船用舵机电液伺服单元最优控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着海洋运输船舶的大型化、高度自动化及高速化,新型船舶液压自动舵要求具有高可靠性、高耐久性、高精度以及适应于舵叶负荷的转矩特性,从而能够广泛地应用在5万吨到100万吨的商船以及军用舰艇。
     自动舵机的基本元部件包括电气元件、机械元件以及液压元件等。其中,电液伺服单元是其“心脏”元件,它将电信号转换成机械信号并进行液压放大,进而实现反馈控制,执行控制规律,并且直接关系到整个自动装置控制的各种性能。因此,电液伺服单元对舵机控制精度及稳定性有着至关重要的影响,是典型的机电液一体化高科技产品。
     在以往的试验研究中发现电液伺服单元存在零位振荡和差动缸左右行程输出不对称的现象,同时其在跟踪性、稳定性和快速性上存在着一定的问题。本文仔细讨论了电液伺服单元各个组成环节的工作原理,并对存在影响系统的干扰因素及误差进行了详尽分析后,建立了系统的非线性数学模型,得到了零位振荡的产生机理,通过比较仿真曲线、试验曲线验证了数学模型的正确性。
     针对上述问题,在查阅了大量的国内外文献资料的基础上,并结合电液伺服单元自身的特点和工程实际要求,确定了相应的二次型性能指标的最优控制器控制策略。
     为了解决仿真和试验过程中发现的问题,在有无干扰两种情况下进行了仿真。其结果表明,最优控制器解决了零位振荡和差动缸左右行程不对称问题。采用其代替常规PID控制使电液伺服单元的快速性、稳定性和跟踪性得到了明显提高,且有较强的自适应能力和鲁棒性。
In recent years, with the development of constantly large-scale, high automation, high-speed, environmental protection and safety in the ocean shipping, new ship hydraulic autopilots with high reliability, high durability, high precision and adapted to the rudder blade load torque characteristics, are widely used in 5 tons to 100 tons of merchant ships and military.
     Automatic steering gear is the basic components which contain electrical components, mechanical components, and hydraulic components. Electric-hydraulic servo unit is autopilot’s "heart" components, which is put signals converts mechanical and hydraulic amplifier, signal and implement feedback control, realize the control rule, direct relation of the automatic control device for the whole performance, and has important influence on control accuracy and stability, is typical of the electromechanical integration of high-tech products.
     The previous test study of electro-hydraulic servo unit possessed zero oscillation and the asymmetric output trip phenomenon of differential cylinder, and there also possessed some problems in its tracking, stability and quickness. This paper has discussed the working principle of electro-hydraulic servo unit’s each component part carefully, especially analyzed the interference factors of system and the error with detail, then set up a nonlinear mathematic model, and obtained the zero oscillation mechanism, finally proved the correctness of the mathematical model validation through comparing the simulation curves and test curves.
     In view of the above questions in a lot of domestic and foreign literature material, and on the basis of electro-hydraulic servo unit itself characteristic and actual requirements, this paper has ensured the corresponding quadratic performance indexes of the optimal control strategy.
     In order to solve the problems found in the experiment and simulation process, this paper has simulated in two kinds of situation without outside interference and interference. Simulation results show that the optimal controller to have solved main problems of the zero oscillation and differential cylinder around asymmetric trip. Using the optimal control instead of conventional PID control has greatly improved in the speed and stability and tracking of displacement output of piston rod, and a stronger adaptive ability and robustness.
