工业阀门电液位置伺服驱动系统的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业发展对机械的控制性能的要求越来越高,电液伺服技术以其响应快、精度高、体积小、输出力大等特点广泛应用于国防和工业的诸多领域,如航空航天、有色冶炼、水利水电、石油化工、机械制造等。电液伺服位置控制系统是最基本的、最典型的一种电液伺服控制系统,并得到广泛的应用,具有重大的工程实用价值和理论研究意义。
     本论文针对电液伺服四通阀控对称缸及电液伺服三通阀控非对称缸位置伺服系统,进行了非线性与线性建模,分别通过实例进行仿真,并对两种理论的仿真结果进行对比,探讨它们的适用范围;研制了基于四通电液伺服阀的蝶阀的驱动控制系统,并进行了理论分析和动静态试验,结果表明蝶阀的控制精度及自动化程度得到提高,已在钢厂热轧线上应用;对基于三通电液伺服阀的风机防喘阀控制系统进行了理论分析和动静态试验,探讨了系统各结构参数对其响应特性的影响。
     有关各章节内容分述如下:
     第1章,在综合分析国内外文献的基础上,介绍了电液伺服技术和位置控制系统的发展。介绍了典型的电液伺服阀和电液伺服位置控制系统。以电液伺服蝶阀驱动控制为典型应用,介绍了蝶阀的基本概况及其驱动装置的研究现状。以电液伺服风机防喘阀控制为典型应用,介绍了透平鼓风机的概况和风机喘振现象及防喘振的方法。最后,概括了本课题的研究意义及研究内容。
     第2章,针对电液伺服四通阀控对称液压缸与电液伺服三通阀控非对称液压缸位置伺服系统,分别建立了系统的非线性与线性模型,并进行了仿真分析,探讨了他们的适用范围。
     第3章,设计了基于四通电液伺服阀的蝶阀的驱动控制系统,介绍了该系统的结构与工作原理;建立了系统的非线性模型;运用AMESim软件对非线性仿真模型进行分析,讨论了各结构参数对系统产生动态特性的影响;最后,对基于四通电液伺服阀的蝶阀的驱动控制系统进行了动静态试验。
     第4章,分析了基于三通电液伺服阀的风机防喘阀控制系统,介绍了三通电液伺服阀及其位置控制系统的结构与工作原理;建立了系统的非线性模型;运用AMESim软件对非线性仿真模型进行分析,讨论了各结构参数对系统产生动态特性的影响;最后,对基于三通电液伺服阀的风机防喘阀控制系统进行了动静态试验。
     第5章,对主要研究工作和得到的成果进行了概括,并展望了下一步的研究工作和方向。
With the development of modern industry, electro-hydraulic servo technology has been widely used in both military and civil industry such as aeronautics and astronautics, nonferrous metal smelting, water resources and hydropower, petroleum and chemical industry, and machinery manufacturing, for its quick response, high precision, small volume and large output force. Electro-hydraulic servo position control system is one of the most basic and typical electro-hydraulic servo control systems, and has been widely used, which makes a difference in both engineering practice and theory research.
     For asymmetric cylinder controlled by electro-hydraulic servo four way valve and unsymmetric cylinder controlled by electro-hydraulic servo three way valve, both nonlinear model and linear model are established, the simulation of which are done and the differences of the two theory are analysed. Based on the four way electro-hydraulic servo valve, the control system of a butterfly valve is developed, and the theory analysis and static and dynamic test of which proved that the control precision and automation degree have been improved. At present, the system has been applied in hot rolling production line of steel industry. The control system of fan anti-surge valve based on three way electro-hydraulic servo valve is developed, the thery analysis and static and dynamic test are done, and the influence of various structural parameters are analysed.
     Contents of each chapter list as follows:
     In chapter 1, on the basis of the analysis of materials from home and abroad, the development of electro-hydraulic technology and position control system are introduced. And the typical electro-hydraulic valves and electro-hydraulic position control systems are introduced. Based on the electro-hydraulic servo butterfly valve control system, the basic overview and drive equipment of the butterfly valve are introduced. Based on the electro-hydraulic servo fan anti-surge valve control system, the basic overview of turbo blower and the fan surge phenomenon are introduced. At last, the significance and contents are mentioned.
     In chapter 2, for asymmetric cylinder controlled by electro-hydraulic servo four way valve and unsymmetric cylinder controlled by electro-hydraulic servo three way valve, both nonlinear model and linear model are established, the simulation of which are done and the differences of the two theory are analysed, and the scope of application of linear model and nonlinear model is analysed.
