为一种鲁棒性强的控制方法,变结构控制可通过控制器结构的不断调整和变化,有效地控制具有参数变化和外部扰动的被控制对象,这与具有不确定性(包括参数变化,外部扰动与非线性)的电液伺服系统的控制要求是一致的,因此变结构控制在电液伺服控制系统设计当中受到广泛重视。为了应用到电液伺服控制系统中,本文详细阐述了变结构控制理论的基本概念、基本问题,建立了电液伺服系统的各个组件的数学模型,进而建立了电液伺服系统的理论模型。然后从实验室测得电液伺服系统的液压缸和伺服阀及其它环节的的参数,计算后分别确定了各个组件的传递函数,最终确定了系统的传递函数方块图。
     本课题的另一项工作是在建立电液伺服系统的模型后,使用滑模变结构控制的比例切换控制法设计滑模控制器,采用S函数描述滑模控制器和电液伺服系统的模型,继而在Matlab/Simulink里建立整个系统的仿真模型。当系统存在不定性时,作者分别采用阶跃信号和正弦信号作为参照信号,将滑模变结构控制和PID控制进行仿真比较。结果表明:滑模变结构控制算法优于PID算法。为了建立更加精确的液压系统的模型,提高整个控制系统的性能,本文还建立了基于ARMSim/Simulink的联合仿真平台,在该平台上进行了滑模变结构控制和PID控制的仿真比较研究。此外,还将联合仿真平台里的模型与在Matlab/Simulink里建立的模型的控制性能作了比较,结果表明:在Simulink仿真平台中,滑模变结构控制系统具有更快的响应时间、更好的动静态性能和更强的鲁棒性;在ARMSim/Simulink的联合仿真平台中,变结构控制系统的响应时间也小于PID控制系统;整体上来看ARMSim/Simulink的联合仿真平台的控制性能好于Simulink仿真平台。
Firstly this paper introduces the composition and the development of the electro-hydraulic servo control system, and analyses nonlinear characteristic and uncertainties of the electro-hydraulic servo control system along with their causes, then the development and research status quo of the sliding mode variable structure control is introduced. As a robust-control method, variable structure control can effectively control the systems which exist parameters uncertainties and disturbance by adjusting and changing the controller, which is consistent with the control requirements of electro-hydraulic servo control system including uncertainties (parameters uncertainties, external disturbances and nonlinearities), therefore sliding mode variable structure control theory is highly regarded in the design of electro-hydraulic servo control system. In order to apply to electro-hydraulic servo control system, the paper elaborates on basic concepts and basic issues of the variable structure control, and establishes the mathematical models of all parts in electro-hydraulic servo system, so theoretical model of electro-hydraulic servo system is formed. From the laboratory, parameters involved in the hydraulic cylinders and the servo valve and other parts of electro-hydraulic servo system are measured and calculated, then the every transfer function of the components is determined, and ultimately the system's transfer function block diagram is determined.
     After the establishment of the electro-hydraulic servo system model, sliding controller is also designed using the proportion switch control of the sliding mode variable structure control theory, and using S-function describes models of the sliding mode controller and electro-hydraulic servo system, then simulation model of the whole system is established in Matlab/Simulink. When the system exists uncertainties, the author compares sliding mode control with PID control adopting step signal and sine signal as a reference. The simulation results show that: sliding mode control algorithm is better than PID algorithm. In order to establish a more precise model of the hydraulic system and improve the performance of the whole control system, the paper has also established co-simulation platform based on ARMSim/Simulink, and made comparative study of the simulation between a sliding mode control and PID control. In addition, control performance of the model established in co-simulation platform is compared with that in Matlab/Simulink simulation platform, the results show that: sliding mode control system has faster response time, better static and dynamic performance and more robust than PID control system in Simulink simulation platform; in ARMSim/Simulink co-simulation platform, response time of variable structure control system is also less than the PID control system; on the whole, control performance in ARMSim/Simulink co-simulation platform is better than Simulink simulation platform.
引文
[1]王春行.液压伺服控制系统[M].北京:机械工业出版社,1982.
    [2]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.
    [3]王占林.近代液压控制[M].北京:机械工业出版社,1997.
    [4]徐东光等.液压驱动stewart平台非线性自适应控制器设计[J].机械工程学报,2007;43(03):223-227.
    [5]冯纯伯.非线性控制系统分析与设计[M].南京:东南大学出版社,1990.
    [6]Andon Venelinov Topalov,Okyay Kaynak.Neural network modeling and control of cement mills using a variable structure systems theory based on-line learning mechanism.Journal of Process Control 14(2004)581-589.
    [7]Tzuu-Hseng S.Li,Chao-Lin Kuo,Nai Ren Guo.Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system.Chaos,Solitons and Fractals 33(2007)1523-1531.