引文
1狄猛.基于性能评价的船舶自动舵控制器设计研究.上海交通大学硕士论文. 2008:1~3
    2鞠世琼.船舶航迹舵控制技术研究与设计.哈尔滨工程大学硕士论文. 2007:4~6
    3 C. J. Harris, S. A. Billngs. Self-tuning and adaptive control theory and applications. Peter Peregrinus. Ltd. 1981:10~25
    4 E. Sperry. Directional stability of automatically steered bodies. Journal of American Society of Naval Engineers. 1922, 42(1):2~13
    5 N. Mort, D. A. Linkens. Self-tuning controllers for surface ship course track-keeping. Proceedings, Symposium on Ship Steering Automatic Control. 1980, 25:225~243
    6 J. K. Zuidweg. Optimal and sub-optical feed forward in automatic track keeping systems. Proceedings, 6th Ship Control Systems Symposium, Ottawa. 1981:1~18
    7 J. V. Amerongen. Adaptive steering of ships: a model reference approach to improved maneuvering and economical course-keeping. Ph. K thesis, Delft University of Technology. 1982:15~30
    8 A. Sugimoto. A new autopilot system with condition adaptivity. Proceeding 5th Ship Control System Symposium, Annapolis, Maryland, USA. 1978:105~111
    9 H. Akaike. Fitting autoregressive models for prediction. Ann Inst Statist Math (Tokyo). 1969, 21(3):243~253
    10 C. Lim. Autopilot for ship control. Proceedings IEE(part-D). 1983, 130(2):147~158
    11 D. W. Clarke. Self-tuning controller. Proceeding IEE(part-D). 1975, 122(3):230~243
    12 M. R. Katebi. LQG adaptive ship autopilot. Traps Inst Mc. 1988, 104:187~197
    13 A. C. Messer. Introduction to robust ship track-keeping control design. Trans Inst MC. 1933, 15(3):104~110
    14 F. A. Papoulias. Path control of surface ship using sliding modes. Journal of ship Research. 1992, 36(2):141~153
    15 G. N. Roberts, R. Sutton, A. Zirilli. Intelligent ship autopilots-A historical perspective. Mechatronics. 2003, 13(10):1091~1103
    16 R. Sutton. A fuzzy autopilot optimized using a genetic algorithm. Journal of Navigation. 1997, 50(1):120~131
    17 R. Sutton. Optimization of fuzzy autopilots.11th SCSS. 1996:5~20
    18 Y. M. Enab. Intelligent controller design for the ship steering problem. IEEE Proc-Control Theory Application. 1996, 143(1):17~25
    19 J. Bertheas. G. Moresco, P. Dufourco. Linear hydro phonic antenna and electronic device to remove right/left ambiguity, associated with the antenna. The Journal of theAcoustical Society of America. 1992, 92(2):1194
    20邓丽霞.液压舵机电液伺服调节器的性能分析与参数优化.华中科技大学硕士论文. 2007:3~5
    21 T. I. Fossen. Guidance and control of ocean vehicles. Trondheim: TohnWiley&Sons. Ltd. 1984
    22赵升吨,魏树国,王军.液压伺服控制系统研究现状的分析.伺服控制, 2006, (6):16~23
    23李运华,史维祥,林廷圻.近代液压伺服系统控制策略的现状与发展.液压与气动. 1995, (1):3~6
    24 R. Neugebauer, B. Denkena, K. Wegener. Mechatronic systems for machine tools. CIRP ANNALS-MANUFACTURING TECHNOLOGY. 2007(2):657~686
    25 K. M. Elbayomy, Z. X. Jiao, H. Q. Zhang. PID controller optimization by GA and its performances on the electro-hydraulic servo control system. Chinese Journal of Aeronautics. 2008, (4):378~384
    26王益群,张伟.流体传动及控制技术的评述.机械工程学报. 2003, 39(10):95~99
    27 P. Yang, J. Xu, J. He. Hybrid control based on improved radial basis function network for electro-hydraulic servo system. Int. Conf. Innov. Comput. Inf. Control ICICIC. 2006:117~120
    28 A. Ghazy. Variable structure control for electro hydraulic position servo system. IECON Proceedings (Industrial Electronics Conference). 2001:2194~2198