     In chapter 3, the drive system of a butterfly valve based on four way electro-hydraulic servo valve is designed, the structure and work principle of which are introduced. The nonlinear model of the system is established, and the the simulation is done based on the nonlinear model by AMESim, and the influence of various structural parameters is discussed. At last, the static and dynamic test of the systm is done.
     In chapter 4, the control system of fan anti-surge valve based on three way electro-hydraulic servo valve is analysed, and the structure and work principle of three way electro-hydraulic servo valve and position control system are introduced. The nonlinear model of the system is established, and the the simulation is done based on the nonlinear model by AMESim, and the influence of various structural parameters is discussed. At last, the static and dynamic test of the systm is done.
     All achievements of the thesis are summarized and the further research work is put forward in chapter 5.
引文
[1]王春行.液压控制系统[M].北京:机械工业出版社,2008.
    [2]赵升吨,魏树国,王军.液压伺服控制系统研究现状的分析[J].伺服控制.2006(6):16-23.
    [3]陈刚,朱石沙,王启新,等.电液控制技术的发展与应用[J].机床与液压.2006(4):1-3.
    [4]Deticek E, Zuperl U. An Intelligent Electro-Hydraulic Servo Drive Positioning[J]. STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING.2011,57(5):394-404.
    [5]Mohanty A, Yao B. Indirect Adaptive Robust Control of Hydraulic Manipulators With Accurate Parameter Estimates[J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.2011, 19(3):567-575.
    [6]王占林.液压伺服控制[M].北京:北京航空学院出版社,1987.
    [7]贾培起.电一液控制的技术特征、发展及应用[J].液压工业.1985(4):32-37.
    [8]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势[J].工程机械.2003(6):28-33.
    [9]陈彬,易孟林.电液伺服阀的研究现状和发展趋势[J].液压与气动.2005(6):5-8.
    [10]方群,黄增.电液伺服阀的发展历史、研究现状及发展趋势[J].机床与液压.2007(11):162-165.
    [11]李跃松,朱玉川,吴洪涛,等.电液伺服阀的研究现状[J].航空兵器.2010(6):20-24.
    [12]顾瑞龙.电液伺服阀的设计和研究[J].机床与液压.1974(3):17-45.
    [13]杜天容.飞机拦阻系统控制仿真分析[D].东北大学,2006.
    [14]陈祺.水下压力模拟装置电液伺服系统研究[D].华中科技大学,2009.
    [15]梁利华.液压传动与电液伺服系统[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [16]杨艳丽,孙耀杰,史维祥.倒棱机床电液伺服系统的设计与研究[J].液压与气动.2001(2):9-12.
    [17]巩明德,赵丁选,宫文斌,等.基于神经网络的电液伺服机械手位置控制[J].吉林工业大学学报(工学版).2002(3):15-19.
    [18]余愿.中厚板液压压下位置伺服控制系统的设计与研究[D].武汉理工大学,2010.
    [19]甄茂新.精轧机架间冷却水阀的改造[J].宝钢技术.2007(1):37-40.
    [20]李远慧.工业炉用电液阀门位置控制系统研究[D].武汉科技大学,2005.
    [21]邓丽霞,易孟林.船舶舵机电液伺服调节器的建模与仿真研究[J].机床与液压.2007(8):207-209.
    [22]吴晔.雷达导引头天线液压控制[J].制导与引信.2005(1):3-8.
    [23]基于DSP的直流电机位置控制技术研究[J].
    [24]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社,2002.
    [25]李其朋.直动式电液伺服阀关键技术的研究[D].浙江大学,2005.
    [26]Kawashima K, Youn C H, Kagawa T. Development of a nozzle-flapper-type servo valve using a slit structure[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME.2007, 129(5):573-578.
    [27]H. S S, M. S, Krishna K R. Mathematical modelling and simulation of a jet pipe electrohydraulic flow control servo valve [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING.2007,221(13): 365-382.
    [28]Javad R, Hossein N, Iraj H. Electro-hydraulic control system for precision guidance of a row crop cultivator with position feedback via LVDT [J]. JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT.2011,9(2):556-560.
    [29]陈召国,丁凡,蔡悦华.单级双喷嘴挡板电液伺服阀的特性研究[J].机床与液压.2007(4):114-116.
    [30]王兆铭,渠立鹏,张东,等.射流管电液伺服阀在发动机温度控制中的应用[J].东北大学学报(自然科学版).2009(10):1485-1488.
    [31]黄增,候保国,方群,等.射流管式与喷嘴挡板式电液伺服阀之比较[J].流体传动与控制.2007(4):43-45.