    [8]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2006.
    [9]王秀君,裘丽华.电液伺服系统的变结构控制研究[J].机床与液压,2003,(5):125-127.
    [10]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [11]Slotine J.J.E.Tracking control of non-linear systems using sliding surfaces with application to robot manipulators,lnt.J.Control,1983;38(2):465-492.
    [12]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998.
    [13]段锁林,吴聚华,彭瑞棠.电液伺服位置\力控制系统的滑模变结构-PID控制[J].太原重型机械学院学报,1994;15(04):321-326.
    [14]李运华,王占林,新型变结构控制及其在电液伺服系统中的应用[J].北京航空航天大学学报,1997;23(06):692-697.
    [15]Chin-Wen Chuang,Liang-Cheng Shiu.CPLD based DIVSC of hydraulic position control systems.Computers and Electrical Engineering,2004,(30):527-541.
    [16]汤志勇,曹秉刚,史维祥.参数摄动电液伺服加振系统离散模型到达变结构控制策略的研究[J].机床与液压,1996,(4):3-9.
    [17]沙道航,杨华勇.电液速度伺服系统离散变结构控制的研究[J].机床与液压,1997,(6):23-25.
    [18]周继成等.多通道电液伺服系统的变结构自适应控制[J].哈尔滨科学技术大学学报,1995:19(02):1-5.
    [19]李军伟,赵克定.仿真转台液压伺服系统自适应模型跟踪模糊变结构控制的研究[J].机床与液压,2005,(1):98-100.
    [20]Jun-Juh Yah,Kuo-Kai Shyu,Jui-Sheng Lin.Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity.Chaos,Solitons and Fractals.2005,(25):347-355.
    [21]方一鸣,聂颖,王众.电液伺服位置系统的变结构自适应鲁棒控制[J].计算机仿真,2006;23(11):149-153.
    [22]汤志勇,曹秉刚,史维祥.非线性电液伺服系统的变结构控制[J].西安交通大学学报,1996;30(07):49-56.
    [23]胡剑波,陈新海.反馈线性化系统的非线性预测滑模控制[J].航空学报,1997;18(05):579-582.
    [24]管成,潘双夏.电液伺服系统的微分与积分滑模变结构控制[J].光电工程,2006;33(08):140-144.
    [25]Tai-Zu Wu,Jinn-Der Wang and Yau-Tamg Juang.Decoupled integral variable structure control for MIMO systems.Journal of the Franklin Institute.
    [26]Shahram Etemadi,Aria Alasty,Hassan Salarieh.Synchronization of chaotic systems with parameter uncertainties via variable structure control.Physics Letters A 357(2006)17-21.
    [27]周继成等.电液位置伺服系统的变结构控制研究[J].哈尔滨工业大学学报,1995;27(02):101-105.
    [28]彭艳朝,许化龙.导弹电液伺服机构的一种变结构控制器设计[J].上海航天,2004,(4):17-20.
    [29]Rong-Fong Fung,Rong-Tai Yang.Application of VSC in position control of a nonlinear electrohydraulic servo system.Computers and Structures,1998;66(04):365-372.
    [30]A.Bonchis,P.I.Corke,D.C.Rye,Q.P.Ha.Variable structure methods in hydraulic servo systems control.Automatica 37(2001)589-595.
    [31]张志伟,毛福荣.滑模变结构控制方法在电液伺服系统中的应用[J].液压与气动,2005,(8):50-52.
    [32]Jung-Hoon Lee.Highly robust position control of BLDDSM using an improved integral variable structure system.Automatica 42(2006)929-935.
    [33]Yung-Tien Liu,Rong-Fong Fung,Chun-Chao Wang.Precision position control using combined piezo-VCM actuators.Precision Engineering 29(2005)411-422.
    [34]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [35]靳雁艳.电液伺服振动试验台的动态补偿[D].太原理工大学,2005.
    [36]张亮等.MATLAB7.x系统建模与仿真[M].北京:人民邮电出版社,2006.
    [37]姚琼荟,黄继起,吴汉松.变结构控制系统[M].重庆:重庆大学出版社,1998.
    [38]何克忠,李伟.计算机控制系统[M].北京:清华大学出版社,2006.
    [39]李谨,邓卫华.AMESim与MATLAB/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004;26(5):61-64.
    [40]AMESim4.2 User Manual[M].IMAGINE S.A.2004.
    [41]江玲玲,张俊俊.基于AMESim与Matlab/Simulink联合仿真技术的接口与应用研究[J].机床与液压,2008,(1):148-149.
    [42]陈宏亮,李华聪.基于AMESim与Matlab/Simulink联合仿真技术的电液伺服系统减振研究[J].机床与液压,2006,(6):121-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700