    29 A. Drumea, A. Vasile, P. Svasta. Modeling and simulation of simple mechatronic system-Position control solution based on linear variable inductor displacement transducer. Proceedings-2008 2nd Electronics system integration technology conference, ESTC. 2008:225~229
    30史维祥.流体控制发展的一些动向.液压气动与密封. 2001, (1):10~12
    31 C. Batur, M. Tawfik. Projective control of electro-hydraulic servo system. Proceedings of the American Control Conference. 2001:576~581
    32 M. Chen, S. Hong, P. Juhng. Design of a cascade hybrid fuzzy terminal sliding mode controller for an electro-hydraulic position servo system. First International Conference on Innovative Computing, Information and Control 2006, ICICIC'06. 2006:506~508
    33 I. Istif. A simulation study for the application of two different neural network control algorithms on an electro-hydraulic system. Proceedings of SPIE-The International Society for Optical Engineering. 2005, 59970O
    34刘国华,花蓉.现代液压控制技术应用及发展.淮南职业技术学院学报. 2006, 6(1):40~43
    35胡寿松,王执铨,胡维礼.最优控制理论与应用.第二版.科学出版社.2005:1~162
    36季天晶,王洪杰.船用舵机位置控制单元的建模与仿真研究.液压与气动. 2004, (4):15~16
    37杨平,赵昊阳,季天晶.船用舵机电液随动单元滑动模态变结构控制.第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集. 2008:142~146
    38王锐,赵昊阳,季天晶.船用舵机电液伺服单元单神经元自适应PID控制的研究.齐齐哈尔大学学报(自然科学版). 2009, (5):1~2
    39王锐,林烜,季天晶.船用舵机电液伺服单元非线性的研究.机械工程师. 2008, (10):114~116
    40卢长耿.力马达与力矩马达静态及动态特性的综合分析.武汉钢铁学院学报. 1989,12(1):52
    41李洪人.液压控制系统.第二版.国防工业出版社. 1990:1~227
    42冀宏,傅新,杨华勇.几种典型液压阀口过流面积分析及计算.机床与液压. 2003, (5):14~16
    43朱钰.具有圆形阀口的三通滑阀的静态特性分析.集美大学学报(自然科学版). 2008, (4):33~36
    44陈春.水压伺服阀摩擦非线性的理论分析与试验研究.华中科技大学硕士论文. 2008:18~63
    45李友善.自动控制原理.第三版.国防工业出版社. 2005:48~332
    46胡寿松.自动控制原理.第四版.科学出版社. 2001:13~382
    47吴晓燕,张双选. MATLAB在自动控制中的应用.西安电子科技大学出版社. 2006:147~149
    48朱华盛.系统误差的消除或减弱.湛江师范学院学报(自然科学版). 1994, (1):111~113
    49 G. P. Liu, S. Delay. Optimal-tuning nonlinear PID control of hydraulic systems. Control Engineering Practice. 2000, 8(9):1045~1053
    50 H. Khan etal. Nonlinear observer-based fault detection technique for electro-hydraulic servo-positioning systems. Mechatronics, November 2005, 15(9):1037~1059
    51强锡富.传感器.第二版.哈尔滨工业大学出版社. 2001:1~3
    52钟约先,林亨.机械系统计算机控制.清华大学出版社. 2001:354~355
    53王天永,张志海.浅谈自动控制中的PID.纯碱工业. 2010, (1):44~45
    54戴雅馨.浅析PID参数整定方法.纯碱工业. 2009, (6):15~17
    55张嗣瀛,高立群.现代控制理论.清华大学出版社. 2006:292~307
    56于长官.现代控制理论.哈尔滨工业大学出版社. 1988:180~194
    57王朝珠,秦化淑.最优控制理论.科学出版社. 2003:153~215
    58吴受章.最优控制理论与应用.机械工业出版社. 2008:57~58
    59 H. Takaharu, M. Toshimitsu, I. Shin. A new method for selecting weighting matrices of LQ regulators and its application to an industrial turbine. Proc of the 32nd Conf on Decision and Control. San Antonio. 1993:3332~3334
    60 A. S. Arar, M. E. Sawan, R. A. Rob. The inverse output feedback LQ problem. Proc of American Control Conf. Baltimore Maryland. 1994:2736~2737
    61 J. R. Broussard. A quadratic weight selection algorithm .IEEE Trans on Automatic Control. 1982, 27(4):945~947
    62 C. A. Harvey, G. Stein. Quadratic weights for asymptotic regulator properties. IEEE Trans on Automatic Control. 1978, 23(3):378~387
    63 H. David. Selection of LQG/LTR weighting matrices through constrained optimization. Proceedings of the American Control Conference. 1995: 458~460
    64 L. B. Zhang, Q. J. Mao. An approach for selecting weighting matrices of LQ of optimal controller design based on genetic algorithms. Proc of IEEE Tencon’02. 2002:1331~1334
    65周晓宏,刘红军.基于MATLAB的线性二次型最优控制器设计.长安大学学报(自然科学版). 2002, (3):90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700