    [32]MOOG公司D633型直动式伺服阀样本[X].
    [33]姚建庚.直动式电液伺服阀的开发与应用[J].液压气动与密封.2004(2):6-10.
    [34]Bosch Rexroth公司伺服阀样本[X].
    [35]王积伟等.液压传动[M].北京:机械工业出版社,2006.
    [36]杨安,欧阳奇.轧机液压AGC系统建模及仿真[J].机床与液压.2008(9):243-246.
    [37]谭树彬,钟云峰,刘建昌,等.轧机辊缝控制建模及仿真[J].系统仿真学报.2006(6):1425-1427.
    [38]张伟,王益群,高英杰.板带轧机液压压下系统的建模与仿真[J].液压与气动.2004(1):21-24.
    [39]于玲,贾春强.DN1400蝴蝶阀电液控制系统设计[J].机床与液压.2006(2):140-142.
    [40]宋银立.中国阀门行业发展概述[J].机械工业标准化与质量.2009(9):17-18.
    [41]孙丽,陈立龙.我国阀门行业现状与发展趋势[J].机电工程.2009(10):103-104.
    [42]易孟林,杜经民,曹树平,等.大型自动阀门的电液角位移伺服控制系统[J].液压气动与密封.1998(1):35-36.
    [43]童成彪.蝶阀的优化设计和流场研究[D].湖南大学,2010.
    [44]刘飞,张强,沈曦,等.蝶阀密封结构的技术进化理论分析[J].阀门.2007(6):8-11.
    [45]张雁洁.双偏心蝶阀弹性密封结构分析[J].阀门.2006(3):5-6.
    [46]邵亚雄.三偏心金属密封蝶阀的力学特性分析及结构优化研究[D].西华大学,2007.
    [47]吴健.三偏心蝶阀的结构分析与动力学研究[D].兰州理工大学,2003.
    [48]王桂生,吴运强.多层次金属硬密封煤气蝶阀的研制与应用[J].企业技术开发.2003(10):13-14,42.
    [49]Park J Y, Chung M K. Study on hydrodynamic torque of a butterfly valve[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME.2006,128(1):190-195.
    [50]Danbon F, Solliec C. Aerodynamic torque of a butterfly valve-Influence of an elbow on the time-mean and instantaneous aerodynamic torque[J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME.2000,122(2):337-344.
    [51]任华.三偏心蝶阀的发展及应用[J].内蒙古石油化工.2008(3):51.
    [52]胡赞,张幼军.特大型空分设备配套阀门的研制[J].深冷技术.2009(3):43-46.
    [53][英]内斯比特(Nesbitt. B.)著,张清双等译.阀门和驱动装置技术手册[M].北京:化学工业出版社,2010.
    [54]沈雪松.液动阀门系统控制研究与设计[D].四川大学,2005.
    [55]许常武,谭爱红.阀门电动装置的发展趋势[J].阀门.2002(3):33-34.
    [56]http://www.rotork.com/zh/product/index/iqtquarterturn[Z].
    [57]EBRO公司气动双动执行器EB-DW样本[X].
    [58]刘振德.蓄能罐式液控蝶阀在泵站工程中的应用[J].河北水利.2006(10):45.
    [59]张士杰,邹乐陶.重锤式液控蝶阀在高扬程跨流域调水工程中的设计和应用[J].水利水电工 程设计.2004(1):31-33.
    [60]唐万增.电液蝶阀在催化裂化装置的应用[J].石油化工设备技术.2000(3):33-35.
    [61]肖军,钱伟,江泳英,等.高性能密封蝶阀研制[J].机械研究与应用.2000(1):44-45.
    [62]赵久梁,赵新军,杨会林.轴流风机防喘液压数字伺服控制系统的设计与分析[J].液压与气动.2002(10):18-20.
    [63]李心伟,屈宗长.高炉离心式鼓风机的发展现状[J].冶金设备.2004(2):33-35.
    [64]Fausel R. Blast Furnace Blower Optimization[J]. Control Journal.2002(11):4-9.
    [65]Lee G H, Baek J H, Myung H J. Effect of blade loading on the structure of tip leakage flow in a forward-swept axial-flow fan[J]. HVAC&R RESEARCH.2005,11(1):95-117.
    [66]Salunkhe P B, Joseph J, Pradeep A M. Active feedback control of stall in an axial flow fan under dynamic inflow distortion[J]. EXPERIMENTAL THERMAL AND FLUID SCIENCE.2011,35(6): 1135-1142.
    [67]张世庆.静叶可调高炉鼓风机的液压自控系统[J].冶金自动化.1978(6):33-41.
    [68]Cudina M. Noise generation in vane axial fans due to rotating stall and surge[J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE.2001,215(1):57-64.
    [69]孙树鑫.离心通风机防喘振智能控制系统研究[D].兰州理工大学,2011.
    [70]Badmus O O, Chowdhury S, Nett C N. Nonlinear control of surge in axial compression systems[J]. AUTOMATICA.1996,32(1):59-70.
    [71]刘飞跃.透平压缩机的喘振控制问题研究[D].兰州理工大学,2008.
    [72]周剑.AV80_16鼓风机组检测及控制系统设计[D].中国石油大学,2011.
    [73]王玥,罗艳蕾,刘正雷,等.零开口四通滑阀控制液压缸系统动态特性研究[J].贵州工业大学学报(自然科学版).2006(5):40-43.
    [74]刘保杰,强宝民.对称四通阀控液压缸建模研究[J].起重运输机械.2011(7):15-18.
    [75]袁朝辉,董骥,刘存颖,等.阀控缸的非线性建模和分析[J].机床与液压.2008(9):249-251.
    [76]施康,曾良才,朱学彪.基于AMESim的电液伺服系统故障仿真研究[J].流体传动与控制.2009(3):25-27.
    [77]李晓辉,徐本洲,聂伯勋.电液伺服系统非线性建模与线性建模的比较[J].机床与液压.2006(6):104-106.
    [78]Hong Y U. Nonliear control for a class of hydraulic servo system[J]. Journal of Zhejiang University Science.2004,11(5):1413-1417.
    [79]蒋志勤.具有回油阻尼、正开口滑阀的机液伺服机构的稳定性分析[J].机床与液压.1981(3):7-15.
    [80]邓莉,邱智毅,魏立群.数控机床进给伺服系统的位置增益与稳定性分析[J].上海应用技术学院学报(自然科学版).2009(4):330-332.
    [81]靳雁艳,王平,杨洁明.电液位置伺服系统的稳定性分析与应用[J].机械管理开发.2005(3):55-56.
    [82]陈永新,柯尊忠,陈琪云.精密校直机位置伺服系统的研究[J].机床与液压.2003(2):46-48.
    [83]陈贵清,杨晓京,李浙昆,等.数控机床进给系统的稳定性分析[J].机电工程.2004(11):52-54.
    [84]吕宏庆,苏毅,杨建勇,等.电液伺服系统中的非线性及其影响分析[J].机床与液压.2002(1):116-118.
    [85]Ionescu F. Some Aspects Concerning Nonlinear Mathematical Modeling and Behavior of Hydraulic Elements and Systems[J]. Nonlinear Analysis-Theory Methods & Applications.1997,30(3): 1447-1460.
    [86]宋俊,于玲.阀控缸建模方法的数字仿真比较[J].机床与液压.2004(3):122-123.
    [87]杨云,李天石.三通阀控单作用非对称气缸特性分析[J].机床与液压.2002(3):104-106.
    [88]刘伟奇.阀控非对称缸电液位置伺服系统控制的研究[D].北京交通大学,2009.
    [89]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化[J].机械工程学报.2006(5):203-207.
    [90]章海,裴翔,陈胜,等.电液控制系统非线性与线性分析结果比较[J].机床与液压.2004(9):49-51.
    [91]付永领AMESIM系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [92]江玲玲,张俊俊.基于AMESim的液压位置伺服系统动态特性仿真[J].机械工程与自动化.2007(1):35-37.
    [93]余佑官,龚国芳,胡国良AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封.2005(3):28-31.
    [94]Costinel P T, Iulian D, Catalin V, et al. Adjustment of conformity parameters of PID-type compensators using simulation by AMESim [C]. Loughborough, ENGLAND:2009.
    [95]傅晓云,黎飞,李宝仁.某水下航行器舵机液压伺服系统建模仿真[J].机床与液压.2010(13):151-153.
    [96]刘小初,叶正茂,韩俊伟,等.基于AMESim软件的三级电液伺服阀建模与仿真[J].机床与液压.2008(11):135-136.
    [97]罗艳蕾,李渊,李蒙,等.基于AMESim的两位三通阀动态仿真研究[J].科技广场.2010(6):99-101.
    [98]Xiaochu L, Qitao H, Dacheng C, et al. Optimization design of electro hydraulic servo-system PID parameters based on genetic algorithm [C]. Hong Kong, PEOPLES R CHINA:2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700